Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 14 , Issue 1 , PP: 01-15, 2025 | Cite this article as | XML | Html | PDF | Full Length Article

A Hybrid Heuristic AI Technique for Enhancing Intrusion Detection Systems in IoT Environments

Yousra Abdul Alsahib S. Aldeen 1 * , Fadhel K. Jabor 2 , Ghufran A. Omran 3 , Mohammed Hamid Kassem 4 , Raghad Hamid Kassem 5 , Ali Naseer Abood 6

  • 1 Department of Computer Science, College of Science for Women, University of Baghdad, Iraq - (yousraaa_comp@csw.uobaghdad.edu.iq)
  • 2 Office of the Vice President for Scientific, University of Baghdad, Iraq - (fadhel.k.jabor@uobaghdad.edu.iq)
  • 3 Office of the Vice President for Scientific, University of Baghdad, Iraq - (ghufran@uobaghdad.edu.iq)
  • 4 Department of Computer Science, University of Technology, Iraq - (mh2618108@gmail.com)
  • 5 Department of Computer Science, University of Information Technology & Communications, Iraq - (raghedhamid@yahoo.com)
  • 6 Department of Computer Science, University of Technology, Iraq - (alinaseer443gg@gmail.com)
  • Doi: https://doi.org/10.54216/JISIoT.140101

    Received: January 22, 2024 Revised: April 15, 2024 Accepted: June 20, 2024
    Abstract

    In the evolving landscape of the Internet of Things (IoT), effective intrusion detection is paramount for maintaining security and data integrity. This study introduces a hybrid heuristic technique utilizing artificial intelligence for enhancing intrusion detection systems (IDS) in IoT environments. By integrating various machine learning models, the research focuses on training, tuning, and validating a sequential neural network to predict intrusion occurrences based on extensive data analysis. The methodology involves modelling, which starts with training machine learning algorithms to predict labels from features, tuning the models to meet organizational requirements, and validating them using holdout data. Key machine learning techniques explored include logistic regression, k-nearest neighbors (KNN), naive Bayes, support vector machines (SVM), decision trees, random forests, and neural networks. Each technique's applicability to classification tasks, particularly binary and multivariate scenarios, is discussed in the context of enhancing IDS capabilities. A sequential neural network model, comprising multiple dense and dropout layers, was developed and trained with 148,033 parameters to achieve high accuracy and robustness. The architecture's effectiveness in learning intricate patterns associated with malicious activities while avoiding overfitting is emphasized. The study demonstrates the model's proficiency in binary classification tasks, which is critical for distinguishing between normal and anomalous behaviors in IoT systems. The results indicate that the neural network, optimized using the hybrid heuristic approach, shows a significant reduction in validation loss and a steady improvement in accuracy over multiple epochs. Despite initial overfitting signs, the model maintains high performance on unseen data, underscoring the importance of ongoing model assessment and tuning.

    Keywords :

    Intrusion Detection System (IDS) , Internet of Things (IoT) , Hybrid Heuristic Technique , Machine Learning , Neural Network

    References

    [1]       Darch Abed Dawar, A. (2024). Enhancing Wireless Security and Privacy: A 2-Way Identity Authentication Method for 5G Networks. International Journal of Mathematics, Statistics, and Computer Science, 2, 183–198. https://doi.org/10.59543/ijmscs.v2i.9073

    [2]       Savanović, N., Toskovic, A., Petrovic, A., Zivkovic, M., Damaševičius, R., Jovanovic, L., ... & Nikolic, B. (2023). Intrusion detection in healthcare 4.0 internet of things systems via metaheuristics optimized machine learning. Sustainability, 15(16), 12563.

    [3]       Kang, D. W., Ye, S. Q., Ahmad, S. Z. R. S., Mo, L. P., Qin, F., & Zhou, P. (2024). An Adaptive Harmony Search Part-of-Speech tagger for Square Hmong Corpus. Baghdad Science Journal, 21(2 (SI)), 0622-0622.

