International Journal of Wireless and Ad Hoc Communication

Journal DOI

https://doi.org/10.54216/IJWAC

Submit Your Paper

2692-4056ISSN (Online)

Volume 7 , Issue 2 , PP: 64-73, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Enhancing Cyber Security Attack Prediction: A Weighted Optimized Ensemble Approach Using DTO+DE Algorithm

Ahmed Mohamed Zaki 1 , Abdelaziz A. Abdelhamid 2 , Abdelhameed Ibrahim 3 , Marwa M. Eid 4 , El-Sayed M. El-Kenawy 5

  • 1 Computer Science and Intelligent Systems Research Center, Blacksburg 24060, Virginia, USA - (azaki@jcsis.org)
  • 2 Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt - (abdelaziz@cis.asu.edu.eg)
  • 3 School of ICT, Faculty of Engineering, Design and Information & Communications Technology (EDICT), Bahrain Polytechnic, PO Box 33349, Isa Town, Bahrain - (abdelhameed.fawzy@polytechnic.bh)
  • 4 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 35712, Egypt - (mmm@ieee.org)
  • 5 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura, 35111, Egypt - (skenawy@ieee.org)
  • Doi: https://doi.org/10.54216/IJWAC.070205

    Received: May 18, 2023 Revised: September 10, 2023 Accepted: December 24, 2023
    Abstract

    In the rapidly evolving landscape of cybersecurity, the perpetual challenge lies in staying one step ahead of potential threats. This research embarks on a transformative journey, seeking to fortify the predictive capabilities of cybersecurity systems by amalgamating the Dipper Throated Algorithm (DTO) and the Differential Evolution Algorithm (DE). The envisioned synergy between these two powerful optimization methodologies forms the backbone of an innovative Weighted Optimized Ensemble, seamlessly integrating diverse machine learning techniques. Within this intricate framework, the MLP, KNN, SVR, Decision Tree, Random Fores, and an Average Ensemble coalesce into a formidable defense mechanism against cyber threats. The underlying premise is to capitalize on the individual strengths of these models, enhancing their collective efficacy through the strategic optimization prowess of DTO and DE. The optimization outcomes, as reflected in key performance metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R2), spotlight a remarkable achievement—the substantial reduction of RMSE to an impressive 0.00941. This achievement signifies more than just a numerical enhancement; it symbolizes a paradigm shift in the cybersecurity paradigm. The meticulous integration of DTO+DE showcases its potential to fine-tune the ensemble model, leading to a tangible and significant impact on cybersecurity defenses. This not only augurs well for predictive accuracy but also holds the promise of fostering proactive cybersecurity measures, thereby contributing to a safer and more secure digital landscape.

    Keywords :

    Cybersecurity , Machine Learning , Ensemble Models , Optimization Algorithms , Threat Prediction , Differential Evolution

    References

    [1]     Takieldeen, A., El-kenawy, E.-S., Hadwan, M., & Zaki, R. (2022). Dipper Throated Optimization Algorithm for Unconstrained Function and Feature Selection. Computers, Materials & Continua, 72(1), 1465–1481. https://doi.org/10.32604/cmc.2022.026026

    [2]     Jayaraman, S. K., Venkatachalam, V., Eid, M. M., Krithivasan, K., Raju, S. K., Khafaga, D. S., Karim, F. K., & Ahmed, A. E. (2023). Enhancing Cyclone Intensity Prediction for Smart Cities Using a Deep-Learning Approach for Accurate Prediction. Atmosphere, 14(10), Article 10. https://doi.org/10.3390/atmos14101567

    [3]     Shafizadeh, A., Shahbeik, H., Rafiee, S., Fardi, Z., Karimi, K., Peng, W., Chen, X., Tabatabaei, M., & Aghbashlo, M. (2024). Machine learning-enabled analysis of product distribution and composition in biomass-coal co-pyrolysis. Fuel, 355, 129464. https://doi.org/10.1016/j.fuel.2023.129464

    [4]     Wu, C., Wan, B., Entezari, A., Fang, J., Xu, Y., & Li, Q. (2024). Machine learning-based design for additive manufacturing in biomedical engineering. International Journal of Mechanical Sciences, 266, 108828. https://doi.org/10.1016/j.ijmecsci.2023.108828

    [5]     Zaki, A. M., Towfek, S. K., Gee, W., Zhang, W., & Soliman, M. A. (2023). Advancing Parking Space Surveillance using A Neural Network Approach with Feature Extraction and Dipper Throated Optimization Integration. Journal of Artificial Intelligence and Metaheuristics, Volume 6(Issue 2), 16–25. https://doi.org/10.54216/JAIM.060202

    [6]     Kadakia, Y. A., Suryavanshi, A., Alnajdi, A., Abdullah, F., & Christofides, P. D. (2024). Integrating machine learning detection and encrypted control for enhanced cybersecurity of nonlinear processes. Computers & Chemical Engineering, 180, 108498. https://doi.org/10.1016/j.compchemeng.2023.108498

    [7]     Lu, K.-D., Zhou, L., & Wu, Z.-G. (2023). Representation-Learning-Based CNN for Intelligent Attack Localization and Recovery of Cyber-Physical Power Systems. IEEE Transactions on Neural Networks and Learning Systems, 1–11. https://doi.org/10.1109/TNNLS.2023.3257225

    [8]     Nagarhalli, G. B., Narendra M. Shekokar, Tatwadarshi P. (2023). Introduction and Importance of Machine Learning Techniques in Cyber Security. In Intelligent Approaches to Cyber Security. Chapman and Hall/CRC.

