Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 17 , Issue 2 , PP: 152-190, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

Greylag Goose Optimization for Feature Selection and Hyperparameter Tuning in Chronic Kidney Disease Detection

Mohamed Saber 1 * , Ebrahim A. Mattar 2 , Marwa M. Eid 3 , El-Sayed M. El-kenawy 4

  • 1 Electronics and Communications Engineering Department, Faculty of Engineering, Delta University for Science and Technology, Gamasa City 11152, Egyp - (Mohamed.saber@deltauniv.edu.eg)
  • 2 College of Engineering, University of Bahrain, Bahrain - (ebmattar@uob.edu.bh)
  • 3 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 11152, Egypt; Jadara Research Center, Jadara University, Irbid 21110, Jordan - (mmm@ieee.org)
  • 4 Delta Higher Institute of Engineering and Technology, Department for Communications and Electronics, Mansoura 35511, Egypt; Applied Science Research Center. Applied Science Private University, Amman, Jordan - (skenawy@ieee.org)
  • Doi: https://doi.org/10.54216/JISIoT.170211

    Received: January 09, 2025 Revised: February 10, 2025 Accepted: March 04, 2025
    Abstract

    Chronic Kidney Disease (CKD) is a global health concern that necessitates accurate and timely detection to improve patient outcomes and reduce healthcare costs. This study focuses on enhancing CKD classification using machine learning techniques, leveraging 400 instances with 25 clinical features to predict binary outcomes of CKD or non-CKD. The main objective is to improve detection accuracy by applying feature selection and model optimization. Standard machine learning models, including Multilayer Perceptron (MLP), Random Forest (RF), Support Vector Classifier (SVC), and K-Nearest Neighbors (KNN), were employed, with optimization achieved through binary optimization algorithms such as Greylag Goose Optimization (GGO), Particle Swarm Optimization (PSO), Bat Algorithm (BA), and Whale Optimization Algorithm (WAO), along with hyperparameter tuning using genetic algorithms and other metaheuristics. Results indicate significant improvements in classification performance after feature selection and optimization, with the GGO-optimized MLP model achieving an accuracy of 97.06%. The contributions of this paper include (i) benchmarking baseline models for CKD detection, (ii) a comprehensive analysis of feature selection strategies, (iii) optimization of machine learning models for CKD classification, and (iv) visualization of model performance to aid future research in healthcare machine learning applications.

    Keywords :

    Chronic Kidney Disease , Machine Learning , Feature Selection , Hyperparameter Optimization , Healthcare Analytics

    References

    [1] M. P. Duarte et al., “Prevalence of sarcopenia in patients with chronic kidney disease: A global systematic review and meta-analysis,” Journal of Cachexia, Sarcopenia and Muscle, vol. 15, pp. 501 –512, 2024. [Online]. Available: https : / / api . semanticscholar . org / CorpusID : 267199206.

     

    [2] M. Colombo et al., “Biomarker panels associated with progression of renal disease in type 1 diabetes,” Diabetologia, vol. 62, pp. 1616 –1627, 2019. [Online]. Available: https : / / api . semanticscholar.org/CorpusID:195190514.

     

    [3] S. Manjula, D. H. Rajini, and D. K. Chokkanathan, “Optimizing chronic kidney disease diagnosis: A comprehensive review of metaheuristic algorithms and their applications in detection and classification,” 2024 8th International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1654–1660, 2024. [Online]. Available: https://api.semanticscholar.org/ CorpusID:275018042.

     

    [4] V. P. Singh and D. Jain, “A hybrid parallel classification model for the diagnosis of chronic kidney disease,” Int. J. Interact. Multim. Artif. Intell., vol. 8, p. 14, 2023. [Online]. Available: https : / / api.semanticscholar.org/CorpusID:242052476.

     

    [5] I. H. I. Coutinho, “Early diagnosis of chronic kidney disease,” 2017. [Online]. Available: https : //api.semanticscholar.org/CorpusID:262084636.

     

    [6] N. R. Hill et al., “Global prevalence of chronic kidney disease – a systematic review and meta-analysis,” PLoS ONE, vol. 11, 2016. [Online]. Available: https : / / api . semanticscholar . org / CorpusID:16929310.

     

    [7] P. Sridevi, M. Rabbani, and S. I. Ahamed, “A comprehensive study for predicting chronic kidney disease, diabetes, hypertension, and anemia by machine learning and feature engineering techniques,” 2023 IEEE International Conference on Digital Health (ICDH), pp. 248–257, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:261306019.

     

    [8] Metun, G. P, and A. V, “Predictive analysis in nephrology: Evaluating machine learning models for chronic kidney disease prediction,” International Journal for Research in Applied Science and Engineering Technology, 2024. [Online]. Available: https://api.semanticscholar.org/ CorpusID:267083497.

