Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 12 , Issue 1 , PP: 33-44, 2024 | Cite this article as | XML | Html | PDF | Full Length Article

Enhancing Brain Tumor Detection and Classification using Osprey Optimization Algorithm with Deep Learning on MRI Images

S. Stephe 1 * , V. Nivedita 2 , B. Karthikeyan 3 , K. Nithya 4 , Mohamed Yacin Sikkandar 5

  • 1 Department of Electronics and Communication Engineering, K. Ramakrishnan College of Engineering, Tiruchirapalli, India - (stephes.ece@krce.ac.in)
  • 2 Department of Computer Science and Engineering, SRMIST Ramapuram Campus, Chennai- 89, India - (niveditv1@srmist.edu.in)
  • 3 Department of Information Technology, Panimalar Engineering College, Chennai - (karthikeyan.b32@gmail.com)
  • 4 Department of Computer Science and Engineering, School of Computing, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai, India - (nithyakmaha@gmail.com)
  • 5 Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia - (m.sikkandar@mu.edu.sa)
  • Doi: https://doi.org/10.54216/JISIoT.120103

    Received: January 30, 2023 Revised: February 18, 2023 Accepted: March 28, 2024
    Abstract

    Brain tumors (BT) are abnormal cell growth from the brain or the surrounding cells. It is categorized into 2 major types such as malignant (cancerous) and benign (non-cancerous). Classifying and detecting BTs is critical for knowledge of their mechanisms. Magnetic Resonance Imaging (MRI) is a helpful but time-consuming system, that needs knowledge for manual examination. A new development in Computer-assisted Diagnosis (CAD) and deep learning (DL) allows more reliable BT detection. Typical machine learning (ML) depends on handcrafted features, but DL achieves correct outcomes without such manual extraction. DL methods, particularly convolutional neural networks (CNNs) and recurrent neural networks (RNNs) can exposed to optimum outcomes in the domain of medical image analysis, comprising the classification and recognition of BTs in MRI and CT scans. Thus, the study designs an automated BT Detection and Classification using the Osprey Optimization Algorithm with Deep Learning (BTDC-OOADL) method on MRI Images. The BTDC-OOADL technique deeply investigates the MRI for the identification of BT. In the proposed BTDC-OOADL algorithm, the Wiener filtering (WF) model is applied for the elimination of noise. Besides, the BTDC-OOADL algorithm exploits the MobileNetV2 technique for the procedure of feature extractor. In the meantime, the OOA is utilized for the optimum hyperparameter choice of the MobileNetv2 model. Finally, the graph convolutional network (GCN) model can be deployed for the classification and recognition of BT. The experimental outcome of the BTDC-OOADL methodology can be tested under benchmark dataset. The simulation values infer the betterment of the BTDC-OOADL system with recent approaches.

    Keywords :

    Brain tumor , Computer-aided diagnosis , Osprey optimization algorithm , deep learning , Brain MRI

    References

    [1]     Kalyani, B.J.D., Meena, K., Murali, E., Jayakumar, L. and Saravanan, D., 2023. Analysis of MRI brain tumor images using deep learning techniques. Soft Computing, pp.1-8.

    [2]     Hashemzehi, R., Mahdavi, S.J.S., Kheirabadi, M. and Kamel, S.R., 2020. Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. biocybernetics and biomedical engineering, 40(3), pp.1225-1232.

    [3]     Rammurthy, D. and Mahesh, P.K., 2022. Whale Harris hawks optimization based deep learning classifier for brain tumor detection using MRI images. Journal of King Saud University-Computer and Information Sciences, 34(6), pp.3259-3272.

    [4]     Abdusalomov, A.B., Mukhiddinov, M. and Whangbo, T.K., 2023. Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging. Cancers, 15(16), p.4172.

    [5]     Siddique, M.A.B., Sakib, S., Khan, M.M.R., Tanzeem, A.K., Chowdhury, M. and Yasmin, N., 2020, October. Deep convolutional neural networks model-based brain tumor detection in brain MRI images. In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 909-914). IEEE.

