Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 13 , Issue 2 , PP: 324-333, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Gazelle Optimized Visual Geometry Group Network with Resnet101 fostered Oral Squamous Cell Carcinoma Detection

Kumar R 1 * , S Pazhanirajan 2

  • 1 Research Scholar, Department of Computer Science and Engineering, Faculty of Engineering and Technology, Annamalai University, Chidambaram, India; Assistant Professor, MVJ College of Engineering, Bangalore, India - (rkumarmecse@gmail.com)
  • 2 Department of Computer Science and Engineering, Faculty of Engineering and Technology, Annamalai University, Chidambaram, India - (pazhanisambandam@gmail.com)
  • Doi: https://doi.org/10.54216/JISIoT.130225

    Received: November 04, 2023 Revised: March 23, 2024 Accepted: July 15, 2024
    Abstract

    Microscopic examination of tissues to detect oral cancer falls short as traditional microscopes struggle to easily differentiate between cancerous and non-cancerous cells. The identification of cancerous cells through microscopic biopsy images has the potential to alleviate concerns and improve outcomes if precise biological approaches are employed. However, relying solely on physical examinations and microscopic biopsy images for cancer identification increases the likelihood of human error and mistakes. Therefore, in order to obtain accurate results, a new research technique has been developed. In this manuscript, Gazelle Optimized Visual Geometry Group Network with Resnet101 fostered Oral Squamous Cell Carcinoma Detection (OCD-VGGNetCNN-GOA-Resnet101) is proposed. In this method initially, the images are taken from Kaggle repository benchmark dataset and preprocessed to improve image quality.  Then the result is given to the Visual Geometry group Network based CNN (VGGNetCNN) with Resnet101 for classification. Finally, the VGGNetCNN -ResNet 101 classifies image into normal and OSCC. Then the simulation performance of the proposed -VGGNetCNN-GOA-Resnet101 method attains 23.67%, 34.89%, 39.45% and 45.31% higher accuracy while compared with existing methods such as OCD-CNN-Alexnet, OCD-CNN-VGG19 and HI-OCD-CNN-INet respectively.

    Keywords :

    Oral squamous cell carcinoma , 2D fast iterative filter , VGGNet , ResNet 101 , Gazelle optimization algorithm , Medical imaging

    References

    [1]       Warnakulasuriya, S., Kujan, O., Aguirre‐Urizar, J.M., Bagan, J.V., González‐Moles, M.Á., Kerr, A.R., Lodi, G., Mello, F.W., Monteiro, L., Ogden, G.R. and Sloan, P., 2021. Oral potentially malignant disorders: A consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer. Oral diseases, 27(8), pp.1862-1880.

    [2]       Vimala, S. Krishnan, V. Raj, M. Kumar, A. Janakiraman, M. "Object Detection Using Deep Learning," Journal of Journal of Cognitive Human-Computer Interaction, vol. 6, no. 1, pp. 32-38, 2023. DOI: https://doi.org/10.54216/JCHCI.060103

    [3]       Awais, M., Ghayvat, H., Krishnan Pandarathodiyil, A., NabillahGhani, W.M., Ramanathan, A., Pandya, S., Walter, N., Saad, M.N., Zain, R.B. and Faye, I., 2020. Healthcare professional in the loop (HPIL): classification of standard and oral cancer-causing anomalous regions of oral cavity using textural analysis technique in autofluorescence imaging. Sensors, 20(20), p.5780.

    [4]       Rajan, J.P., Rajan, S.E., Martis, R.J. and Panigrahi, B.K., 2020. Fog computing employed a computer aided cancer classification system using deep neural network in internet of things-based healthcare system. Journal of medical systems, 44, pp.1-10.

    [5]       Alabi, R.O., Elmusrati, M., Sawazaki‐Calone, I., Kowalski, L.P., Haglund, C., Coletta, R.D., Mäkitie, A.A., Salo, T., Almangush, A. and Leivo, I., 2020. Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer. International journal of medical informatics, 136, p.104068.

    [6]       Palaskar, R., Vyas, R., Khedekar, V., Palaskar, S. and Sahu, P., 2020. Transfer learning for oral cancer detection using microscopic images. arXiv preprint arXiv:2011.11610.

    [7]       Das, N., Hussain, E. and Mahanta, L.B., 2020. Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network. Neural Networks, 128, pp.47-60.

    [8]       Jubair, F., Al‐karadsheh, O., Malamos, D., Al Mahdi, S., Saad, Y. and Hassona, Y., 2022. A novel lightweight deep convolutional neural network for early detection of oral cancer. Oral Diseases, 28(4), pp.1123-1130.

    [9]       Sarode, G., Maniyar, N., Sarode, S.C., Jafer, M., Patil, S. and Awan, K.H., 2020. Epidemiologic aspects of oral cancer. Disease-a-Month, 66(12), p.100988.

    [10]    Panigrahi, S., Das, J. and Swarnkar, T., 2022. Capsule network-based analysis of histopathological images of oral squamous cell carcinoma. Journal of King Saud University-Computer and Information Sciences, 34(7), pp.4546-4553.

    [11]    Xue, Z., Pearlman, P.C., Yu, K., Pal, A., Chen, T.C., Hua, C.H., Kang, C.J., Chien, C.Y., Tsai, M.H., Wang, C.P. and Chaturvedi, A.K., 2022, April. Oral cavity anatomical site image classification and analysis. In Medical Imaging 2022: Imaging Informatics for Healthcare, Research, and Applications (Vol. 12037, pp. 90-96). SPIE.

    [12]    Song, B., Sunny, S., Li, S., Keerthi, G., Patrick, S., Mukhia, N., Gurudath, S., Raghavan, S., Mendonca, P., Leivon, S.T. and Kolur, T., 2020, September. Reliable Oral Cancer Classification Framework with Bayesian Deep Learning.In Laser Science (pp. JM6B-18).Optica Publishing Group.