     

    [9] D. S. Abdelminaam, A. A. Alheijat, and M. Taha, “A comprehensive survey on dimension reduction for medical big data using optimization algorithms,” 2024 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), pp. 331–337, 2024. [Online]. Available: https : / / api.semanticscholar.org/CorpusID:274797645.

     

    [10] P. Nagre, P. Verma, P. Kumar, and N. L. Gavankar, “A review of machine learning and deep learning algorithms for chronic kidney disease prediction,” 2024 2nd DMIHER International Conference on Artificial Intelligence in Healthcare, Education and Industry (IDICAIEI), pp. 1–6, 2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:275774580.

     

    [11] T Suguna and L Sumathi, “Early prediction of chronic kidney disease using machine learning techniques: A review,” INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 2024. [Online]. Available: https : / / api . semanticscholar . org / CorpusID:266913542.

     

    [12] E. M. Senan et al., “Diagnosis of chronic kidney disease using effective classification algorithms and recursive feature elimination techniques,” Journal of Healthcare Engineering, vol. 2021, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:235695403.

     

    [13] D. A. Hasan, S. R. M. Zeebaree, M. A. M. Sadeeq, H. M. Shukur, R. R. Zebari, and A. H. Alkhayyat, “Machine learning-based diabetic retinopathy early detection and classification systems- a survey,” 2021 1st Babylon International Conference on Information Technology and Science (BICITS), pp. 16–21, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:237001648.

     

    [14] N. V. S. Sendhuraa, “Chronic kidney disease detection using machine learning techniques,” 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:236624368.

     

    [15] M. V. Rocco et al., “Chronic kidney disease classification in systolic blood pressure intervention trial: Comparison using modification of diet in renal disease and ckd-epidemiology collaboration definitions,” American Journal of Nephrology, vol. 44, pp. 130 –140, 2016. [Online]. Available: https://api. semanticscholar.org/CorpusID:21807933.

     

    [16] N. V. S. Sendhuraa, “Chronic kidney disease detection using machine learning techniques,” 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:236624368.

     

    [17] A. Dr and V.Sumalatha, “Survey on diagnosis of chronic kidney disease usingmachine learning algorithms,” 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), pp. 590–595, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID: 231685031.

     

    [18] M. Makwana, D. R. Upadhyay, D. S. Degadwala, and D. Vyas, “A review on machine learning approaches for hiv infected patient chronic kidney disease stage classification,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:254560278.

     

    [19] N. Lameire et al., “Harmonizing acute and chronic kidney disease definition and classification: Report of a kidney disease: Improving global outcomes (kdigo) consensus conference.,” Kidney international, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:235808772.

     

    [20] R. Asa, L. Busi, J. S. M. Professor-Dr, P.-D. B. Chair, and P. R. S. Professor, “A review: Analyzing risk factors and prediction for chronic kidney disease using machine and deep learning techniques,” 2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), pp. 1456–1462, 2023. [Online]. Available: https : / / api . semanticscholar . org / CorpusID:267258854.

     

    [21] A. Eslam, M. G. Abdelfattah, E.-S. M. E. El-Kenawy, and H. E.-D. Moustafa, “Optimization of feature selection using greylag goose optimization algorithm for monkeypox,” Journal of Artificial Intelligence in Engineering Practice, 2024. [Online]. Available: https://api.semanticscholar.org/ CorpusID:273561252.

     

    [22] Mamta, D. Mane, A. J. Dhumale, and H. Dhiman, “Distributed gradient boosting machines (dgbm) with feature selection via particle swarm optimization for predicting disease progression,” 2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI), vol. 1, pp. 1–6, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:269182952.

     

    [23] A. O. Salau, E. D. Markus, T. A. Assegie, C. O. Omeje, and J. N. Eneh, “Influence of class imbalance and resampling on classification accuracy of chronic kidney disease detection,” Mathematical Modelling of Engineering Problems, 2023. [Online]. Available: https://api.semanticscholar.org/ CorpusID:257347361.

     

    [24] A. S. Levey et al., “The definition, classification, and prognosis of chronic kidney disease: A kdigo controversies conference report.,” Kidney international, vol. 80 1, pp. 17–28, 2011. [Online]. Available: https://api.semanticscholar.org/CorpusID:15295796.

     

    [25] B. K. Betzler et al., “Impact of chronic kidney disease epidemiology collaboration (ckd-epi) gfr estimating equations on ckd prevalence and classification among asians,” Frontiers in Medicine, vol. 9, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:250497579.

     

    [26] J. Ja, “New abc chronic kidney disease classification,” 2017. [Online]. Available: https://api. semanticscholar.org/CorpusID:80139781.

     

    [27] D. R. Farrell and J. A. Vassalotti, “Screening, identifying, and treating chronic kidney disease: Why, who, when, how, and what?” BMC Nephrology, vol. 25, 2024. [Online]. Available: https://api. semanticscholar.org/CorpusID:267254108.

