Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 13 , Issue 2 , PP: 192-201, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Deep Learning-Based model for Medical Image Compression

Saad H. Baiee 1 * , Tawfiq A. AL-Assadi 2

  • 1 Department of Software College of Information Technology University of Babylon, Babylon, Iraq - (saadhasana.sw@student.uobabylon.edu.iq)
  • 2 Department of Software College of Information Technology University of Babylon, Babylon, Iraq - (tawfiqasadi@itnet.uobabylon.edu.iq)
  • Doi: https://doi.org/10.54216/JISIoT.130215

    Received: October 20, 2023 Revised: March 6, 2024 Accepted: July 2, 2024
    Abstract

    Efficient compression algorithms are required to handle the growing amount of medical picture data, ensuring that storage and transmission requirements are met without compromising diagnostic quality. This research presents a hybrid image compression framework that integrates deep learning alongside standard lossless compression techniques. A convolutional autoencoder (CAE) learns a compact representation of medical images, which are subsequently compressed using the Brotli algorithm. Our technique beats conventional approaches, like JPEG, JPEG2000, and wavelet-based ones, according to an analysis of a brain MRI dataset. It maintains competitive compression ratios while producing higher (PSNR) and (MSE), indicating higher picture integrity and low information loss. To strike a good balance between the critical need for accurate diagnosis and the economical use of resources, this study offers a possible method for compressing medical images.

    Keywords :

    Deep Learning , Convolutional Auto encoders , Brotli Algorithm lossless compression , MSE , PSNR

    References

    [1]    C. T. Selvi, J. Amudha, and R. Sudhakar, “Medical image encryption and compression by adaptive sigma filterized synorr certificateless signcryptive Levenshtein entropy-coding-based deep neural learning,” Multimed Syst, vol. 27, no. 6, pp. 1059–1074, Dec. 2021, doi: 10.1007/s00530-021-00764-y.

    [2]      A. I. Khaleel, N. A. H. Zahri, and M. I. Ahmad, “A Hybrid Compression Method for Medical Images Based on Region of Interest Using Artificial Neural Networks,” Journal of Engineering, vol. 2021, pp. 1–9, Jan. 2021, doi: 10.1155/2021/8292396.

    [3]       Data Compression. London: Springer London, 2007. doi: 10.1007/978-1-84628-603-2.

    [4]      A. Almalaq and G. Edwards, “A Review of Deep Learning Methods Applied on Load Forecasting,” in 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE, Dec. 2017, pp. 511–516. doi: 10.1109/ICMLA.2017.0-110.

    [5]       K. Tsubota and K. Aizawa, “Comprehensive Comparisons of Uniform Quantization in Deep Image Compression,” IEEE Access, vol. 11, pp. 4455–4465, 2023, doi: 10.1109/ACCESS.2023.3236086.

    [6]     R. A. Hamzah, M. M. Roslan, A. F. bin Kadmin, S. F. bin A. Gani, and K. A. A. Aziz, “JPG, PNG and BMP image compression using discrete cosine transform,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 19, no. 3, p. 1010, Jun. 2021, doi: 10.12928/telkomnika.v19i3.14758.

    [7]       Artificial Intelligence in Data Mining. Elsevier, 2021. doi: 10.1016/C2019-0-01255-1.

    [8]   S. Jamil, Md. J. Piran, M. Rahman, and O.-J. Kwon, “Learning-driven lossy image compression: A comprehensive survey,” Eng Appl Artif Intell, vol. 123, p. 106361, Aug. 2023, doi: 10.1016/j.engappai.2023.106361.

    [9]       X. Liu et al., “Medical Image Compression Based on Variational Autoencoder,” Math Probl Eng, vol. 2022, pp. 1–12, Dec. 2022, doi: 10.1155/2022/7088137.

    [10]    M. Venugopal and K. Palanisamy, “Wavelet based Convolutional Autoencoder for Medical Image Compression,” in 2023 International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS), IEEE, Feb. 2023, pp. 83–88. doi: 10.1109/ICISCoIS56541.2023.10100599.

    [11]    O. Jannani, N. Idrissi, and H. Chakib, “An Image Compression Approach Based on Convolutional AutoEncoder,” 2023, pp. 78–91. doi: 10.1007/978-3-031-46584-0_7.

    [12]   G. Guerrisi, F. Del Frate, and G. Schiavon, “Convolutional Autoencoder Algorithm for On-Board Image Compression,” in IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Jul. 2022, pp. 151–154. doi: 10.1109/IGARSS46834.2022.9883256.

    [13]  M. Siar and M. Teshnehlab, “A combination of feature extraction methods and deep learning for brain tumour classification,” IET Image Process, vol. 16, no. 2, pp. 416–441, Feb. 2022, doi: 10.1049/ipr2.12358.

