Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 13 , Issue 2 , PP: 303-323, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

A Comprehensive Review of Real-Time Vehicle Tracking for Smart Navigation Systems

Veena R S 1 , Seema Rani 2 * , Ch Madhava Rao 3 , Piyush Kumar Pareek 4 , Sandeep Dalal 5 , Shweta Bansal 6

  • 1 Department of Information Science and Engineering, Dayananda Sagar Academy of Technology and Management, Bengaluru -560082, Karnataka, Orchid - 0000-0003-1368-0634, India - (veena-ise@dsatm.edu.in)
  • 2 Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India - (seema.rs.dcsa@mdurohtak.ac.in)
  • 3 Associate Professor, Dept. of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India - (cmadhavarao@kluniversity.in)
  • 4 Professor and Head Department of AIML and IPR Cell Nitte Meenakshi Institute of Technology Bengaluru , Karnataka, India - (piyush.kumar@nmit.ac.in)
  • 5 Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India - (sandeepdalal.80@gmail.com)
  • 6 K R Managalam University, Gurugram, Haryana-122103, India - (S.bansal6281@gmail.com)
  • Doi: https://doi.org/10.54216/JISIoT.130224

    Received: November 03, 2023 Revised: March 21, 2024 Accepted: July 14, 2024
    Abstract

    Vehicle tracking is one of computer vision's most important applications, with applications ranging from robotics and traffic monitoring to autonomous vehicle navigation and many more. Even with the significant advancements in recent research, issues like occlusion, fluctuating illumination, and fast motion still need to be addressed, calling for more investigation and creativity in this field. This study performs a thorough examination of various vehicle-tracking approaches and suggests a thorough classification scheme that divides them into four main categories: strategies that rely on features, segmentation, estimate, or learning. Two well-known methods are highlighted specifically in the estimation-based category: particle filters and Kalman filters.

    Keywords :

    Vehicle Tracking , Kalman Filter , Particle filter , Computer vision , smart navigation system

    References

    [1]          “Object Tracking Methods:A Review | IEEE Conference Publication | IEEE Xplore.” Accessed: Apr. 17, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8964761

    [2]          “Vehicle tracking with Kalman filter using online situation assessment - ScienceDirect.” Accessed: Apr. 17, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S092188902030436X?casa_token=fi1Z__C2XaAAAAAA:4bcvluZRhjmtoDPw0-ntO96kYAV71QJxuAOpMoTcHx401tE0HmStz3bxJzVuBw8RtCp2M8zE1A

    [3]          D. Koller, K. Daniilidis, T. Thórhallson, and H.-H. Nagel, “Model-based object tracking in traffic scenes,” in Computer Vision — ECCV’92, vol. 588, G. Sandini, Ed., in Lecture Notes in Computer Science, vol. 588. , Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 437–452. doi: 10.1007/3-540-55426-2_49.

    [4]          “Object tracking and detection techniques under GANN threats: A systemic review - ScienceDirect.” Accessed: Apr. 17, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1568494623002429

    [5]          “Vehicle Tracking System based on Videotaping Data - ScienceDirect.” Accessed: Apr. 17, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877042814001487

    [6]          “Multi object tracking: a survey.” Accessed: Apr. 17, 2024. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11878/118780I/Multi-object-tracking-a-survey/10.1117/12.2602901.short#_=_

    [7]          Y. Zhao, H. Shi, X. Chen, X. Li, and C. Wang, “An overview of object detection and tracking,” in 2015 IEEE International Conference on Information and Automation, Aug. 2015, pp. 280–286. doi: 10.1109/ICInfA.2015.7279299.

    [8]          S. M., N. P., and G. P., “Survey on Vehicle Detection and Tracking Techniques in Video Surveillance,” Int. J. Comput. Appl., vol. 160, no. 7, pp. 22–25, Feb. 2017, doi: 10.5120/ijca2017913086.

    [9]          A. P. Shukla and M. Saini, “‘Moving Object Tracking of Vehicle Detection’: A Concise Review,” Int. J. Signal Process. Image Process. Pattern Recognit. vol. 8, no. 3, pp. 169–176, Mar. 2015, doi: 10.14257/ijsip.2015.8.3.15.