     

    [28] D. jun Xiang et al., “Clinical application of neutrophil gelatinase-associated lipocalin in the revised chronic kidney disease classification.,” International journal of clinical and experimental pathology, vol. 7 10, pp. 7172–81, 2014. [Online]. Available: https://api.semanticscholar.org/ CorpusID:11026731.

     

    [29] M. A. Islam, M. Z. H. Majumder, and M. A. Hussein, “Chronic kidney disease prediction based on machine learning algorithms,” Journal of Pathology Informatics, vol. 14, p. 100 189, Jan. 2023, ISSN: 2153-3539. DOI: 10 . 1016 / j . jpi . 2023 . 100189. [Online]. Available: https : / / www . sciencedirect.com/science/article/pii/S2153353923000032.

     

    [30] S. Alshakrani, R. Taha, and N. Hewahi, “Chronic Kidney Disease Classification Using Machine Learning Classifiers,” in 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sep. 2021, pp. 516–519. DOI: 10.1109/3ICT53449.2021. 9581345. [Online]. Available: https://ieeexplore.ieee.org/document/9581345.

     

    [31] J. R. Lambert and E. Perumal, “Oppositional firefly optimization based optimal feature selection in chronic kidney disease classification using deep neural network,” en, Journal of Ambient Intelligence and Humanized Computing, vol. 13, no. 4, pp. 1799–1810, Apr. 2022, ISSN: 1868-5145. DOI: 10 . 1007/s12652-021-03477-2. [Online]. Available: https://doi.org/10.1007/s12652- 021-03477-2.

     

    [32] R. Aswathy et al., “Optimized Tuned Deep Learning Model for Chronic Kidney Disease Classification,” en, Computers, Materials & Continua, vol. 70, no. 2, pp. 2097–2111, 2021, Publisher: Tech Science Press, ISSN: 1546-2218, 1546-2226. DOI: 10.32604/cmc.2022.019790. [Online]. Available: https://www.techscience.com/cmc/v70n2/44656.

     

     [33] A. Khamparia, G. Saini, B. Pandey, S. Tiwari, D. Gupta, and A. Khanna, “KDSAE: Chronic kidney disease classification with multimedia data learning using deep stacked autoencoder network,” en, Multimedia Tools and Applications, vol. 79, no. 47, pp. 35 425–35 440, Dec. 2020, ISSN: 1573-7721. DOI: 10.1007/s11042-019-07839-z. [Online]. Available: https://doi.org/10.1007/ s11042-019-07839-z.

     

    [34] K. Venkatrao and S. Kareemulla, “HDLNET: A Hybrid Deep Learning Network Model With Intelligent IOT for Detection and Classification of Chronic Kidney Disease,” IEEE Access, vol. 11, pp. 99 638–99 652, 2023, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2023.3312183. [Online]. Available: https://ieeexplore.ieee.org/document/10239391.

    Cite This Article As :
    Saber, Mohamed. , A., Ebrahim. , M., Marwa. , M., El-Sayed. Greylag Goose Optimization for Feature Selection and Hyperparameter Tuning in Chronic Kidney Disease Detection. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2025, pp. 152-190. DOI: https://doi.org/10.54216/JISIoT.170211
    Saber, M. A., E. M., M. M., E. (2025). Greylag Goose Optimization for Feature Selection and Hyperparameter Tuning in Chronic Kidney Disease Detection. Journal of Intelligent Systems and Internet of Things, (), 152-190. DOI: https://doi.org/10.54216/JISIoT.170211
    Saber, Mohamed. A., Ebrahim. M., Marwa. M., El-Sayed. Greylag Goose Optimization for Feature Selection and Hyperparameter Tuning in Chronic Kidney Disease Detection. Journal of Intelligent Systems and Internet of Things , no. (2025): 152-190. DOI: https://doi.org/10.54216/JISIoT.170211
    Saber, M. , A., E. , M., M. , M., E. (2025) . Greylag Goose Optimization for Feature Selection and Hyperparameter Tuning in Chronic Kidney Disease Detection. Journal of Intelligent Systems and Internet of Things , () , 152-190 . DOI: https://doi.org/10.54216/JISIoT.170211
    Saber M. , A. E. , M. M. , M. E. [2025]. Greylag Goose Optimization for Feature Selection and Hyperparameter Tuning in Chronic Kidney Disease Detection. Journal of Intelligent Systems and Internet of Things. (): 152-190. DOI: https://doi.org/10.54216/JISIoT.170211
    Saber, M. A., E. M., M. M., E. "Greylag Goose Optimization for Feature Selection and Hyperparameter Tuning in Chronic Kidney Disease Detection," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 152-190, 2025. DOI: https://doi.org/10.54216/JISIoT.170211