Volume 10 , Issue 1 , PP: 48-65, 2023 | Cite this article as | XML | Html | PDF | Full Length Article
Hussein Alkattan 1 * , Sanjar Abdullaev 2 , El-Sayed M. El-Kenawy 3
Doi: https://doi.org/10.54216/JISIoT.100104
The "climate in the weather" (CW) approach, which combines the scientific and everyday sense of climate, has been proposed. The CW is based on the in-depth idea of E. E. Fedorov to classify regional climates as an ensemble of daily weather states. We have transformed this idea into a nonparametric method of processing meteorological series, where each member of the series is mapped to quantiles of corresponding distributions, and then new time series are formed, where meteorological variables are replaced by their quantiles. Next, the members of the new quantized series are combined in weather states. In this work, by using quantiles combination of monthly temperature and precipitation, we construct four CW states - "cold and dry", "cold and rainy", "warm and rainy", "warm and dry". Then we demonstrate the possibility of the CW approach to analyze space-time climate similarity and climate change in the Mesopotamian River system. The application of 16 CW states is also discussed. The climate change dynamical assessment (CCDA) showed that the Euphrates (Tigris) tributaries values varied from 13 to 19% (13-25%) with a clear increase in Greater Zab, Lesser Zab, Adhaim, and Dyala basins. The analysis of CW-altered states demonstrated that climate change is occurred due to an increase in temperature, a decrease in precipitation, and mixed changes simultaneously. In each of the basins, there were a different number of such changes. The "climate in weather" approach developed can be used for processing multidimensional meteorological time series data and outlining the general conception of the regional climate.
Mesopotamia , climate change assessment , climate in weather states , climate anomaly meteorological time series , data mining
[1] United Nations, 2022. What Is Climate Change? https://www.un.org/en/climatechange/what-is-climate-change
[2] Dunn, R. J. H., F. Aldred, N. Gobron, J. B Miller, and K. M. Willett, Eds., 2022: Global Climate [in “State of the Climate in 2021“]. Bull. Amer. Meteor. Soc., 103 (8), S11–S142, https://doi.org/10.1175/BAMS-D-22-0092.1.
[3] Rantanen, M., Karpechko, A.Y., Lipponen, A. et al. 2022: The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ 3, 168 (2022). https://doi.org/10.1038/s43247-022-00498-3
[4] Thoman, R., M. L. Druckenmiller, and T. Moon, Eds., 2022: The Arctic [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103 (8), S257–S306, https://doi.org/10.1175/BAMS-D-22-0082.1.
[5] Bissolli, P., C. Ganter, A. Mekonnen, A. Sαnchez-Lugo, and Z. Zhu, Eds. 2022: Regional Climates [in “State of the Climate in 2021“]. Bull. Amer. Meteor. Soc., 103 (8), S341–S453, https://doi.org/10.1175/2022BAMSStateoftheClimate_Chapter7.1.
[6] L’Heureux, M. L., D.C. Collins, and Z.-Z. Hu, 2013: Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El NiρoSouthern Oscillation. Climate Dyn, 40, 1223–1236, https://doi.org/10.1007/ s00382-012-1331-2.
[7] Harris, I., Osborn, T.J., Jones, P. et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7, 109 (2020). https://doi.org/10.1038/s41597-020-0453-3
[8] McKee, T.B., Doesken, N.J. and Kleist, J. (1993) The Relationship of Drought Frequency and Duration to Time Scales. 8th Conference on Applied Climatology, Anaheim, 17-22 January 1993, 179-184.
[9] World Meteorological Organization, 2012: Standardized Precipitation Index User Guide (M. Svoboda, M. Hayes and D. Wood). (WMO-No. 1090), Geneva., 1-24.
