Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 13 , Issue 2 , PP: 334-346, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Brain Tumor Semantic Segmentation using U-Net and Moth Flame Optimization

B. Tapasvi 1 * , E. Gnanamanoharan 2 , N. Udaya Kumar 3

  • 1 Research Scholar, Department of Electronics and Communication Engineering, Annamalai University, Annamalai Nagar, India - (tapasvi07@gmail.com)
  • 2 Assistant Professor, Department of Electronics and Communication Engineering, Annamalai University, Annamalai Nagar, India - (gnanamanohar@gmail.com)
  • 3 Professor Department of Electronics and Communication Engineering, S.R.K.R. Engineering College, Bhimavaram, India - (nuk@srkrec.ac.in)
  • Doi: https://doi.org/10.54216/JISIoT.130226

    Received: November 05, 2023 Revised: March 24, 2024 Accepted: July 15, 2024
    Abstract

    Brain tumor is an abnormal development of brain cells that, if left untreated, can have severe consequences. Brain tumour semantic segmentation is the process of determining and distinguishing the impacted brain regions, which is essential for accurate diagnosis, treatment planning, as well as surveillance of the tumor's development over time. This paper presents a model for identifying and segmenting brain tumor using Unet architecture with the optimization of hyper parameters using the Moth Flame Optimization (MFO) algorithm. Due to its capacity to collect spatial information, the Unit architecture is a common choice for picture segmentation tasks. The MFO algorithm is an optimization technique that draws inspiration and replicates from the behavior of moths. Both techniques are developed to improve efficiency. The performance of the model has increased using the MFO method, which led to improved segmentation results. Based on comparative analysis report, the proposed model shows a percentage improvement of approximately 65.16% in MSE, 28.87% in PSNR, and 40.30% in Tversky compared to the Unet and Unet++ models. This method has demonstrated good results in identifying and segmenting brain tumors, which can be helpful in the early identification and treatment of brain tumor.

    Keywords :

    Brain tumor , UNet, Moth Flame Optimization , Hyper parameter tuning

    References

    [1]          Arabahmadi, M., Farahbakhsh, R., & Rezazadeh, J. (2022). Deep learning for smart Healthcare—A survey on brain tumor detection from medical imaging. Sensors, 22(5), 1960.

    [2]          Tao, A., Sapra, K., & Catanzaro, B. (2020). Hierarchical multi-scale attention for semantic segmentation. arXiv preprint arXiv:2005.10821.

    [3]      Arif, M., Ajesh, F., Shamsudheen, S., Geman, O., Izdrui, D., & Vicoveanu, D. (2022). [Retracted] Brain Tumor Detection and Classification by MRI Using Biologically Inspired Orthogonal Wavelet Transform and Deep Learning Techniques. Journal of Healthcare Engineering, 2022(1), 2693621.

    [4]       Sharma, A. K., Nandal, A., Dhaka, A., Koundal, D., Bogatinoska, D. C., & Alyami, H. (2022). [Retracted] Enhanced Watershed Segmentation Algorithm‐Based Modified ResNet50 Model for Brain Tumor Detection. BioMed Research International, 2022(1), 7348344..

    [5]          Ravì, D., Bober, M., Farinella, G. M., Guarnera, M., & Battiato, S. (2016). Semantic segmentation of images exploiting DCT based features and random forest. Pattern Recognition, 52, 260-273.

    [6]          Chattopadhyay, A., & Maitra, M. (2022). MRI-based brain tumour image detection using CNN based deep learning method. Neuroscience informatics, 2(4), 100060.

    [7]       Wei, Y., Liang, X., Chen, Y., Shen, X., Cheng, M. M., Feng, J., ... & Yan, S. (2016). Stc: A simple to complex framework for weakly-supervised semantic segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(11), 2314-2320.

    [8]       Soomro, T. A., Zheng, L., Afifi, A. J., Ali, A., Soomro, S., Yin, M., & Gao, J. (2022). Image segmentation for MR brain tumor detection using machine learning: a review. IEEE Reviews in Biomedical Engineering, 16, 70-90.

    [9]       Rezaei, M., Yang, H., & Meinel, C. (2020). Recurrent generative adversarial network for learning imbalanced medical image semantic segmentation. Multimedia Tools and Applications, 79(21), 15329-15348.

    [10]    Simpson, A. L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., Van Ginneken, B., ... & Cardoso, M. J. (2019). A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063.

    [11]       Alalwan, N., Abozeid, A., ElHabshy, A. A., & Alzahrani, A. (2021). Efficient 3D deep learning model for medical image semantic segmentation. Alexandria Engineering Journal, 60(1), 1231-1239.