    [10]       G. Guido, V. Gallelli, D. Rogano, and A. Vitale, “Evaluating the accuracy of vehicle tracking data obtained from Unmanned Aerial Vehicles,” Int. J. Transp. Sci. Technol., vol. 5, no. 3, pp. 136–151, Oct. 2016, doi: 10.1016/j.ijtst.2016.12.001.

    [11]       Kavitha, P. Subha, R. Priya, R. "An Implementation Of Statistical Feature Algorithms For The Detection Of Brain Tumor," Journal of Journal of Cognitive Human-Computer Interaction, vol. 1, no. 2, pp. 57 - 62, 2021. DOI: DOI: https://doi.org/10.54216/JCHCI.010202

    [12]       C. Ranjeeth Kumar and R. Anuradha, “RETRACTED ARTICLE: Feature selection and classification methods for vehicle tracking and detection,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 3, pp. 4269–4279, Mar. 2021, doi: 10.1007/s12652-020-01824-3.

    [13]       X. Zhang, S. Hu, H. Zhang, and X. Hu, “A real-time multiple vehicle tracking method for traffic congestion identification,” KSII Trans. Internet Inf. Syst. TIIS, vol. 10, no. 6, pp. 2483–2503, 2016, doi: 10.3837/tiis.2016.06.003.

    [14]       “Vehicle Tracking Using Deep SORT with Low Confidence Track Filtering | IEEE Conference Publication | IEEE Xplore.” Accessed: Apr. 17, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8909903

    [15]       S. Shruthi, “Vehicle Tracking using Convolutional Neural Network,” 2011.

    [16]       V. P, P. D. K, S. S, and A.Tamizharasi, “Video Analysis of Vehicle and Pedestrian Using Neural Network,” Ann. Romanian Soc. Cell Biol., pp. 4727–4733, May 2021.

    [17]       E. Avşar, “Moving vehicle detection and tracking at roundabouts using deep learning with trajectory union,” Multimed. Tools Appl., vol. 81, no. 5, pp. 6653–6680, Feb. 2022, doi: 10.1007/s11042-021-11804-0.

    [18]       X. Liu, W. Q. Yan, and N. Kasabov, “Moving vehicle tracking and scene understanding: A hybrid approach,” Multimed. Tools Appl., Nov. 2023, doi: 10.1007/s11042-023-17618-6.

    [19]       C. Gupta, N. Singh Gill, and P. Gulia, “SSDT: Distance Tracking Model Based on Deep Learning,” Int. J. Electr. Comput. Eng. Syst., vol. 13, no. 5, pp. 339–348, Jul. 2022, doi: 10.32985/ijeces.13.5.2.

    [20]       C. Gupta, N. S. Gill, P. Gulia, and J. M. Chatterjee, “A novel finetuned YOLOv6 transfer learning model for real-time object detection,” J. Real-Time Image Process., vol. 20, no. 3, p. 42, Apr. 2023, doi: 10.1007/s11554-023-01299-3.

    [21]       S. Sangeeta et al., “Video Object Detection from Compressed Formats for Modern Lightweight Consumer Electronics,” IEEE Trans. Consum. Electron. Vol. PP, pp. 1–1, Jan. 2023, doi: 10.1109/TCE.2023.3325480.

    [22]       “Information | Free Full-Text | A Hybrid Univariate Traffic Congestion Prediction Model for IoT-Enabled Smart City.” Accessed: Apr. 22, 2024. [Online]. Available: https://www.mdpi.com/2078-2489/14/5/268

    [23]       J. Azimjonov and A. Özmen, “A real-time vehicle detection and a novel vehicle tracking systems for estimating and monitoring traffic flow on highways,” Adv. Eng. Inform., vol. 50, p. 101393, Oct. 2021, doi: 10.1016/j.aei.2021.101393.

    [24]       “Development of AI-Based Vehicle Detection and Tracking System for C-ITS Application.” Accessed: Apr. 21, 2024. [Online]. Available: https://www.hindawi.com/journals/jat/2021/4438861/

    [25]       “Automatic multi-vehicle tracking using video cameras: An improved CAMShift approach | KSCE Journal of Civil Engineering.” Accessed: Jan. 15, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s12205-013-0263-7

    [26]       Badjajian, N. Barry, W. "Deep Learning Driven Automated Red Palm Weevil Detection Using Sparrow Search Optimization," Journal of International Journal of Advances in Applied Computational Intelligence, vol. 6, no. 2, pp. 16-27, 2024. DOI: https://doi.org/10.54216/IJAACI.060202