    [9]     Zaki, A. M., Khodadadi, N., Lim, W. H., & Towfek, S. K. (2023). Predictive Analytics and Machine Learning in Direct Marketing for Anticipating Bank Term Deposit Subscriptions. American Journal of Business and Operations Research, Volume 11(Issue 1), 79–88. https://doi.org/10.54216/AJBOR.110110

    [10]    Kandhro, I. A., Alanazi, S. M., Ali, F., Kehar, A., Fatima, K., Uddin, M., & Karuppayah, S. (2023). Detection of Real-Time Malicious Intrusions and Attacks in IoT Empowered Cybersecurity Infrastructures. IEEE Access, 11, 9136–9148. https://doi.org/10.1109/ACCESS.2023.3238664

    [11]    Lavanya, V., & Sekhar, P. C. (2023). Efficient Cybersecurity Model Using Wavelet Deep CNN and Enhanced Rain Optimization Algorithm. International Journal of Image and Graphics, 2450048. https://doi.org/10.1142/S0219467824500487

    [12]    Cyber Security Attacks. (n.d.). Retrieved January 3, 2024, from https://www.kaggle.com/datasets/teamincribo/cyber-security-attacks

    [13]    Mboweni, I. V., Ramotsoela, D. T., & Abu-Mahfouz, A. M. (2023). Hydraulic Data Preprocessing for Machine Learning-Based Intrusion Detection in Cyber-Physical Systems. Mathematics, 11(8), Article 8. https://doi.org/10.3390/math11081846

    [14]    Pearson, J., & Oni, O. (2023). Addressing cybersecurity and safety disconnects in United States army aviation: An exploratory qualitative case study. Security Journal. https://doi.org/10.1057/s41284-023-00372-7

    [15]    Pires, S., & Mascarenhas, C. (2023). Cyber Threat Analysis Using Pearson and Spearman Correlation Via Exploratory Data Analysis. 2023 Third International Conference on Secure Cyber Computing and Communication (ICSCCC), 257–262. https://doi.org/10.1109/ICSCCC58608.2023.10176973

    [16]    Azam, Z., Islam, Md. M., & Huda, M. N. (2023). Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree. IEEE Access, 11, 80348–80391. https://doi.org/10.1109/ACCESS.2023.3296444

    [17]    Zhou, Z. (2023). Prediction of the impact of similar industrial structures based on the SVR model. International Conference on Cyber Security, Artificial Intelligence, and Digital Economy (CSAIDE 2023), 12718, 565–569. https://doi.org/10.1117/12.2681560

    [18]    Rizk, F. H., Arkhstan, S., Zaki, A. M., Kandel, M. A., & Towfek, S. K. (2023). Integrated CNN and Waterwheel Plant Algorithm for Enhanced Global Traffic Detection. Journal of Artificial Intelligence and Metaheuristics, Volume 6(Issue 2), 36–45. https://doi.org/10.54216/JAIM.060204

    Cite This Article As :
    Mohamed, Ahmed. , A., Abdelaziz. , Ibrahim, Abdelhameed. , M., Marwa. , M., El-Sayed. Enhancing Cyber Security Attack Prediction: A Weighted Optimized Ensemble Approach Using DTO+DE Algorithm. International Journal of Wireless and Ad Hoc Communication, vol. , no. , 2023, pp. 64-73. DOI: https://doi.org/10.54216/IJWAC.070205
    Mohamed, A. A., A. Ibrahim, A. M., M. M., E. (2023). Enhancing Cyber Security Attack Prediction: A Weighted Optimized Ensemble Approach Using DTO+DE Algorithm. International Journal of Wireless and Ad Hoc Communication, (), 64-73. DOI: https://doi.org/10.54216/IJWAC.070205
    Mohamed, Ahmed. A., Abdelaziz. Ibrahim, Abdelhameed. M., Marwa. M., El-Sayed. Enhancing Cyber Security Attack Prediction: A Weighted Optimized Ensemble Approach Using DTO+DE Algorithm. International Journal of Wireless and Ad Hoc Communication , no. (2023): 64-73. DOI: https://doi.org/10.54216/IJWAC.070205
    Mohamed, A. , A., A. , Ibrahim, A. , M., M. , M., E. (2023) . Enhancing Cyber Security Attack Prediction: A Weighted Optimized Ensemble Approach Using DTO+DE Algorithm. International Journal of Wireless and Ad Hoc Communication , () , 64-73 . DOI: https://doi.org/10.54216/IJWAC.070205
    Mohamed A. , A. A. , Ibrahim A. , M. M. , M. E. [2023]. Enhancing Cyber Security Attack Prediction: A Weighted Optimized Ensemble Approach Using DTO+DE Algorithm. International Journal of Wireless and Ad Hoc Communication. (): 64-73. DOI: https://doi.org/10.54216/IJWAC.070205
    Mohamed, A. A., A. Ibrahim, A. M., M. M., E. "Enhancing Cyber Security Attack Prediction: A Weighted Optimized Ensemble Approach Using DTO+DE Algorithm," International Journal of Wireless and Ad Hoc Communication, vol. , no. , pp. 64-73, 2023. DOI: https://doi.org/10.54216/IJWAC.070205