Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 13 , Issue 1 , PP: 203-220, 2023 | Cite this article as | XML | Html | PDF | Full Length Article

Construction of Improved Device-to-Device Communication in 5G Networks based on Deep Learning Techniques

Sajad Ali Zearah 1 * , Ahmed R. Hassan 2 , Aqeel Ali 3 , Saad Qasim Abbas 4 , Tamarah Alaa Diame 5 , Ahmed Mollah Khan 6 , Mariok Jojoal 7

  • 1 Scientific Research Center, Al-ayen University, Thi-Qar, Iraq - (sajad@alayen.edu.iq)
  • 2 Department of Medical Devices Engineering Technologies, National University of Science and Technology, Dhi Qar, Nasiriyah, Iraq - (Ahmed.r.hassan@nust.edu.iq)
  • 3 Medical instruments engineering techniques, Al-farahidi University, Baghdad, Iraq - (Aqeel Ali@uoalfarahidi.edu.iq)
  • 4 Computer Technologies Engineering, Al-Turath University College, Baghdad, Iraq - (saad.qasim@turath.edu.iq)
  • 5 Technical Computer Engineering Department, Al-Kunooze University College, Basrah, Iraq - (Tamarah. Alaa @ Kunoozu . Edu .Iq)
  • 6 Department of Computer Engineering, University of Massachusetts Dartmouth, MA 02747Inst, USA - (ahmed.khan@umassd.edu)
  • 7 Department of Computer Science and Engineering, University of Deusto, 48007 Bilbao, Spain - (marjoj@@deusto.es)
  • Doi: https://doi.org/10.54216/FPA.130116

    Received: April 27, 2023 Revised: July 13, 2023 Accepted: September 10, 2023
    Abstract

    Device-to-Device (D2D) Communication promises outstanding data speeds, overall system capacity, and spectrum and energy efficiency without base stations and conventional network infrastructures, and these improvements in network performance sparked a lot of D2D research that exposed substantial challenges before being used to their fullest extent in 5G networks. This study suggests using Deep Learning-based Improved D2D communication (DLID2DC) in 5G networks to address these issues. Reprocessing resources between Cellular User Equipment (CUE) and D2D User Equipment (DUE) can increase system capacity without endangering the CUEs. The D2D resource allocation method allows for a flexible distribution of available resources across CUEs. In addition, several CUEs can consume the same pool of resources simultaneously. Researchers utilize various deep learning techniques to handle the difficulty of constructing D2D links and addressing their interference, mainly when using millimeter-wave (mmWave), to improve the performance of D2D networks. This research aims to increase system capacity by optimizing resource allocation using the suggested DLID2DC paradigm. The model uses Deep Learning methods to overcome interference issues and make D2D link building more efficient, especially in mmWave communication. The model uses Convolutional Neural Networks (CNNs) to learn and adapt to complicated D2D communication patterns, improving performance and dependability. The experimental findings show that, compared to other conventional approaches, the proposed DLID2DC model improves connection with lower end-to-end delay, energy efficiency, throughput, and efficient convergence time.

    Keywords :

    Device-to-Device Communication , 5G Networks , Deep Learning , Convolutional Neural Network.

    References

    [1]    Seemanthini, K., Shoba, N., Sowmyalakshmi, B. S., & Karthik, S. A. (2022). Role of Internet and Communication Technologies (ICT) to Support Clinical Practice and Research in Hospitals. In Information and Communication Technology (ICT) Frameworks in Telehealth (pp. 61-77).

    [2]    Abdel-Basset, M., Mohamed, R., Elhoseny, M., Chakrabortty, R. K., & Ryan, M. J. (2021). An efficient heap-based optimization algorithm for parameters identification of proton exchange membrane fuel cells model: Analysis and case studies. International Journal of Hydrogen Energy, 46(21), 11908-11925.

    [3]    Amudha, G. (2021). Dilated Transaction Access and Retrieval: Improving the Information Retrieval of Blockchain-Assimilated Internet of Things Transactions. Wireless Personal Communications, 1-21.

    [4]    Meenakshi, N., Jaber, M.M., Pradhan, R., Kamruzzaman, M.M., Maragatham, T., Ramamoorthi, J.S., and Murugesan, M., 2023. Design systematic wireless inventory trackers with prolonged lifetime and low energy consumption in future 6G network. Wireless Networks.

    [5]    Hussein, H. H., Elsayed, H. A., & Abd El-kader, S. M. (2020). Intensive benchmarking of D2D communication over 5G cellular networks: prototype, integrated features, challenges, and main applications. Wireless Networks, 26, 3183-3202.