    [6]     Ali, S., Li, J., Pei, Y., Khurram, R., Rehman, K.U. and Mahmood, T., 2022. A comprehensive survey on brain tumor diagnosis using deep learning and emerging hybrid techniques with multi-modal MR image. Archives of computational methods in engineering, 29(7), pp.4871-4896.

    [7]     Chattopadhyay, A. and Maitra, M., 2022. MRI-based brain tumour image detection using CNN based deep learning method. Neuroscience informatics, 2(4), p.100060.

    [8]     Rajendran, S., Rajagopal, S.K., Thanarajan, T., Shankar, K., Kumar, S., Alsubaie, N., Ishak, M.K. and Mostafa, S.M., 2023. Automated Segmentation of Brain Tumor MRI Images using Deep Learning. IEEE Access.

    [9]     Grampurohit, S., Shalavadi, V., Dhotargavi, V.R., Kudari, M. and Jolad, S., 2020, October. Brain tumor detection using deep learning models. In 2020 IEEE India Council International Subsections Conference (INDISCON) (pp. 129-134). IEEE.

    [10]   Lamrani, D., Cherradi, B., El Gannour, O., Bouqentar, M.A. and Bahatti, L., 2022. Brain tumor detection using mri images and convolutional neural network. International Journal of Advanced Computer Science and Applications, 13(7).

    [11]   Khan, M.A., Khan, A., Alhaisoni, M., Alqahtani, A., Alsubai, S., Alharbi, M., Malik, N.A. and Damaševičius, R., 2023. Multimodal brain tumor detection and classification using deep saliency map and improved dragonfly optimization algorithm. International Journal of Imaging Systems and Technology, 33(2), pp.572-587.

    [12]   Vankdothu, R. and Hameed, M.A., 2022. Brain tumor MRI images identification and classification based on the recurrent convolutional neural network. Measurement: Sensors, 24, p.100412.

    [13]   Haq, E.U., Jianjun, H., Li, K., Haq, H.U. and Zhang, T., 2021. An MRI-based deep learning approach for efficient classification of brain tumors. Journal of Ambient Intelligence and Humanized Computing, pp.1-22.

    [14]   Devanathan, B. and Kamarasan, M., 2023. Multi-objective Archimedes Optimization Algorithm with Fusion-based Deep Learning model for brain tumor diagnosis and classification. Multimedia Tools and Applications, 82(11), pp.16985-17007.

    [15]   Mandle, A.K., Sahu, S.P. and Gupta, G.P., 2022. CNN-based deep learning technique for the brain tumor identification and classification in MRI images. International Journal of Software Science and Computational Intelligence (IJSSCI), 14(1), pp.1-20.

    [16]   Aziz, A., Attique, M., Tariq, U., Nam, Y., Nazir, M., Jeong, C.W., Mostafa, R.R. and Sakr, R.H., 2021. An Ensemble of Optimal Deep Learning Features for Brain Tumor Classification. Computers, Materials & Continua, 69(2).

    [17]   Satyanarayana, G., Naidu, P.A., Desanamukula, V.S. and Rao, B.C., 2023. A mass correlation based deep learning approach using deep Convolutional neural network to classify the brain tumor. Biomedical Signal Processing and Control, 81, p.104395.

    [18]   Raza, A., Ayub, H., Khan, J.A., Ahmad, I., S. Salama, A., Daradkeh, Y.I., Javeed, D., Ur Rehman, A. and Hamam, H., 2022. A hybrid deep learning-based approach for brain tumor classification. Electronics, 11(7), p.1146.

    [19]   dos Santos, J.C.M., Carrijo, G.A., de Fátima dos Santos Cardoso, C., Ferreira, J.C., Sousa, P.M. and Patrocínio, A.C., 2020. Fundus image quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter. Research on Biomedical Engineering, 36, pp.107-119.

    [20]   Indraswari, R., Rokhana, R. and Herulambang, W., 2022. Melanoma image classification based on MobileNetV2 network. Procedia computer science, 197, pp.198-207.

