886 484
Full Length Article
Journal of Intelligent Systems and Internet of Things
Volume 3 , Issue 1, PP: 32-42 , 2021 | Cite this article as | XML | Html |PDF


Smart Grid: A Survey of Architectural Elements, Machine Learning and Deep Learning Applications and Future Directions

Authors Names :   Navod Neranjan Thilakarathne   1 *     Rohan Samarasinghe   2     Mohan Krishna Kagita   3     Surekha Lanka   4     Hussain Ahmad   5  

1  Affiliation :  University of Colombo, SRILANKA

    Email :  navod.neranjan@ict.cmb.ac.lk

2  Affiliation :  University of Colombo, SRILANKA

    Email :  rohan@ict.cmb.ac.lk

3  Affiliation :  Charles Sturt University, AUSTRALIA

    Email :  mohankrishna4k@gmail.com

4  Affiliation :  Stamford international university, THAILAND

    Email :  surekha.lanka@stamford.edu

5  Affiliation :  Gomal University, PAKISTAN;

    Email :  hussaintajazai@gmail.com

Doi   :   https://doi.org/10.54216/JISIoT.030103

Received: March 13, 2021 Accepted: June 10, 2021

Abstract :

In the 21st century, the Smart Grid (SG), also known as the next-generation power grid, arose as a substitute for inefficient power systems, ensuring a reliable and efficient power supply. It is projected to improve the reliability and efficiency of energy distribution while having minimal side effects because it is coupled with modern communication and computation capabilities. The huge infrastructure it possesses, as well as the system's underlying communication network, has resulted in a large number of data that necessitates the use of diverse approaches for proper analysis and decision making. When it comes to analyzing this huge amount of data and generating significant insights from it, big data analytics, machine learning (ML), and deep learning (DL), all play a key role. These insights are useful for anomaly detection, fraud detection, price confirmation, fault detection, monitoring energy consumption, and so on. Hence constant and continuous data analysis is an essential part, of the modern smart grid, for its existence. Inspired by providing a reliable and efficient energy distribution, this paper explores and surveys the smart grid architectural elements, ML and DL based applications, and approaches in the context of SG.  In addition in terms of ML and DL based data analytics, this paper highlights the limitations of the current research and, highlights future directions as well.

Keywords :

Smart Grid , IoT , Internet of Things , Machine Learning , Deep Learning , Cyber-Physical Systems

References :

1.      Karimipour, H., Dehghantanha, A., Parizi, R. M., Choo, K. K. R., & Leung, H. A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access, 7, 80778-80788. (2019).

2.      Esmalifalak, M., Liu, L., Nguyen, N., Zheng, R., & Han, Z. Detecting stealthy false data injection using machine learning in smart grid. IEEE Systems Journal, 11(3), 1644-1652. (2014).

3.      Ozay, M., Esnaola, I., Vural, F. T. Y., Kulkarni, S. R., & Poor, H. V. Machine learning methods for attack detection in the smart grid. IEEE transactions on neural networks and learning systems, 27(8), 1773-1786. (2015).

4.      Ford, V., Siraj, A., & Eberle, W. Smart grid energy fraud detection using artificial neural networks. In 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG) (pp. 1-6). IEEE. (2014).

5.      Zheng, Z., Yang, Y., Niu, X., Dai, H. N., & Zhou, Y. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Transactions on Industrial Informatics, 14(4), 1606-1615. (2017).

6.      Ayad, A., Farag, H. E., Youssef, A., & El-Saadany, E. F. Detection of false data injection attacks in smart grids using recurrent neural networks. In 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (pp. 1-5). IEEE. (2018).

7.      Ahmed, S., Lee, Y., Hyun, S. H., & Koo, I. Feature selection–based detection of covert cyber deception assaults in smart grid communications networks using machine learning. IEEE Access, 6, 27518-27529. (2018).

8.      Vimalkumar, K., & Radhika, N. A big data framework for intrusion detection in smart grids using Apache Spark. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 198-204). IEEE. (2017).

9.      Ahmed, S., Lee, Y., Hyun, S. H., & Koo, I. Unsupervised machine learning-based detection of covert data integrity assault in smart grid networks utilizing isolation forest. IEEE Transactions on Information Forensics and Security, 14(10), 2765-2777. (2019).

10.   Ferrag, M. A., & Maglaras, L. DeepCoin: A novel deep learning and blockchain-based energy exchange framework for smart grids. IEEE Transactions on Engineering Management. (2019).

11.   Foroutan, S. A., & Salmasi, F. R. Detection of false data injection attacks against state estimation in smart grids based on a mixture Gaussian distribution learning method. IET Cyber-Physical Systems: Theory & Applications, 2(4), 161-171. (2017).

12.   Rawat, D. B., & Bajracharya, C. Detection of false data injection attacks in smart grid communication systems. IEEE Signal Processing Letters, 22(10), 1652-1656. (2015).

13.   Kosek, A. M. Contextual anomaly detection for cyber-physical security in smart grids based on an artificial neural network model. In 2016 Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG) (pp. 1-6). IEEE. (2016).

14.   Sakhnini, J., Karimipour, H., & Dehghantanha, A. Smart grid cyber-attacks detection using supervised learning and heuristic feature selection. In 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE) (pp. 108-112). IEEE. (2019).

15.   Hink, R. C. B., Beaver, J. M., Buckner, M. A., Morris, T., Adhikari, U., & Pan, S. Machine learning for power system disturbance and cyber-attack discrimination. In 2014 7th International symposium on resilient control systems (ISRCS) (pp. 1-8). IEEE. (2014).