    [6]    Sultana, A., Woungang, I., Anpalagan, A., Zhao, L., &Ferdouse, L. (2020). Efficient resource allocation in SCMA-enabled device-to-device communication for 5G networks. IEEE Transactions on Vehicular Technology, 69(5), 5343-5354.

    [7]    Rachini, A.S., and Jaber, M.M., 2019. Performance of FBMC in 5G mobile communications over different modulation techniques. 2019 International Symposium on Networks, Computers and Communications, ISNCC 2019, pp.1–6.

    [8]    Elfatih, N. M., Hasan, M. K., Kamal, Z., Gupta, D., Saeed, R. A., Ali, E. S., & Hosain, M. S. (2022). Internet of vehicle's resource management in 5G networks using AI technologies: Current status and trends. IET Communications, 16(5), 400-420.

    [9]    Pizzi, S., Suraci, C., Iera, A., Molinaro, A., & Araniti, G. (2020). A sidelink-aided approach for secure multicast service delivery: From human-oriented multimedia traffic to machine type communications. IEEE Transactions on Broadcasting, 67(1), 313-323.

    [10] Cao, L. (2022). Decentralized ai: Edge intelligence and smart blockchain, metaverse, web3, and desci. IEEE Intelligent Systems, 37(3), 6-19.

    [11] Nguyen, D. C., Pathirana, P. N., Ding, M., & Seneviratne, A. (2020). Blockchain for 5G and beyond networks: A state of the art survey. Journal of Network and Computer Applications, 166, 102693.

    [12] Khan, M. I., Qayyum, S., Farooq, S., Chu, Y. M., & Kadry, S. (2021). Modeling and simulation of micro-rotation and spin gradient viscosity for ferromagnetic hybrid (Manganese Zinc Ferrite, Nickle Zinc Ferrite) nanofluids. Mathematics and Computers in Simulation, 185, 497-509.

    [13] Fourati, H., Maaloul, R., & Chaari, L. (2021). A survey of 5G network systems: challenges and machine learning approaches. International Journal of Machine Learning and Cybernetics, 12, 385-431.

    [14] Salahdine, F., Han, T., & Zhang, N. (2023). Security in 5G and beyond recent advances and future challenges. Security and Privacy, 6(1), e271.

    [15] Chakraborty, C., & Rodrigues, J. J. (2020). A comprehensive review on device-to-device communication paradigm: trends, challenges, and applications. Wireless Personal Communications, 114(1), 185-207.

    [16] Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1-13.

    [17] Li, A., &Luk, K. M. (2020). Single-layer wideband end-fire dual-polarized antenna array for device-to-device communication in 5G wireless systems. IEEE Transactions on Vehicular Technology, 69(5), 5142-5150.

    [18] Selmi, S., & Bouallègue, R. (2021). Energy and spectral efficient relay selection and resource allocation in mobile multi‐hop device to device communications: Energy and spectral efficient multi‐hop D2D communications. IET Communications, 15(14), 1791-1807.

    [19] Alibraheemi, A. M. H., Hindia, M. N., Dimyati, K., Izam, T. F. T. M. N., Yahaya, J., Qamar, F., & Abdullah, Z. H. (2023). A Survey of Resource Management in D2D Communication for B5G Networks. IEEE Access, 11, 7892-7923.

    [20] Pawar, P., &Trivedi, A. (2019). Device-to-device communication-based IoT system: benefits and challenges. IETE Technical Review, 36(4), 362-374.

    [21] Pedhadiya, M. K., Jha, R. K., & Bhatt, H. G. (2019). Device-to-device communication: A survey. Journal of Network and Computer Applications, 129, 71-89.

    [22] Hossain, M. A., Ray, S. K., & Lota, J. (2020). SmartDR: A device-to-device communication for post-disaster recovery. Journal of Network and Computer Applications, 171, 102813.

    [23] He, Y., Yu, F. R., Zhao, N., & Yin, H. (2018). Secure social networks in 5G systems with mobile edge computing, caching, and device-to-device communications. IEEE Wireless Communications, 25(3), 103-109.

    [24] Zhang, H., Song, L., & Zhang, Y. J. (2018). Load balancing for 5G ultra-dense networks using device-to-device communications. IEEE Transactions on Wireless Communications, 17(6), 4039-4050.