    [4]        Kareem, S. S., Mostafa, R. R., Hashim, F. A., & El-Bakry, H. M. (2022). An effective feature selection model using hybrid metaheuristic algorithms for iot intrusion detection. Sensors, 22(4), 1396.

    [5]       Dankolo, N. M. D., Radzi, N. H. M., Mustaffa, N. H., Talib, M. S., Yunos, Z. M., & Gabi, D. (2024). Efficient Task Scheduling Approach in Edge-Cloud Continuum based on Flower Pollination and Improved Shuffled Frog Leaping Algorithm. Baghdad Science Journal, 21(2 (SI)), 0740-0740.

    [6]       Salih, N., Ksantini, M., Hussein, N., Halima, D. B., Razzaq, A. A., & Ahmed, S. (2023). Deep learning models and fusion classification technique for accurate diagnosis of retinopathy of prematurity in preterm newborn. Baghdad Science Journal. Published online October, 20.

    [7]       Hu, W., Cao, Q., Darbandi, M., & Jafari Navimipour, N. (2024). A deep analysis of nature-inspired and meta-heuristic algorithms for designing intrusion detection systems in cloud/edge and IoT: state-of-the-art techniques, challenges, and future directions. Cluster Computing, 1-27.

    [8]       Saadouni, R., Gherbi, C., Aliouat, Z., Harbi, Y., & Khacha, A. (2024). Intrusion detection systems for IoT based on bio-inspired and machine learning techniques: a systematic review of the literature. Cluster Computing, 1-27.

    [9]       Muneer, S., Farooq, U., Athar, A., Ahsan Raza, M., Ghazal, T. M., & Sakib, S. (2024). A Critical Review of Artificial Intelligence Based Approaches in Intrusion Detection: A Comprehensive Analysis. Journal of Engineering, 2024(1), 3909173.

    [10]    Saied, M., Guirguis, S., & Madbouly, M. (2024). Review of artificial intelligence for enhancing intrusion detection in the internet of things. Engineering Applications of Artificial Intelligence, 127, 107231.

    [11]    Samir, N. M., Musni, M., Hanapi, Z. M., & Radzuan, M. R. (2021). Impact of Denial-of-Service Attack on Directional Compact Geographic Forwarding Routing Protocol in Wireless Sensor Networks. Baghdad Science Journal, 18(4 (Suppl.)), 1371-1371.

    [12]    Ghasemi, H., & Babaie, S. (2024). A new intrusion detection system based on SVM–GWO algorithms for Internet of Things. Wireless Networks, 1-13.

    [13]    Heidari, A., & Jabraeil Jamali, M. A. (2023). Internet of Things intrusion detection systems: a comprehensive review and future directions. Cluster Computing, 26(6), 3753-3780.

    [14]    Issa, M. M., Aljanabi, M., & Muhialdeen, H. M. (2024). Systematic literature review on intrusion detection systems: Research trends, algorithms, methods, datasets, and limitations. Journal of Intelligent Systems, 33(1), 20230248.

    [15]    Ashour, M. A. H. (2022). Optimized Artificial Neural network models to time series. Baghdad Science Journal, 19(4), 0899-0899.

    [16]    Gaber, T., Awotunde, J. B., Folorunso, S. O., Ajagbe, S. A., & Eldesouky, E. (2023). Industrial internet of things intrusion detection method using machine learning and optimization techniques. Wireless Communications and Mobile Computing, 2023(1), 3939895.

    [17]    Alkanhel, R., El-kenawy, E. S. M., Abdelhamid, A. A., Ibrahim, A., Alohali, M. A., Abotaleb, M., & Khafaga, D. S. (2023). Network Intrusion Detection Based on Feature Selection and Hybrid Metaheuristic Optimization. Computers, Materials & Continua, 74(2).