[10] Timofeev, A.A., Sterin, A.M. 2010. Using the quantile regression method to analyze changes in climate characteristics. Russ. Meteorol. Hydrol. 35, 310–319. https://doi.org/10.3103/S106837391005002X
[11] Sa’adi, Z., Shahid, S., Ismail, T. et al. 2017 Distributional changes in rainfall and river flow in Sarawak, Malaysia. Asia-Pacific J Atmos Sci 53, 489–500. https://doi.org/10.1007/s13143-017-0051-2
[12] Zarnani ,A.,Karimi S. andMusilek P. (2019) Quantile Regression and Clustering Models of Prediction Intervals for Weather Forecasts: A Comparative Study. Forecasting 2019, 1(1), 169-188; https://doi.org/10.3390/forecast1010012
[13] Tyralis, H.; Papacharalampous, G. (2021) Quantile-Based Hydrological Modelling. Water 2021, 13, 3420. https://doi.org/10.3390/w13233420
[14] Alhumaima A. S., Abdullaev S. M. Tigris Basin Landscapes: Sensitivity of Vegetation Index NDVI to Climate Variability Derived from Observational and Reanalysis Data // Earth Interactions. 2020. Vol. 24. No. 7. P. 1–18. DOI:10.1175/EI-D-20-0002.1.
[15] Fedorov E. E., Baranov A. I., Climate of the plain of the European part of the USSR in the weather (Climate plains of the European part of the USSR in the weather), Trudy Institute of Geography, XLIV 1949; 414 C.
[16] Alhumaima A. S., Abdullaev S. M. Vliyanieizmenchivostiklimatanarastitel'nost' landshaftovbassejnaNizhnegoTigra: klimat v pogodahisputnikovyevegetacionnyeindeksy // In: 63-ya Vserossijskayanauchnayakonferenciya MFTI. 2020. p. 9–11.
[17] Uddin, M. A., A. S. M. Kamal, and S. Shahid. "Vegetation response to climate and climatic extremes in northwest Bangladesh: a quantile regression approach." Theoretical and Applied Climatology 148.3 (2022): 985-1003.
[18] Wang, Qin, et al. "Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China." International Journal of Environmental Research and Public Health 19.21 (2022): 13916.
[19] Dolganina, N., Ivanova, E., Bilenko, R., Rekachinsky, A. (2022). HPC Resources of South Ural State University. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2022. Communications in Computer and Information Science, vol 1618. Springer, Cham. https://doi.org/10.1007/978-3-031-11623-0_4
[20] de Melo, Maria Vitσria Neves, et al. 2022. "Spatiotemporal characterization of land cover and degradation in the agreste region of Pernambuco, Brazil, using cloud geoprocessing on Google Earth Engine." Remote Sensing Applications: Society and Environment 26 (2022): 100756.
[21] Essaadia, A., Abdellah, A., Ahmed, A., &Abdelouahed, F. (2022). The normalized difference vegetation index (NDVI) of the Zat valley, Marrakech: comparison and dynamics. Heliyon, e12204.
[22] Shukur, O. B., S. H. Ali, and L. A. Saber. "Climatic temperature data forecasting in Nineveh Governorate using the recurrent neutral network method." Int. J. Adv. Sci. Eng. Info. Technol. 11.1 (2021): 113-123.
[23] Thamera, N.M., and N. S. I. Alsharabia. "Predicting Time Series of Temperature in Nineveh Using the Conversion Function Models." I. J. on Advanced Science, Engineering and Information Technology 11.2 (2021): 572-580.
[24] UN-ESCWA and BGR (United Nations Economic and Social Commission for Western Asia; BundesanstaltfόrGeowissenschaften und Rohstoffe). 2013. Inventory of Shared Water Resources in Western Asia. Beirut.
[25] Lobanov, V.A. Textbook on Regional Climatology. Training Edition. − St. Petersburg: RSHU, 2020. – 170 pp (Lobanov V.A. Uchebnoeposobie po regional'nojklimatologii. Uchebnoeizdanie. − SPb, RGGMU, 2020. – 170 s).
