International Journal of Wireless and Ad Hoc Communication

Journal DOI

https://doi.org/10.54216/IJWAC

Submit Your Paper

2692-4056ISSN (Online)

Volume 7 , Issue 1 , PP: 08-17, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Fuzzy Logic Based Load Balanced Clustering for Network Lifetime Enhancement in WSN

Ankita Srivastava 1 * , P. K. Mishra 2

  • 1 Department of Computer Science Institute of Science, Banaras Hindu University Varanasi 221005, India - (ankita1490@gmail.com)
  • 2 Department of Computer Science Institute of Science, Banaras Hindu University Varanasi 221005, India - (mishra@bhu.ac.in)
  • Doi: https://doi.org/10.54216/IJWAC.070101

    Received: January 03, 2023 Revised: April 12, 2023 Accepted: May 04, 2023
    Abstract

    Large number of small sensor nodes exists in WSN’s for sensing and collecting information from the environment. In today’s time, these sensor nodes were applied in under water, military area, health care, earthquake sensing and in dedicated areas with recent technologies. Sensor nodes have limited life time and have supplementary network life. Network lifecycle depends on many factors such as connectivity, residual energy, topology types, single hop, multi hop, distance from base station, distance to cluster heads and much more. Among the various solutions given, clustering is considered to be good solution and optimal cluster head selection leads to efficient energy consumption. This paper proposes fuzzy based multi-attributes clustering that balances load among sensor nodes and also gives energy efficient clustering. Here we have used some attributes such as delay, residual energy, distance to CH, standard deviation to average network lifetime and standard deviation to residual energy. Results and experimental analysis validates that the proposed methods outperforms other compared algorithms.

    Keywords :

    Fuzzy Rules , Clustering , MADM , Load-Balance , Network Lifetime.

    References

    [1]  Heinzelman,  W.B.,  Chandrakasan,  A.P.  and  Balakrishnan,  H.,  2002.  An  application-specific  protocol architecture for wireless microsensor networks. IEEE Transactions on wireless communications, 1(4), pp.660-670.

    [2]  El  Khediri,  S.,  2022.  Wireless  sensor  networks:  a  survey,  categorization,  main  issues,  and  future orientations for clustering protocols. Computing, pp.1-63.

    [3]  Younis, O., Krunz, M. and  Ramasubramanian, S., 2006. Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE network, 20(3), pp.20-25.

    [4]  Mamalis, B., Gavalas,  D., Konstantopoulos, C. and Pantziou, G., 2009. Clustering in wireless sensor networks. In RFID and sensor Networks (pp. 343-374). CRC Press.

    [5]  Shi,  S.,  Liu,  X.  and  Gu,  X.,  2012,  August.  An  energy-efficiency  Optimized  LEACH-C  for  wireless sensor  networks.  In 7th  International  Conference  on  Communications  and  Networking  in  China (pp. 487-492). IEEE.

    [6]  Younis, O. and Fahmy, S., 2004. HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on mobile computing, 3(4), pp.366-379.

    [7]  Ye,  M.,  Li,  C.,  Chen,  G.  and  Wu,  J.,  2005,  April.  EECS:  an  energy  efficient  clustering  scheme  in wireless  sensor  networks.  In PCCC  2005.  24th  IEEE  International  Performance,  Computing,  and Communications Conference, 2005. (pp. 535-540). IEEE.

    [8]  Kumar, D., Aseri, T.C. and Patel, R., 2009. EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. computer communications, 32(4), pp.662-667.

    [9]  Srivastava, A. and Mishra, P.K., 2022. Multi-attributes based energy efficient clustering for enhancing network lifetime in WSN’s. Peer-to-Peer Networking and Applications, 15(6), pp.2670-2693.

    [10]  Srivastava,  A.  and  Mishra,  P.K.,  2021,  December.  Multiple-Parameter  Based  Clustering  for  Efficient Energy in Wireless Sensor Networks. In International Conference on Advanced Network Technologies and Intelligent Computing (pp. 15-24). Springer, Cham.

    [11]  Sharma,  R.,  Vashisht,  V.  and  Singh,  U.,  2022.  eeFFA/DE-a  fuzzy-based  clustering  algorithm  using hybrid  technique  for  wireless  sensor  networks. International  Journal  of  Advanced  Intelligence Paradigms, 21(1-2), pp.129-157.

    [12]  Maratha,  P.  and  Gupta,  K.,  2022.  Linear  optimization  and  fuzzy-based  clustering  for  WSNs  assisted internet of things. Multimedia Tools and Applications, pp.1-25.

    [13]  Trinh, C., Huynh, B., Bidaki, M., Rahmani, A.M., Hosseinzadeh, M. and Masdari, M., 2022. Optimized fuzzy  clustering  using  moth-flame  optimization  algorithm  in  wireless  sensor  networks. Artificial Intelligence Review, 55(3), pp.1915-1945.

    [14]  Jayaraman,  G.  and  Dhulipala,  V.R.,  2022.  FEECS:  Fuzzy-Based  Energy-Efficient  Cluster  Head Selection  Algorithm  for  Lifetime  Enhancement  of  Wireless  Sensor  Networks. Arabian  Journal  for Science and Engineering, 47(2), pp.1631-1641.