    [18]    Sangaiah, A. K., Javadpour, A., Ja’fari, F., Pinto, P., Zhang, W., & Balasubramanian, S. (2023). A hybrid heuristics artificial intelligence feature selection for intrusion detection classifiers in cloud of things. Cluster Computing, 26(1), 599-612.

    [19]    Kunhare, N., Tiwari, R., & Dhar, J. (2022). Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the optimization and feature selection by genetic algorithm. Computers and Electrical Engineering, 103, 108383.

    [20]    Dey, A. K., Gupta, G. P., & Sahu, S. P. (2023). Hybrid Meta-Heuristic based feature selection mechanism for cyber-attack detection in IoT-enabled networks. Procedia Computer Science, 218, 318-327.)

    [21]    Alrashidi, M., Ibrahim, R., & Selamat, A. (2024). Hybrid CNN-based Recommendation System. Baghdad Science Journal, 21(2 (SI)), 0592-0592.

    [22]    Qureshi, A. U. H., Larijani, H., Ahmad, J., & Mtetwa, N. (2019). A heuristic intrusion detection system for Internet-of-Things (IoT). In Intelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1 (pp. 86-98). Springer International Publishing.)

    [23]    Davahli, A., Shamsi, M., & Abaei, G. (2020). Hybridizing genetic algorithm and grey wolf optimizer to advance an intelligent and lightweight intrusion detection system for IoT wireless networks. Journal of Ambient Intelligence and Humanized Computing, 11(11), 5581-5609.)

    [24]    Al-Safi, A. H. S., Hani, Z. I. R., & Zahra, M. M. A. (2021). Using a hybrid algorithm and feature selection for network anomaly intrusion detection. J Mech Eng Res Dev, 44(4), 253-262.)

    [25]  Simon, J., Kapileswar, N., Polasi, P. K., & Elaveini, M. A. (2022). Hybrid intrusion detection system for wireless IoT networks using deep learning algorithm. Computers and Electrical Engineering, 102, 108190)

    Cite This Article As :
    Abdul, Yousra. , K., Fadhel. , A., Ghufran. , Hamid, Mohammed. , Hamid, Raghad. , Naseer, Ali. A Hybrid Heuristic AI Technique for Enhancing Intrusion Detection Systems in IoT Environments. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2025, pp. 01-15. DOI: https://doi.org/10.54216/JISIoT.140101
    Abdul, Y. K., F. A., G. Hamid, M. Hamid, R. Naseer, A. (2025). A Hybrid Heuristic AI Technique for Enhancing Intrusion Detection Systems in IoT Environments. Journal of Intelligent Systems and Internet of Things, (), 01-15. DOI: https://doi.org/10.54216/JISIoT.140101
    Abdul, Yousra. K., Fadhel. A., Ghufran. Hamid, Mohammed. Hamid, Raghad. Naseer, Ali. A Hybrid Heuristic AI Technique for Enhancing Intrusion Detection Systems in IoT Environments. Journal of Intelligent Systems and Internet of Things , no. (2025): 01-15. DOI: https://doi.org/10.54216/JISIoT.140101
    Abdul, Y. , K., F. , A., G. , Hamid, M. , Hamid, R. , Naseer, A. (2025) . A Hybrid Heuristic AI Technique for Enhancing Intrusion Detection Systems in IoT Environments. Journal of Intelligent Systems and Internet of Things , () , 01-15 . DOI: https://doi.org/10.54216/JISIoT.140101
    Abdul Y. , K. F. , A. G. , Hamid M. , Hamid R. , Naseer A. [2025]. A Hybrid Heuristic AI Technique for Enhancing Intrusion Detection Systems in IoT Environments. Journal of Intelligent Systems and Internet of Things. (): 01-15. DOI: https://doi.org/10.54216/JISIoT.140101
    Abdul, Y. K., F. A., G. Hamid, M. Hamid, R. Naseer, A. "A Hybrid Heuristic AI Technique for Enhancing Intrusion Detection Systems in IoT Environments," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 01-15, 2025. DOI: https://doi.org/10.54216/JISIoT.140101