[26] Ullah, H., Akbar, M. Khan F. 2020 Construction of homogeneous climatic regions by combining cluster analysis and L-moment approach on the basis of Reconnaissance Drought Index for Pakistan Int J Climatol. Volume 40, Issue 1 Pages: 324-341 https://doi.org/10.1002/joc.6214
[27] Abadi AM, Rowe CM, Andrade M (2020) Climate regionalization in Bolivia: a combination of non-hierarchical and consensus clustering analyses based on precipitation and temperature. Int J Climatol 40, issue 10:4408–4421. https://doi.org/10.1002/joc.6464
[28] Mahmud, S., Sumana, F.M., Mohsin, M. Кhan,M.H.R. 2022. Redefining homogeneous climate regions in Bangladesh using multivariate clustering approaches. Nat Hazards 111,2, 1863–1884 (2022). https://doi.org/10.1007/s11069-021-05120-x
[29] Zerouali, B., Chettih, M., Abda, Z. et al. 2022 A new regionalization of rainfall patterns based on wavelet transform information and hierarchical cluster analysis in northeastern Algeria. Theor Appl Climatol 147, 1489–1510 (2022). https://doi.org/10.1007/s00704-021-03883-8
[30] Li, K., Wang, M., & Liu, K. (2022). The study of temperature regionalization in China using complex networks. International Journal of Climatology, Volume42, Issue8. Pages 4445-4459. https://doi.org/10. 1002/joc.7478
[31] Ferreira Filho, D.F. Lira Pessoa F, K. 2022 Identification of homogeneous regions based on rainfall in the Amazon River basin. International Journal of Climatology, Volume42, Issue12. Pages 6092-6108 https://doi.org/10.1002/joc.7579
[32] Bharath, R., Srinivas V. V. (2015) Delineation of homogeneous hydrometeorological regions using wavelet-based global fuzzy cluster analysis Int J Climatol. Vol. 35, Issue15, Pages 4707-4727 https://doi.org/10.1002/joc.4318
[33] Trenberth, K.E (1997) The definition of El Niño. Bulletin of the American Meteorological Society. Vol. 78, No. 12,, December 1997, pp. 2771-2777
[34] Trenberth, K.E. and Stepaniak, D.P. (2001) Indices of El Niño evolution. Journal of Climate, volume 14, April, 2001. pp.1697-16701
[35] Okumura, Y. M., DiNezio, P., &Deser, C. (2017). Evolving impacts of multiyear La Niña events on atmospheric circulation and U.S. drought. Geophysical Research Letters, 44, 11,614–11,623. https://doi. org/10.1002/2017GL075034
[36] Glennie, E., Anyamba A. (2018). Midwest agriculture and ENSO: A comparison of AVHRR NDVI3g data and crop yields in the United States Corn Belt from 1982 to 2014. I. J. of Applied Earth Observation and Geoinformation. Vol. 68, Pages 180-188 https://doi.org/10.1016/j.jag.2017.12.011
[37] Yan, Y., Mao, K. Shen X, Cao M., Xu,T. Guo Z, Bao Q. (2021) Evaluation of the influence of ENSO on tropical vegetation in long time series using a new indicator. Ecological Indicators. V. 129, October 2021, 107872, https://doi.org/10.1016/j.ecolind.2021.107872
[38] Carrillo, C. M., Coats, S., Newman, M., Herrera, D. A., Li, X., Moore, R., et al. (2022). Megadrought: A series of unfortunate La Niña events? Journal of Geophysical Research: Atmospheres, 127, e2021JD036376. https://doi. org/10.1029/2021JD036376
[39] Каne, R.P. (1999) Rainfall extremes in some selected parts of Central and South America: ENSO and other relationships reexamined I. J. Climate. Volume19, Issue4 30 March 1999. Pages 423-455 https://doi.org/10.1002/(SICI)1097-0088(19990330)19:4<423::AID-JOC368>3.0.CO;2-O
[40] Feng, J., Wang, L., Chen, W., Fong, S. K. & Leong., K. C. Diferent impacts of two types of Pacifc Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res. 115, D24122, https://doi.org/10.1029/2010JD014761 (2010).