    [21]   Ismaeel, A.A., Houssein, E.H., Khafaga, D.S., Abdullah Aldakheel, E., AbdElrazek, A.S. and Said, M., 2023. Performance of Osprey Optimization Algorithm for Solving Economic Load Dispatch Problem. Mathematics, 11(19), p.4107.

    [22]   Miele, E.S., Bonacina, F. and Corsini, A., 2022. Deep anomaly detection in horizontal axis wind turbines using graph convolutional autoencoders for multivariate time series. Energy and AI, 8, p.100145.

    [23]   https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset

    [24]   Vaiyapuri, T., Jaiganesh, M., Ahmad, S., Abdeljaber, H.A., Yang, E. and Jeong, S.Y., 2023. Ensemble Learning Driven Computer-Aided Diagnosis Model for Brain Tumor Classification on Magnetic Resonance Imaging. IEEE Access

    [25]   T. Vivekanandan, J. Jegan, D. Jagadeesan, Y. Sreeraman, N. Ch. S. N. Iyengar, E. Purushotham. (2024). Internet of Things Enabled Based Arrhythmia Classification using Dandelion Optimization Algorithm with Ensemble Learning. Journal of Journal of Intelligent Systems and Internet of Things, 11 ( 2 ), 63-74 (Doi   :  https://doi.org/10.54216/JISIoT.110206)

    [26]   R. Rajkumar, Dınesh Valluru, Siva Satya Sreedhar P. , N. Ramshankar, Sujatha S. , Somasundaram R., M. Sudha, S. Navaneethan. (2024). Enhanced Jaya Optimization Algorithm with Deep Learning Assisted Oral Cancer Diagnosis on IoT Healthcare Systems. Journal of Journal of Intelligent Systems and Internet of Things, 11 ( 2 ), 97-110 (Doi   :  https://doi.org/10.54216/JISIoT.110209)

    Cite This Article As :
    Stephe, S.. , Nivedita, V.. , Karthikeyan, B.. , Nithya, K.. , Yacin, Mohamed. Enhancing Brain Tumor Detection and Classification using Osprey Optimization Algorithm with Deep Learning on MRI Images. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2024, pp. 33-44. DOI: https://doi.org/10.54216/JISIoT.120103
    Stephe, S. Nivedita, V. Karthikeyan, B. Nithya, K. Yacin, M. (2024). Enhancing Brain Tumor Detection and Classification using Osprey Optimization Algorithm with Deep Learning on MRI Images. Journal of Intelligent Systems and Internet of Things, (), 33-44. DOI: https://doi.org/10.54216/JISIoT.120103
    Stephe, S.. Nivedita, V.. Karthikeyan, B.. Nithya, K.. Yacin, Mohamed. Enhancing Brain Tumor Detection and Classification using Osprey Optimization Algorithm with Deep Learning on MRI Images. Journal of Intelligent Systems and Internet of Things , no. (2024): 33-44. DOI: https://doi.org/10.54216/JISIoT.120103
    Stephe, S. , Nivedita, V. , Karthikeyan, B. , Nithya, K. , Yacin, M. (2024) . Enhancing Brain Tumor Detection and Classification using Osprey Optimization Algorithm with Deep Learning on MRI Images. Journal of Intelligent Systems and Internet of Things , () , 33-44 . DOI: https://doi.org/10.54216/JISIoT.120103
    Stephe S. , Nivedita V. , Karthikeyan B. , Nithya K. , Yacin M. [2024]. Enhancing Brain Tumor Detection and Classification using Osprey Optimization Algorithm with Deep Learning on MRI Images. Journal of Intelligent Systems and Internet of Things. (): 33-44. DOI: https://doi.org/10.54216/JISIoT.120103
    Stephe, S. Nivedita, V. Karthikeyan, B. Nithya, K. Yacin, M. "Enhancing Brain Tumor Detection and Classification using Osprey Optimization Algorithm with Deep Learning on MRI Images," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 33-44, 2024. DOI: https://doi.org/10.54216/JISIoT.120103