    [25] Zhang, S., Liu, J., Guo, H., Qi, M., & Kato, N. (2020). Envisioning device-to-device communications in 6G. IEEE Network, 34(3), 86-91.

    [26] Roychoudhury, P., Roychoudhury, B., &Saikia, D. K. (2021). A Secure Device-to-Device Communication Scheme for Massive Machine Type Communication. Computers & Security, 102370.

    [27] Shang, Z., Ma, M., & Li, X. (2020). A secure group-oriented device-to-device authentication protocol for 5G wireless networks. IEEE Transactions on Wireless Communications, 19(11), 7021-7032.

    [28] Gandotra, P., &Jha, R. K. (2019). Energy‐efficient device‐to‐device communication using adaptive resource‐block allocation. International Journal of Communication Systems, 32(8), e3922.

    [29] Bahonar, M. H., &Omidi, M. J. (2021). Distributed pricing‐based resource allocation for dense device‐to‐device communications beyond 5G networks. Transactions on Emerging Telecommunications Technologies, e4250.

    [30] Shah, S. W. H., Rahman, M. M. U., Mian, A. N., Imran, A., Mumtaz, S., &Dobre, O. A. (2019). On the impact of mode selection on the effective capacity of device-to-device communication. IEEE Wireless Communications Letters, 8(3), 945-948.

    [31] Ameen, A.H., Mohammed, M.A. and Rashid, A.N., 2023. Dimensions of artificial intelligence techniques, blockchain, and cyber security in the Internet of medical things: Opportunities, challenges, and future directions. Journal of Intelligent Systems32(1), p.20220267.

    [32] Yassine, S., & Stanulov, A. (2024). A Comparative Analysis Of Machine Learning Algorithms For The Purpose Of Predicting Norwegian Air Passenger Traffic. International Journal of Mathematics, Statistics, and Computer Science, 2, 28–43. https://doi.org/10.59543/ijmscs.v2i.7851

    [33] Nezhad, M. Z.,  Nazarian-Jashnabadi, J., Rezazadeh, J.,  Mehraeen, M. & Bagheri, R. (2023). Assessing Dimensions Influencing IoT Implementation Readiness in Industries: A Fuzzy DEMATEL and Fuzzy AHP Analysis. Journal of Soft Computing and Decision Analytics, 1(1), 102-123. https://doi.org/10.31181/jscda11202312

     

    Cite This Article As :
    Ali, Sajad. , R., Ahmed. , Ali, Aqeel. , Qasim, Saad. , Alaa, Tamarah. , Mollah, Ahmed. , Jojoal, Mariok. Construction of Improved Device-to-Device Communication in 5G Networks based on Deep Learning Techniques. Fusion: Practice and Applications, vol. , no. , 2023, pp. 203-220. DOI: https://doi.org/10.54216/FPA.130116
    Ali, S. R., A. Ali, A. Qasim, S. Alaa, T. Mollah, A. Jojoal, M. (2023). Construction of Improved Device-to-Device Communication in 5G Networks based on Deep Learning Techniques. Fusion: Practice and Applications, (), 203-220. DOI: https://doi.org/10.54216/FPA.130116
    Ali, Sajad. R., Ahmed. Ali, Aqeel. Qasim, Saad. Alaa, Tamarah. Mollah, Ahmed. Jojoal, Mariok. Construction of Improved Device-to-Device Communication in 5G Networks based on Deep Learning Techniques. Fusion: Practice and Applications , no. (2023): 203-220. DOI: https://doi.org/10.54216/FPA.130116
    Ali, S. , R., A. , Ali, A. , Qasim, S. , Alaa, T. , Mollah, A. , Jojoal, M. (2023) . Construction of Improved Device-to-Device Communication in 5G Networks based on Deep Learning Techniques. Fusion: Practice and Applications , () , 203-220 . DOI: https://doi.org/10.54216/FPA.130116
    Ali S. , R. A. , Ali A. , Qasim S. , Alaa T. , Mollah A. , Jojoal M. [2023]. Construction of Improved Device-to-Device Communication in 5G Networks based on Deep Learning Techniques. Fusion: Practice and Applications. (): 203-220. DOI: https://doi.org/10.54216/FPA.130116
    Ali, S. R., A. Ali, A. Qasim, S. Alaa, T. Mollah, A. Jojoal, M. "Construction of Improved Device-to-Device Communication in 5G Networks based on Deep Learning Techniques," Fusion: Practice and Applications, vol. , no. , pp. 203-220, 2023. DOI: https://doi.org/10.54216/FPA.130116