[41] Tedeschi, R.G. Cavalcanti I.F.A. Grimm A.M. 2012. Influences of two types of ENSO on South American precipitation. I. J. Climate Volume33, Issue6. May 2013Pages 1382-1400 https://doi.org/10.1002/joc.3519
[42] Iskandar, I.; Lestari, D.O.; Saputra, A.D.; Setiawan, R.Y.; Wirasatriya, A.; Susanto, R.D.; Mardiansyah, W.; Irfan, M.; Rozirwan; Setiawan, J.D.; et al. (2022) Extreme Positive Indian Ocean Dipole in 2019 and Its Impact on Indonesia. Sustainability 2022, 14, 15155. https://doi.org/10.3390/ su142215155
[43] Heino M., Puma, M.J. Ward, P.J., Gerten,D. Heck,V., Siebert S., Kummu M. (2018) Two-thirds of global cropland area impacted by climate oscillations. Nature Communications (2018) 9:1257/ DOI: 10.1038/s41467-017-02071-5
[44] Dunstone, N. Lockwood, J., -Murali B.S. et al. (2022) Towards Useful Decadal Climate Services. Bulletin of the American Meteorological Society. v. 103, issue 7, E1705–E1719 https://doi.org/10.1175/BAMS-D-21-0190.1
[45] Pal, M., Maity, R., Ratnam, J.V. et al. (2020) Long-lead Prediction of ENSO Modoki Index using Machine Learning algorithms. Sci Rep 10, 365 (2020). https://doi.org/10.1038/s41598-019-57183-3
[46] Abdullaev S.M., Zhelnin A.A., Lenskaya O.Y. The structure of mesoscale convective systems in central Russia. Russ. Meteorol. Hydrol., 2012, vol. 37, no. 1, pp. 12–20. DOI: 10.3103/S1068373912010025
[47] Bagnall A. and G. Janacek (2005) Clustering Time Series with Clipped Data. Machine Learning, 58, 151–178, 2005 DOI: 10.1007/s10994-005-5825-6
[48] Ratanamahatana C.A., Lin J., Gunopulos D., Keogh E., Vlachos M., Das G. (2009) Mining Time Series Data. In: Maimon O., Rokach L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA. 2009. pp 1049-1077 https://doi.org/10.1007/978-0-387-09823-4_56
[49] Milanovic M, Stamenkovic М. (2011) Data Mining in Time Series // EkonomskiHorizonti, 2011, v.13 (1) pp. 5-25
[50] Esling P., Agon C. (2012) Time-series data mining // ACM Computing Surveys Vol.45, n. 1, Nov. 2012, Article No.12, pp 1–34 https://doi.org/10.1145/2379776.2379788
[51] Ji, M. Xie F., and Ping Y. (2013) A Dynamic Fuzzy Cluster Algorithm for Time Series. Abstract and Applied Analysis Volume 2013, Article ID 183410, 7 pages http://dx.doi.org/10.1155/2013/183410
[52] Aghabozorgi,S.Shirkhorshidi,A.S. Wah,T.Y. (2015) Time-series clustering – A decade review, Information Systems, Volume 53, 2015, Pages 16-38 https://doi.org/10.1016/j.is.2015.04.007.
[53] Bagnall, A., Lines, J., Bostrom, A. Large J. Keogh E. (2017) The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. //Data Mining and Knowledge Discovery 2017. V. 31, 606–660. https://doi.org/10.1007/s10618-016-0483-9
[54] Fawaz H.I., Forestier G., Weber J., Idoumghar L., Muller P.A. (2019) Deep learning for time series classification: a review // Data Mining and Knowledge Discovery. 2019. V.33 pp.917–963 https://doi.org/10.1007/s10618-019-00619-1
[55] Zymbler M., Grents A., KraevaYa., Kumar S. A. (2021) Parallel Approach to Discords Discovery in Massive Time Series Data // Computers, Materials & Continua. 2021. Vol. 66, No. 2. P. 1867–1876. DOI: 10.32604/cmc.2020.014232,
[56] Alqahtani, A.; Ali, M.; Xie, X.; Jones, M.W. (2021) Deep Time-Series Clustering: A Review. Electronics 2021, 10, 3001. https://doi.org/ 10.3390/electronics10233001