    [14]    S. Herbreteau, E. Moebel, and C. Kervrann, “Normalization-Equivariant Neural Networks with Application to Image Denoising,” Jun. 2023.

    [15]    Z. Zhang, Y. Wu, C. Gan, and Q. Zhu, “The optimally designed autoencoder network for compressed sensing,” EURASIP J Image Video Process, vol. 2019, no. 1, p. 56, Dec. 2019, doi: 10.1186/s13640-019-0460-5.

    [16]    Charchekhandra, B. (2023). Align and fusion two thermal and visual images. Pure Mathematics for Theoretical Computer Science, 1( 1), 17-31. DOI: https://doi.org/10.54216/PMTCS.010102

    [17]    B. Brummer and C. De Vleeschouwer, “End-to-end optimized image compression with competition of prior distributions,” Nov. 2021, doi: 10.1109/CVPRW53098.2021.00212.

    [18]    J. Alakuijala et al., “Brotli,” ACM Trans Inf Syst, vol. 37, no. 1, pp. 1–30, Jan. 2019, doi: 10.1145/3231935.

    [19]    A. Artusi et al., “Overview and evaluation of the JPEG XT HDR image compression standard,” J Real Time Image Process, vol. 16, no. 2, pp. 413–428, Apr. 2019, doi: 10.1007/s11554-015-0547-x.

    [20]    Montajab, S. (2023). Improving the Performance Quality Parameters of Routing Protocol for MANET Networks. Galoitica: Journal of Mathematical Structures and Applications, 8( 2), 08-15. DOI: https://doi.org/10.54216/GJMSA.080201

    [21]   Wang Yuanji, Li Jianhua, Lu Yi, Fu Yao, and Jiang Qinzhong, “Image quality evaluation based on image weighted separating block peak signal to noise ratio,” in International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003, IEEE, 2003, pp. 994-997 Vol.2. doi: 10.1109/ICNNSP.2003.1281036.

    [22]    M. Reyad, A. M. Sarhan, and M. Arafa, “A modified Adam algorithm for deep neural network optimization,” Neural Comput Appl, vol. 35, no. 23, pp. 17095–17112, Aug. 2023, doi: 10.1007/s00521-023-08568-z.

    [23]    H. Fu et al., “Improved hybrid layered image compression using deep learning and traditional codecs,” Signal Process Image Commun, vol. 82, p. 115774, Mar. 2020, doi: 10.1016/j.image.2019.115774.

    [24]    A. Bastrychkin, S. I. Babaev, B. V. Kostrov, and N. N. Grinchenko, “Image Compression Using Optimal Quantization,” in 2020 9th Mediterranean Conference on Embedded Computing (MECO), IEEE, Jun. 2020, pp. 1–5. doi: 10.1109/MECO49872.2020.9134169.

    [25]   Hasan, Z. Stablichenkova, D. (2024). Design of Long Short Term Memory Based Deep Learning Model for Customer Churn Prediction in Business Intelligence. International Journal of Advances in Applied Computational Intelligence, 5( 1), 56-64. DOI: https://doi.org/10.54216/IJAACI.050105

    [26]  Asad, R. Hajjari, A. (2024). Intelligent Data Processing and Mining of Histopathological Images using Improved Tunicate Swarm Algorithm with Deep Learning. International Journal of Advances in Applied Computational Intelligence, 5( 1), 40-55. DOI: https://doi.org/10.54216/IJAACI.050104

    Cite This Article As :
    H., Saad. , A., Tawfiq. Deep Learning-Based model for Medical Image Compression. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2024, pp. 192-201. DOI: https://doi.org/10.54216/JISIoT.130215
    H., S. A., T. (2024). Deep Learning-Based model for Medical Image Compression. Journal of Intelligent Systems and Internet of Things, (), 192-201. DOI: https://doi.org/10.54216/JISIoT.130215
    H., Saad. A., Tawfiq. Deep Learning-Based model for Medical Image Compression. Journal of Intelligent Systems and Internet of Things , no. (2024): 192-201. DOI: https://doi.org/10.54216/JISIoT.130215
    H., S. , A., T. (2024) . Deep Learning-Based model for Medical Image Compression. Journal of Intelligent Systems and Internet of Things , () , 192-201 . DOI: https://doi.org/10.54216/JISIoT.130215
    H. S. , A. T. [2024]. Deep Learning-Based model for Medical Image Compression. Journal of Intelligent Systems and Internet of Things. (): 192-201. DOI: https://doi.org/10.54216/JISIoT.130215
    H., S. A., T. "Deep Learning-Based model for Medical Image Compression," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 192-201, 2024. DOI: https://doi.org/10.54216/JISIoT.130215