16.   Alazab, M., Khan, S., Krishnan, S. S. R., Pham, Q. V., Reddy, M. P. K., & Gadekallu, T. R. A Multidirectional LSTM Model for Predicting the Stability of a Smart Grid. IEEE Access, 8, 85454-85463. (2020).

17.   Thilakarathne, N. N. Security and Privacy Issues in IoT Environment. International Journal of Engineering and Management Research, 10.(2020).

18.   Thilakarathne, N. N., Kagita, M. K., & Gadekallu, D. T. R. The Role of the Internet of Things in Health Care: A Systematic and Comprehensive Study. International Journal of Engineering and Management Research, 10(4), 145-159. (2020).

19.   Kagita, M. K., Thilakarathne, N., Rajput, D. S., & Lanka, D. S. A Detail Study of Security and Privacy issues of Internet of Things. arXiv preprint arXiv:2009.06341.(2020).

20.   Potter, C. W., & Negnevitsky, M. Very short-term wind forecasting for Tasmanian power generation. IEEE Transactions on power systems, 21(2), 965-972. (2006).

21.   Barbounis, T. G., Theocharis, J. B., Alexiadis, M. C., & Dokopoulos, P. S.Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Transactions on Energy Conversion, 21(1), 273-284. (2006).

22.   Zhu, B., Chen, M. Y., Wade, N., & Ran, L. A prediction model for wind farm power generation based on fuzzy modeling. Procedia Environmental Sciences, 12, 122-129. (2012).

23.   Yesilbudak, M., Sagiroglu, S., & Colak, I. A new approach to very short term wind speed prediction using k-nearest neighbor classification. Energy Conversion and Management, 69, 77-86.(2013).

24.   Hossain, M. R., Oo, A. M. T., & Ali, A. B. M. S. The combined effect of applying feature selection and parameter optimization on machine learning techniques for solar Power prediction. American Journal of Energy Research, 1(1), 7-16. (2013).

25.   Salcedo-Sanz, S., Casanova-Mateo, C., Pastor-Sánchez, A., & Sánchez-Girón, M. Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization–Extreme Learning Machine approach. Solar Energy, 105, 91-98.(2014)

26.   Li, Z., Rahman, S. M., Vega, R., & Dong, B. A hierarchical approach using machine learning methods in solar photovoltaic energy production forecasting. Energies, 9(1), 55. (2016).

27.   Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., & Fouilloy, A. Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569-582. (2017).

28.   Gala, Y., Fernández, Á, Díaz, J., & Dorronsoro, J. R. Hybrid machine learning forecasting of solar radiation values. Neurocomputing, 176, 48-59. (2016).

29.   Wang, J., Wang, Y., & Li, Y. A novel hybrid strategy using three-phase feature extraction and a weighted regularized extreme learning machine for multi-step ahead wind speed prediction. Energies, 11(2), 321. (2018).

30.   Ferrag, M. A., & Maglaras, L. DeepCoin: A novel deep learning and blockchain-based energy exchange framework for smart grids. IEEE Transactions on Engineering Management.(2019).

31.   Li, M., Zhang, K., Liu, J., Gong, H., & Zhang, Z. Blockchain-based Anomaly Detection of Electricity Consumption in Smart Grids. Pattern Recognition Letters. (2020).

32.   Simmhan, Y., Aman, S., Kumbhare, A., Liu, R., Stevens, S., Zhou, Q., & Prasanna, V. Cloud-based software platform for big data analytics in smart grids. Computing in Science & Engineering, 15(4), 38-47.(2013)

33.   Shen, Y., Fang, W., Ye, F., & Kadoch, M.  EV charging behavior analysis using hybrid intelligence for 5G smart grid. Electronics, 9(1), 80. (2020).

34.   Singh, S., & Yassine, A. IoT big data analytics with fog computing for household energy management in smart grids. In International Conference on Smart Grid and Internet of Things (pp. 13-22). Springer, Cham. (2018).

35.   Thilakarathne, N. N. (2021). Review on the Use of ICT Driven Solutions Towards Managing Global Pandemics. Journal of ICT Research & Applications, 14(3).

36.   Thilakarathne, N. N., Kagita, M. K., & Priyashan, W. M. (2022). Green Internet of Things: The Next Generation Energy Efficient Internet of Things. In Applied Information Processing Systems (pp. 391-402). Springer, Singapore.

37.   Priyashan, W. M., & Thilakarathne, N. N. (2020). IIoT framework for sme level injection molding industry in the context of industry 4.0. future, 16, 17.

38.   Gopal, R., Parthasarathy, V., Kumar, M. R., & Hemalatha, S. Drap Algorithm for Energy-efficient Malicious Node Detection in Wireless Sensor Networks.

39.   Mahendran, R. K., & Velusamy, P. (2020). A secure fuzzy extractor based biometric key authentication scheme for body sensor network in Internet of Medical Things. Computer Communications, 153, 545-552.



Cite this Article as :
Navod Neranjan Thilakarathne , Rohan Samarasinghe , Mohan Krishna Kagita , Surekha Lanka , Hussain Ahmad, Smart Grid: A Survey of Architectural Elements, Machine Learning and Deep Learning Applications and Future Directions, Journal of Intelligent Systems and Internet of Things, Vol. 3 , No. 1 , (2021) : 32-42 (Doi   :  https://doi.org/10.54216/JISIoT.030103)