    [27]       “CAVIDS: Real time intrusion detection system for connected autonomous vehicles using logical analysis of data - ScienceDirect.” Accessed: Jan. 15, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214209623000827?casa_token=_dDLagae_c4AAAAA:dpnVVfNNgw3pfYJNHuWIKzapQ8pFLOq6r4x-YDuiXLSaTP46GQkO5fY9W4o-iNA-UmtRdAlR2w

    [28]       K. Pawar and V. Attar, “Deep learning based detection and localization of road accidents from traffic surveillance videos,” ICT Express, vol. 8, no. 3, pp. 379–387, Sep. 2022, doi: 10.1016/j.icte.2021.11.004.

    [29]       M. Shehata, R. Abo-Alez, F. Zaghlool, and M. Abou-Kreisha, “Deep Learning Based Vehicle Tracking in Traffic Management,” Int. J. Comput. Trends Technol., vol. 67, pp. 5–8, Mar. 2019, doi: 10.14445/22312803/IJCTT-V67I3P102.

    [30]       M. A. Berwo, “Deep Learning Techniques for Vehicle Detection and Classification from Images/Videos: A Survey,” Sensors, vol. 23, no. 10, Art. no. 10, Jan. 2023, doi: 10.3390/s23104832.

    [31]       V. K. Y. Chan, “Descriptive and inferential statistics of serious accidents involving considerably automated vehicles—a necessity of smart cities,” Procedia Comput. Sci., vol. 219, pp. 856–863, Jan. 2023, doi: 10.1016/j.procs.2023.01.360.

    [32]       P. S. Teja, N. S. S. Reddy, P. K. Pandugu, and P. Vangari, “Smart Vehicle Monitoring And Tracking System,” E3S Web Conf., vol. 391, p. 01099, 2023, doi: 10.1051/e3sconf/202339101099.

    [33]       “Sustainability | Free Full-Text | Vehicle Tracking Algorithm Based on Deep Learning in Roadside Perspective.” Accessed: Jan. 15, 2024. [Online]. Available: https://www.mdpi.com/2071-1050/15/3/1950

    [34]       “Vehicle tracking and detection techniques using IoT - ScienceDirect.” Accessed: Jan. 15, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785321046733?casa_token=Y4i_57nRiGoAAAAA:aUJzfLuSYHDHtdJSvecFYpi3bHxXqR3o2wGqWd1Y-HVFQlZsQ7e-lb6x6Zse_8B4fW12aNbtOA

    [35]       “Visual Vehicle Tracking Based on Deep Representation and Semisupervised Learning.” Accessed: Jan. 15, 2024. [Online]. Available: https://www.hindawi.com/journals/js/2017/6471250/

    [36]       “Vehicle Tracking and Speed Estimation from Roadside Lidar | IEEE Journals & Magazine | IEEE Xplore.” Accessed: Apr. 21, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9200682

    [37]       N. Kumar, D. Lohani, and D. Acharya, “Vehicle accident sub-classification modeling using stacked generalization: A multisensor fusion approach,” Future Gener. Comput. Syst., vol. 133, pp. 39–52, Aug. 2022, doi: 10.1016/j.future.2022.03.005.

    [38]       Z. Tang, G. Wang, H. Xiao, A. Zheng, and J.-N. Hwang, “Single-Camera and Inter-Camera Vehicle Tracking and 3D Speed Estimation Based on Fusion of Visual and Semantic Features,” presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 108–115. Accessed: Apr. 21, 2024. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2018_workshops/w3/html/Tang_Single-Camera_and_Inter-Camera_CVPR_2018_paper.html?ref=https://coder.social

    [39]       “Smart vehicle monitoring and assistance using cloud computing in vehicular Ad Hoc networks - ScienceDirect.” Accessed: Jan. 15, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S204604301730031X

    [40]       M. S. Abdallah, D. S. Han, and H. Kim, “Multi-Vehicle Tracking Using Heterogeneous Neural Networks for Appearance and Motion Features,” Int. J. Intell. Transp. Syst. Res., vol. 20, no. 3, pp. 720–733, Dec. 2022, doi: 10.1007/s13177-022-00320-6.