    [13]    Edin, N. "Towards Efficient Hyperspectral Object Detection and Classification using Thermal Optimization Algorithm with Deep Learning," Journal of International Journal of Advances in Applied Computational Intelligence, vol. 6, no. 2, pp. 1-15, 2024. DOI: https://doi.org/10.54216/IJAACI.060201

    [14]    Alanazi, A.A., Khayyat, M.M., Khayyat, M.M., ElaminElnaim, B.M. and Abdel-Khalek, S., 2022. Intelligent Deep Learning Enabled Oral Squamous Cell Carcinoma Detection and Classification Using Biomedical Images. Computational Intelligence and Neuroscience, 2022.

    [15]    Panigrahi, S., Nanda, B.S. and Swarnkar, T., 2022. Comparative analysis of machine learning algorithms for histopathological images of oral cancer. In Advances in Distributed Computing and Machine Learning: Proceedings of ICADCML 2021 (pp. 318-327). Springer Singapore.

    [16]    [Rahman, A.U., Alqahtani, A., Aldhafferi, N., Nasir, M.U., Khan, M.F., Khan, M.A. and Mosavi, A., 2022. Histopathologic oral cancer prediction using oral squamous cell carcinoma biopsy empowered with transfer learning. Sensors, 22(10), p.3833.

    [17]    Das, N., Hussain, E. and Mahanta, L.B., 2020. Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network. Neural Networks, 128, pp.47-60.

    [18]    Das, M., Dash, R. and Mishra, S.K., 2023. Automatic detection of oral squamous cell carcinoma from histopathological images of oral mucosa using deep convolutional neural network. International Journal of Environmental Research and Public Health, 20(3), p.2131.

    [19]    Marzouk, R., Alabdulkreem, E., Dhahbi, S., Nour, M.K., Duhayyim, M.A., Othman, M., Hamza, M.A., Motwakel, A., Yaseen, I. and Rizwanullah, M., 2022. Deep Transfer Learning Driven Oral Cancer Detection and Classification Model. Computers, Materials & Continua, 73(2).

    [20]    Z., A. Almajed, R. "Improving Network Security using Tunicate Swarm Algorithm with Stacked Deep Learning Model on IoT Environment," Journal of International Journal of Wireless and Ad Hoc Communication, vol. 8, no. 2, pp. 67-80, 2024. DOI: https://doi.org/10.54216/IJWAC.080207

    [21]    Sukegawa, S., Ono, S., Tanaka, F., Inoue, Y., Hara, T., Yoshii, K., Nakano, K., Takabatake, K., Kawai, H., Katsumitsu, S. and Nakai, F., 2023. Effectiveness of Deep Learning Classifiers in Histopathological Diagnosis of Oral Squamous Cell Carcinoma by Pathologists.

    [22]    https://www.kaggle.com/general/248718

    [23]    Rogalski, M., Pielach, M., Cicone, A., Zdańkowski, P., Stanaszek, L., Drela, K., Patorski, K., Lukomska, B. and Trusiak, M., 2022. Tailoring 2D fast iterative filtering algorithm for low-contrast optical fringe pattern preprocessing. Optics and Lasers in Engineering, 155, p.107069.

    [24]    Vharkate, M.N. and Musande, V.B., 2021. Remote sensing image retrieval using hybrid visual geometry group network with relevance feedback. International Journal of Remote Sensing, 42(14), pp.5540-5567.

    [25]    Lin, S.L., 2021. Application combining VMD and ResNet101 in intelligent diagnosis of motor faults. Sensors, 21(18), p.6065.

    [26]    Agushaka, J.O., Ezugwu, A.E. and Abualigah, L., 2023. Gazelle Optimization Algorithm: A novel nature-inspired metaheuristic optimizer. Neural Computing and Applications, 35(5), pp.4099-4131.

    Cite This Article As :
    R, Kumar. , Pazhanirajan, S. Gazelle Optimized Visual Geometry Group Network with Resnet101 fostered Oral Squamous Cell Carcinoma Detection. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2024, pp. 324-333. DOI: https://doi.org/10.54216/JISIoT.130225
    R, K. Pazhanirajan, S. (2024). Gazelle Optimized Visual Geometry Group Network with Resnet101 fostered Oral Squamous Cell Carcinoma Detection. Journal of Intelligent Systems and Internet of Things, (), 324-333. DOI: https://doi.org/10.54216/JISIoT.130225
    R, Kumar. Pazhanirajan, S. Gazelle Optimized Visual Geometry Group Network with Resnet101 fostered Oral Squamous Cell Carcinoma Detection. Journal of Intelligent Systems and Internet of Things , no. (2024): 324-333. DOI: https://doi.org/10.54216/JISIoT.130225
    R, K. , Pazhanirajan, S. (2024) . Gazelle Optimized Visual Geometry Group Network with Resnet101 fostered Oral Squamous Cell Carcinoma Detection. Journal of Intelligent Systems and Internet of Things , () , 324-333 . DOI: https://doi.org/10.54216/JISIoT.130225
    R K. , Pazhanirajan S. [2024]. Gazelle Optimized Visual Geometry Group Network with Resnet101 fostered Oral Squamous Cell Carcinoma Detection. Journal of Intelligent Systems and Internet of Things. (): 324-333. DOI: https://doi.org/10.54216/JISIoT.130225
    R, K. Pazhanirajan, S. "Gazelle Optimized Visual Geometry Group Network with Resnet101 fostered Oral Squamous Cell Carcinoma Detection," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 324-333, 2024. DOI: https://doi.org/10.54216/JISIoT.130225