Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 3 , Issue 1 , PP: 43-50, 2021 | Cite this article as | XML | Html | PDF | Full Length Article

Intelligent Traffic Management System for Smart Cities

Mahmoud Ismail 1 * , Shereen Zaki 2

  • 1 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (mmsabe@zu.edu.eg)
  • 2 Faculty of computers and Informatics, Zagazig University, Zagazig, 44519, Egypt - (SZSoliman@fci.zu.edu.eg)
  • Doi: https://doi.org/10.54216/JISIoT.030104

    Received: March 18, 2021 Accepted: June 11, 2021
    Abstract

    rapid urbanization and the growing population in smart cities pose significant challenges to the management of urban traffic. In recent years, there has been an increasing interest in developing intelligent traffic management systems that leverage advanced machineries, such as the Internet of Things (IoT), and machine learning (ML), to enhance the efficiency and effectiveness of traffic management in smart cities. This paper proposes an intelligent traffic management (ITM) system for smart cities that integrates various computing paradigms to provide real-time traffic information, optimize traffic flow, and improve road safety.  The suggested system utilizes an innovative system for the predicting the traffic flows with the goal of enhancing the current level of traffic management in smart cities. An enhanced convolutional autoencoder network is incorporated into the proposed system as a means of extracting the spatial representations contained in traffic flows. Additionally, by the utilization of a refined gated learning module, it possesses the capability of accurately recording temporal dynamics. Our system is evaluated using real-world traffic data, and the results demonstrate its effectiveness in improving traffic flow and reducing congestion in smart cities. Our system has the potential to significantly enhance the performance of traffic management systems in smart cities, decrease traffic crowding, and progress the safety of roads in smart cities.

    Keywords :

    Deep Learning , Intelligent system , internet of things (IoT) , smart cities

    References

    [1].  Tang, F., Mao, B., Fadlullah, Z. M., Kato, N., Akashi, O., Inoue, T., & Mizutani, K. (2017).  On removing routing protocol from future wireless networks: A real -time deep learning approach for intelligent traffic control. IEEE Wireless Communications, 25(1), 154-160.

    [2].  Wei,  H.,  Zheng, G.,  Yao,  H.,  &  Li,  Z.  (2018, July).  Intellilight:  A  reinforcement learning  approach  for intelligent  traffic  light  control.  In  Proceedings  of  the  24th  ACM  SIGKDD  International  Conference  on Knowledge Discovery & Data Mining (pp. 2496-2505).

    [3].  Tang, F., Fadlullah, Z. M., Mao, B., & Kato, N. (2018). An intelligent traffic load prediction-based adaptive channel assignment algorithm in SDN-IoT: A deep learning approach. IEEE Internet of Things Journal, 5(6), 5141-5154.

    [4].  Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., & Mizutani, K. (2017). State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Communications Surveys & Tutorials, 19(4), 2432 -2455.

    [5].  Zhao, Z., Chen, W., Wu, X., Chen, P. C., & Liu, J. (2017). LSTM network: a deep learning approach for short‐term traffic forecast. IET Intelligent Transport Systems, 11(2), 68 -75.

    [6].  Rehena,  Z.,  &  Janssen,  M.  (2018,  April).  Towards  a  framework  for  context -aware  intelligent  traffic management system in smart cities. In Companion Proceedings of the The Web Conference 2018 (pp. 893-898).

    [7].  Y. Liu, C. Yang and Q. Sun, "Thresholds Based Image Extraction Schemes in Big Data Environment in Intelligent Traffic Management," in IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp. 3952-3960, July 2021, doi: 10.1109/TITS.2020.2994386.

    [8].  Menouar,  H.,  Guvenc,  I.,  Akkaya,  K.,  Uluagac,  A.  S.,  Kadri,  A.,  &  Tuncer,  A.  (2017).  UAV-enabled intelligent transportation systems  for the smart city: Applications and challenges.  IEEE Communications Magazine, 55(3), 22-28.

