Volume 3 , Issue 2 , PP: 102-109, 2021 | Cite this article as | XML | Html | PDF | Full Length Article
Mohamed Saber 1 * , El-Sayed M. El-Kenawy 2 , Abdelhameed Ibrahim 3 , Marwa M. Eid 4 , Abdelaziz A. Abdelhamid 5
Doi: https://doi.org/10.54216/IJWAC.030205
Trigonometric functions are essential part of digital communication systems such as receivers, synthesizers, and phase locked loop. Implementation of trigonometric functions requires many arithmetic units; multipliers and adders circuits which reduces the speed of operation and consumes much power. In this paper we introduce two approximation methods to represents sine, and cosine functions to achieve fast operation and low power consumption. The simulations indicate a matching between the ideal trigonometric functions and the approximation method with 0.001 error which considered as trivial amount.
trigonometric functions approximation , low power consumption , FPGA
[1] Moroz, L.; Samotyy, V. Efficient Floating-Point Division for Digital Signal Processing Application [Tips &Tricks]. IEEE Signal Process. Mag. 2019, 36, 159–163.
[2] M. Saber, M. Elmasry, M. E. Abo-Elsoud, “Quadrature Direct Digital Frequency Synthesizer Using FPGA”, International Conference on Computer Engineering and systems, pp.14-18, Nov.
[3] M. Saber, Y. Jitsumatsu and M.T.A. Khan, “A Low Power Digital Phase Locked Loop with Rom-free Numerically Controlled Oscillator,'' Signal Processing: An international journal (SPIJ), vol.5, no.4, pp.142-155, Oct. 2011.
[4] Saber, M.; Jitsumatsu, Y.; Kohda, T. A low-power implementation of arctangent function for communication applications using FPGA. In Proceedings of the 2009 Fourth International Workshop on Signal Design and its Applications in Communications, Fukuoka, Japan, 19–23 October 2009; pp. 60–63.
[5] Oberman, S.; Flynn, M. Design issues in division and other floating-point operations. IEEE Trans. Comput. 1997, 46, 154–161.
[6] M. Saber, Y. Jitsumatsu and M.T.A. Khan, “Design and Implementation of Low Ripple Low Power Digital Phase-Locked Loop'', Signal Processing: An international journal (SPIJ), vol.4, no.6, pp.304-317, Feb. 2011.
[7] M. Saber, Y. Jitsumatsu, Y. M.T.A. Khan, ” A Simple Design to Mitigate Problems of Conventional Digital Phase Locked Loop ”, Signal Processing: An international journal (SPIJ), vol.6, no.2, pp.65-77, April. 2012.
[8] Bolanakis, D.E. A Survey of Research in Microcontroller Education. IEEE Rev. Iberoam. Tecnol. Del Aprendiz. 2019, 14, 50–57.
[9] ButurugĖa, A.; Constantinescu, R.C.; Stoichescu, D.A. Current consumption analysis for 8-bit microcontrollers. In Proceedings of the 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 27–29 June 2019; pp. 1–6.
[10] Chen, C.H.; Lin, M.Y.; Liu, C.C. Edge Computing Gateway of the Industrial Internet of Things Using Multiple Collaborative Microcontrollers. IEEE Netw. 2018, 32, 24–32.
[11] Joo, S.; An, Y.J.; Oh, T.W.; Jung, S.O. Comparative analysis of MCU memory for IoT application. In Proceedings of the 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 24–27 January 2018; pp. 1–3.
[12] Cococcioni, M.; Rossi, F.; Ruffaldi, E.; Saponara, S. Fast Approximations of Activation Functions in Deep Neural Networks when using Posit Arithmetic. Sensors 2020, 20, 1515.
[13] Bouguezzi, S.; Faiedh, H.; Souani, C. Hardware Implementation of Tanh Exponential Activation Function using FPGA. In Proceedings of the 2021 18th International Multi-Conference on Systems, Signals Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 1020–1025.
[14] Chang, C.H.; Chen, S.H.; Chen, B.W.; Wang, J.C.; Wang, J.F. A division-free algorithm for fixed-point power exponential function in embedded system. In Proceedings of the 2013 1st International Conference on Orange Technologies (ICOT), Tainan, Taiwan, 12–16 March 2013; pp. 223–226.
[15] Ibrahim, Abdelhameed, and El-Sayed M. El-kenawy. "Applications and datasets for superpixel techniques: A survey." Journal of Computer Science and Information Systems 15, no. 3 (2020): 1-6.
[16] Moroz, L.V.; Samotyy, V.V.; Horyachyy, O.Y. Modified Fast Inverse Square Root and Square Root Approximation Algorithms: The Method of Switching Magic Constants. Computation 2021, 9, 21.
[17] El-Sayed Towfek, M., and M. Saber El-kenawy. "Reham Arnous. An Integrated Framework to Ensure Information Security Over the Internet." International Journal of Computer Applications 178, no. 29 (2019): 13- 15.
[18]Walczyk, C.J.; Moroz, L.V.; Cie´sli ´ nski, J.L. Improving the Accuracy of the Fast Inverse Square Root by ModifyingNewton–Raphson Corrections. Entropy 2021, 23, 86.
[19]Ukil, A.; Shah, V.H.; Deck, B. Fast computation of arctangent functions for embedded applications: A comparative analysis. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 1206–1211.
[20] El-Kenawy, El-Sayed M., Marwa Eid, and Alshimaa H. Ismail. "A New Model for Measuring Customer Utility Trust in Online Auctions." International Journal of Computer Applications 975: 8887.
[21] Benammar, M.; Alassi, A.; Gastli, A.; Ben-Brahim, L.; Touati, F. New Fast Arctangent Approximation Algorithm for Generic Real-Time Embedded Applications. Sensors 2019, 19, 5148.
[22] Zhu, H.; Ge, Y.; Jiang, B. Modified CORDIC algorithm for computation of arctangent with variable iterations. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016; pp. 261–264.
[23] El-kenawy, El-Sayed M., Marwa M. Eid, and Abdelhameed Ibrahim. "Anemia estimation for covid-19 patients using a machine learning model." Journal of Computer Science and Information Systems 17, no. 11 (2021): 2535-1451.
[24] Pilato, L.; Fanucci, L.; Saponara, S. Real-Time and High-Accuracy Arctangent Computation Using CORDIC and Fast Magnitude Estimation. Electronics 2017, 6, 22.
[25] Ibrahim, Abdelhameed, Seyedali Mirjalili, Mohammed El-Said, Sherif SM Ghoneim, Mosleh M. Al-Harthi, Tarek F. Ibrahim, and El-Sayed M. El-Kenawy. "Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm." IEEE Access 9 (2021): 125787-125804.
[26] Eid, Marwa M., El-Sayed M. El-kenawy, and Abdelhameed Ibrahim. "A binary sine cosine-modified whale optimization algorithm for feature selection." In 2021 National Computing Colleges Conference (NCCC), pp. 16. IEEE, 2021.