    [12]    Z., A. Almajed, R. "Improving Network Security using Tunicate Swarm Algorithm with Stacked Deep Learning Model on IoT Environment," Journal of International Journal of Wireless and Ad Hoc Communication, vol. 8, no. 2, pp. 67-80, 2024. DOI: https://doi.org/10.54216/IJWAC.080207

    [13]       Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. R., & Xu, D. (2021, September). Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In International MICCAI brainlesion workshop (pp. 272-284). Cham: Springer International Publishing.

    [14]    Myronenko, A., & Hatamizadeh, A. (2020). Robust semantic segmentation of brain tumor regions from 3D MRIs. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part II 5 (pp. 82-89). Springer International Publishing.

    [15]       Maji, D., Sigedar, P., & Singh, M. (2022). Attention Res-UNet with Guided Decoder for semantic segmentation of brain tumors. Biomedical Signal Processing and Control, 71, 103077.

    [16]       Sun, J., Li, J., & Liu, L. (2021). Semantic segmentation of brain tumor with nested residual attention networks. Multimedia Tools and Applications, 80, 34203-34220.

    [17]       Zhu, Z., He, X., Qi, G., Li, Y., Cong, B., & Liu, Y. (2023). Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI. Information Fusion, 91, 376-387.

    [18]    Edin, N. "Towards Efficient Hyperspectral Object Detection and Classification using Thermal Optimization Algorithm with Deep Learning," Journal of International Journal of Advances in Applied Computational Intelligence, vol. 6, no. 2, pp. 1-15, 2024. DOI: https://doi.org/10.54216/IJAACI.060201

    [19]       Rehman, M. U., Cho, S., Kim, J. H., & Chong, K. T. (2020). Bu-net: Brain tumor segmentation using modified u-net architecture. Electronics, 9(12), 2203.

    [20]  Vimala, S. Krishnan, V. Raj, M. Kumar, A. Janakiraman, M. "Object Detection Using Deep Learning," Journal of Journal of Cognitive Human-Computer Interaction, vol. 6, no. 1, pp. 32-38, 2023. DOI: https://doi.org/10.54216/JCHCI.060103

    [21]       Serizawa, T., & Fujita, H. (2020). Optimization of convolutional neural network using the linearly decreasing weight particle swarm optimization. arXiv preprint arXiv:2001.05670.

    [22]       Liu, P., Dou, Q., Wang, Q., & Heng, P. A. (2020). An encoder-decoder neural network with 3D squeeze-and-excitation and deep supervision for brain tumor segmentation. IEEE Access, 8, 34029-34037.

    [23]    Zatarain Cabada, R., Rodriguez Rangel, H., Barron Estrada, M. L., & Cardenas Lopez, H. M. (2020). Hyperparameter optimization in CNN for learning-centered emotion recognition for intelligent tutoring systems. Soft Computing, 24(10), 7593-7602.

    [24]     Pei, L., Bakas, S., Vossough, A., Reza, S. M., Davatzikos, C., & Iftekharuddin, K. M. (2020). Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion. Biomedical signal processing and control, 55, 101648.

    [25]   Aghalari, M., Aghagolzadeh, A., & Ezoji, M. (2021). Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks. Biomedical signal processing and control, 69, 102841. 

    Cite This Article As :
    Tapasvi, B.. , Gnanamanoharan, E.. , Udaya, N.. Brain Tumor Semantic Segmentation using U-Net and Moth Flame Optimization. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2024, pp. 334-346. DOI: https://doi.org/10.54216/JISIoT.130226
    Tapasvi, B. Gnanamanoharan, E. Udaya, N. (2024). Brain Tumor Semantic Segmentation using U-Net and Moth Flame Optimization. Journal of Intelligent Systems and Internet of Things, (), 334-346. DOI: https://doi.org/10.54216/JISIoT.130226
    Tapasvi, B.. Gnanamanoharan, E.. Udaya, N.. Brain Tumor Semantic Segmentation using U-Net and Moth Flame Optimization. Journal of Intelligent Systems and Internet of Things , no. (2024): 334-346. DOI: https://doi.org/10.54216/JISIoT.130226
    Tapasvi, B. , Gnanamanoharan, E. , Udaya, N. (2024) . Brain Tumor Semantic Segmentation using U-Net and Moth Flame Optimization. Journal of Intelligent Systems and Internet of Things , () , 334-346 . DOI: https://doi.org/10.54216/JISIoT.130226
    Tapasvi B. , Gnanamanoharan E. , Udaya N. [2024]. Brain Tumor Semantic Segmentation using U-Net and Moth Flame Optimization. Journal of Intelligent Systems and Internet of Things. (): 334-346. DOI: https://doi.org/10.54216/JISIoT.130226
    Tapasvi, B. Gnanamanoharan, E. Udaya, N. "Brain Tumor Semantic Segmentation using U-Net and Moth Flame Optimization," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 334-346, 2024. DOI: https://doi.org/10.54216/JISIoT.130226