    [41]       A. O. Philip and RA. K. Saravanaguru, “Multisource traffic incident reporting and evidence management in Internet of Vehicles using machine learning and blockchain,” Eng. Appl. Artif. Intell., vol. 117, p. 105630, Jan. 2023, doi: 10.1016/j.engappai.2022.105630.

    [42]       “Multi-sensor information fusion for efficient smart transport vehicle tracking and positioning based on deep learning technique | The Journal of Supercomputing.” Accessed: Jan. 15, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s11227-021-04115-6

    [43]       D. Cai et al., “Multi-objective tracking for smart substation onsite surveillance based on YOLO Approach and AKCF,” Energy Rep., vol. 9, pp. 1429–1438, Oct. 2023, doi: 10.1016/j.egyr.2023.05.103.

    [44]       Baderiya, P. Gupta, C. Dubey, S. "A Review on Software Fault Detection Mechanisms and Fault Prevention Mechanisms in Networks," Journal of International Journal of Wireless and Ad Hoc Communication, vol. 6, no. 2, pp. 34-42, 2023. DOI: https://doi.org/10.54216/IJWAC.060203

    [45]       H. Fan et al., “LaSOT: A High-Quality Benchmark for Large-Scale Single Object Tracking,” presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5374–5383. Accessed: May 16, 2024. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2019/html/Fan_LaSOT_A_High-Quality_Benchmark_for_Large-Scale_Single_Object_Tracking_CVPR_2019_paper.html

    [46]       J. Cao, H. Zhang, L. Jin, J. Lv, G. Hou, and C. Zhang, “A review of object tracking methods: From general field to autonomous vehicles,” Neurocomputing, vol. 585, p. 127635, Jun. 2024, doi: 10.1016/j.neucom.2024.127635.

    [47]       M. Muller, A. Bibi, S. Giancola, S. Alsubaihi, and B. Ghanem, “TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild,” presented at the Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 300–317. Accessed: May 16, 2024. [Online]. Available: https://openaccess.thecvf.com/content_ECCV_2018/html/Matthias_Muller_TrackingNet_A_Large-Scale_ECCV_2018_paper.html

    [48]       L. Huang, X. Zhao, and K. Huang, “GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 5, pp. 1562–1577, May 2021, doi: 10.1109/TPAMI.2019.2957464.

    [49]       L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, “MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking.” arXiv, Apr. 08, 2015. Accessed: May 16, 2024. [Online]. Available: http://arxiv.org/abs/1504.01942

    Cite This Article As :
    R, Veena. , Rani, Seema. , Madhava, Ch. , Kumar, Piyush. , Dalal, Sandeep. , Bansal, Shweta. A Comprehensive Review of Real-Time Vehicle Tracking for Smart Navigation Systems. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2024, pp. 303-323. DOI: https://doi.org/10.54216/JISIoT.130224
    R, V. Rani, S. Madhava, C. Kumar, P. Dalal, S. Bansal, S. (2024). A Comprehensive Review of Real-Time Vehicle Tracking for Smart Navigation Systems. Journal of Intelligent Systems and Internet of Things, (), 303-323. DOI: https://doi.org/10.54216/JISIoT.130224
    R, Veena. Rani, Seema. Madhava, Ch. Kumar, Piyush. Dalal, Sandeep. Bansal, Shweta. A Comprehensive Review of Real-Time Vehicle Tracking for Smart Navigation Systems. Journal of Intelligent Systems and Internet of Things , no. (2024): 303-323. DOI: https://doi.org/10.54216/JISIoT.130224
    R, V. , Rani, S. , Madhava, C. , Kumar, P. , Dalal, S. , Bansal, S. (2024) . A Comprehensive Review of Real-Time Vehicle Tracking for Smart Navigation Systems. Journal of Intelligent Systems and Internet of Things , () , 303-323 . DOI: https://doi.org/10.54216/JISIoT.130224
    R V. , Rani S. , Madhava C. , Kumar P. , Dalal S. , Bansal S. [2024]. A Comprehensive Review of Real-Time Vehicle Tracking for Smart Navigation Systems. Journal of Intelligent Systems and Internet of Things. (): 303-323. DOI: https://doi.org/10.54216/JISIoT.130224
    R, V. Rani, S. Madhava, C. Kumar, P. Dalal, S. Bansal, S. "A Comprehensive Review of Real-Time Vehicle Tracking for Smart Navigation Systems," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 303-323, 2024. DOI: https://doi.org/10.54216/JISIoT.130224