    [15]  Kumar,  A.  and  Kumar,  A.,  2022.  Multi  criteria  decision  making  based  energy  efficient  clustered solution for wireless sensor networks. International Journal of Information Technology, pp.1-10.

    [16]  Jagadeesh,  S.  and  Muthulakshmi,  I.,  2022.  Hybrid  Metaheuristic  Algorithm -Based  Clustering  with Multi-Hop  Routing  Protocol  for  Wireless  Sensor  Networks.  In Proceedings  of  Data  Analytics  and Management (pp. 843-855). Springer, Singapore.

    [17]  Alaei,  M.  and  Yazdanpanah,  F.,  2020.  A      ِDistributed  Fuzzy-based  Clustering  Scheme  to  Optimize Energy Consumption and Data Transmission in Wireless Sensor Networks. Journal of Soft Computing and Information Technology, 9(3), pp.229-243. 

    [18]  Le-Ngoc, K.K., Tho, Q.T., Bui,  T.H., Rahmani, A.M. and Hosseinzadeh, M., 2022. Optimized fuzzy clustering  in  wireless  sensor  networks  using  improved  squirrel  search  algorithm. Fuzzy  Sets  and Systems, 438, pp.121-147.

    [19]  A.  Sariga  ,  J.  Uthayakumar, Type  2  Fuzzy  Logic  based  Unequal  Clustering  algorithm  for  multi-hop wireless sensor networks, International Journal of Wireless and Ad Hoc Communication, Vol. 1 , No. 1 , (2020) : 33-46 (Doi   :  https://doi.org/10.54216/IJWAC.010102

    [20]  Senthil  Murugesan  ,  Krishna  Venkata  ,  Narendra  Mupparaju  ,  Rayudu  Kommi, Quality  of  Service Enhancement  in  Wireless  LAN  and  MANET, International  Journal  of  Wireless  and  Ad  Hoc Communication, Vol. 1 , No. 2 , (2020) : 08-18 (Doi   :  https://doi.org/10.54216/IJWAC.010201)

    [21]  Khalily-Dermany,  M.,  2022.  Multi-criteria  itinerary  planning  for  the  mobile  sink  in  heterogeneous wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, pp.1-20.

    [22]  Ramesh, D. and Karegowda, A.G., 2022. Firefly and Grey Wolf search based multi-criteria routing and aggregation  towards  a  generic  framework  for  LEACH. International  Journal  of  Information Technology, 14(1), pp.105-114.

    [23]  Subramani,  N.,  Mohan,  P.,  Alotaibi,  Y.,  Alghamdi,  S.  and  Khalaf,  O.I.,  2022.  An  efficient metaheuristic-based  clustering  with  routing  protocol  for  underwater  wireless  sensor networks. Sensors, 22(2), p.415.

    [24]  Jagadeesh,  S.  and  Muthulakshmi,  I.,  2022.  Hybrid  Metaheuristic  Algorithm-Based  Clustering  with Multi-Hop  Routing  Protocol  for  Wireless  Sensor  Networks.  In Proceedings  of  Data  Analytics  and Management (pp. 843-855). Springer, Singapore.

    [25]  Balasubramanian,  D.L.  and  Govindasamy,  V.,  2023.  Energy  Aware  Farmland  Fertility  Optimization Based  Clustering  Scheme  for  Wireless  Sensor  Networks. Microprocessors  and  Microsystems, p.104759.

    [26]  Seyfollahi,  A.,  Taami,  T.  and  Ghaffari,  A.,  2023.  Towards  developing  a  machine  learningmetaheuristic-enhanced energy-sensitive routing framework for the internet of things. Microprocessors and Microsystems, 96, p.104747.

    Cite This Article As :
    Srivastava, Ankita. , K., P.. Fuzzy Logic Based Load Balanced Clustering for Network Lifetime Enhancement in WSN. International Journal of Wireless and Ad Hoc Communication, vol. , no. , 2023, pp. 08-17. DOI: https://doi.org/10.54216/IJWAC.070101
    Srivastava, A. K., P. (2023). Fuzzy Logic Based Load Balanced Clustering for Network Lifetime Enhancement in WSN. International Journal of Wireless and Ad Hoc Communication, (), 08-17. DOI: https://doi.org/10.54216/IJWAC.070101
    Srivastava, Ankita. K., P.. Fuzzy Logic Based Load Balanced Clustering for Network Lifetime Enhancement in WSN. International Journal of Wireless and Ad Hoc Communication , no. (2023): 08-17. DOI: https://doi.org/10.54216/IJWAC.070101
    Srivastava, A. , K., P. (2023) . Fuzzy Logic Based Load Balanced Clustering for Network Lifetime Enhancement in WSN. International Journal of Wireless and Ad Hoc Communication , () , 08-17 . DOI: https://doi.org/10.54216/IJWAC.070101
    Srivastava A. , K. P. [2023]. Fuzzy Logic Based Load Balanced Clustering for Network Lifetime Enhancement in WSN. International Journal of Wireless and Ad Hoc Communication. (): 08-17. DOI: https://doi.org/10.54216/IJWAC.070101
    Srivastava, A. K., P. "Fuzzy Logic Based Load Balanced Clustering for Network Lifetime Enhancement in WSN," International Journal of Wireless and Ad Hoc Communication, vol. , no. , pp. 08-17, 2023. DOI: https://doi.org/10.54216/IJWAC.070101