    [9].  Rizwan, P., Suresh, K., & Babu, M. R. (2016, October). Real-time smart traffic  management system for smart cities by using Internet of Things and big data. In  2016 international conference on emerging technological trends (ICETT) (pp. 1-7). IEEE.

    [10].  Djahel,  S.,  Doolan,  R.,  Muntean,  G.  M.,  &  Murphy,  J.  (2014).  A  communications-oriented perspective on traffic management systems for smart cities: Challenges and innovative approaches.  IEEE Communications Surveys & Tutorials, 17(1), 125-151.

    [11].  Rego,  A.,  Garcia,  L.,  Sendra,  S.,  &  Lloret,  J.  (2018).  Software  Defined  Network-based  control system  for  an  efficient  traffic  management  for  emergency  situations  in  smart  cities.  Future  Generation Computer Systems, 88, 243-253.

    [12].  Kumar, P. M., Manogaran, G., Sundarasekar, R., Chilamkurti, N., & Varatharajan, R.  (2018). Ant colony  optimization  algorithm  with  internet  of  vehicles  for  intelligent  traffic  control  system.  Computer Networks, 144, 154-162.

    [13].  Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J., & Jawhar, I. (2014, May). UAVs for smart cities:  Opportunities  and  challenges.  In  2014  International  Conference  on  Unmanned  Aircraft  Systems 

    (ICUAS) (pp. 267-273). IEEE.

    [14].  Sharma,  P.  K.,  Moon,  S.  Y.,  &  Park,  J.  H.  (2017).  Block-VN:  A  distributed  blockchain  based vehicular network architecture in smart city. Journal of information processing systems, 13(1), 184-195.

    [15].  Lin,  Y.,  Wang,  P.,  &  Ma,  M.  (2017,  May).  Intelligent  transportation  system  (ITS):  Concept, challenge  and  opportunity.  In  2017  ieee  3rd  international  conference  on  big  data  security  on  cloud (bigdatasecurity), ieee international conference on high performan ce and smart computing (hpsc), and ieee international conference on intelligent data and security (ids)  (pp. 167-172). IEEE.

    [16].  A.  Salamanis,  D.  D.  Kehagias,  C.  K.  Filelis-Papadopoulos,  D.  Tzovaras  and  G.  A.  Gravvanis, "Managing Spatial Graph Dependencies in  Large Volumes of Traffic Data for Travel-Time Prediction," in IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 6, pp. 1678 -1687, June 2016, doi: 10.1109/TITS.2015.2488593.

    [17].  Vaswani,  A.,  Shazeer,  N.,  Parmar,  N.,  Uszkoreit,  J.,  Jones,  L.,  Gomez,  A.N.,  Kaiser,  Ł.  and Polosukhin, I., 2017. Attention is all you need. Advances in neural information processing systems, 30. 

    Cite This Article As :
    Ismail, Mahmoud. , Zaki, Shereen. Intelligent Traffic Management System for Smart Cities. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2021, pp. 43-50. DOI: https://doi.org/10.54216/JISIoT.030104
    Ismail, M. Zaki, S. (2021). Intelligent Traffic Management System for Smart Cities. Journal of Intelligent Systems and Internet of Things, (), 43-50. DOI: https://doi.org/10.54216/JISIoT.030104
    Ismail, Mahmoud. Zaki, Shereen. Intelligent Traffic Management System for Smart Cities. Journal of Intelligent Systems and Internet of Things , no. (2021): 43-50. DOI: https://doi.org/10.54216/JISIoT.030104
    Ismail, M. , Zaki, S. (2021) . Intelligent Traffic Management System for Smart Cities. Journal of Intelligent Systems and Internet of Things , () , 43-50 . DOI: https://doi.org/10.54216/JISIoT.030104
    Ismail M. , Zaki S. [2021]. Intelligent Traffic Management System for Smart Cities. Journal of Intelligent Systems and Internet of Things. (): 43-50. DOI: https://doi.org/10.54216/JISIoT.030104
    Ismail, M. Zaki, S. "Intelligent Traffic Management System for Smart Cities," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 43-50, 2021. DOI: https://doi.org/10.54216/JISIoT.030104