Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 5 , Issue 2 , PP: 62-71, 2021 | Cite this article as | XML | Html | PDF | Full Length Article

Intelligent System for Body Fat Percentage Prediction

Mahmoud A. Zaher 1 * , Nashaat K. ElGhitany 2

  • 1 Faculty of Artificial Intelligence, Data Science department, Egyptian Russian University (ERU), Cairo, Egypt - (mahmoud.zaher@eru.edu.eg)
  • 2 Prof. of Computer Science & Information System- sadat academy for management science - (zilog2003@yahoo.com)
  • Doi: https://doi.org/10.54216/JISIoT.050202

    Received: December 08, 2020 Accepted: August 18, 2021
    Abstract

    Excessive fats in human body results in obesity, which is generally linked to various illness like heart diseases, diabetes, etc. Therefore, determining the quantity of body fat becomes essential to save the human health. Though numerous approaches are available in determining body fat percentage (BFP), intelligent and accurate models can be designed using artificial intelligence (AI) techniques. Conventional single stage methods utilized particular readings from the body or explanatory parameters in predicting BFP. In this view, this study develops a new Gravitational Search Optimization with Neutrosophic rule-based Body Fat Percentage Prediction model. The presented model intends to appropriately determine the level of BFP in an effective and automated way. To accomplish this, the proposed model follows a two-stage process namely prediction and parameter optimization. At the initial stage, the model derives a new neutrosophic set based rule classifier to determine the BFP. Secondly, the membership function in the rule based model is optimally chosen by the use of GSO algorithm and thereby results in enhanced predictive outcomes of the classification model. A wide ranging simulation analysis is performed and the results are inspected under several dimensions.

    Keywords :

    Intelligent Systems , Body fat percentage , Obesity , Body mass index , Neutrosophic set, Rule based classifier

    References

    [1]  Akman, M., Uçar, M.K., Uçar, Z., Uçar, K., Baraklı, B. and Bozkurt, M.R., 2021. Determination of body fat  percentage  by  gender  based  with  photoplethysmography  signal  using  machine  learning algorithm. IRBM.

    [2]  Ferenci, T. and Kovacs, L., 2018. Predicting body fat percentage from anthropometric and laboratory measurements using artificial neural networks. Applied Soft Computing, 67, pp.834-839.

    [3]  Hussain,  S.A.,  Cavus,  N.  and  Sekeroglu,  B.,  2021.  Hybrid  Machine  Learning  Model  for  Body  Fat Percentage  Prediction  Based  on  Support  Vector  Regression  and  Emotional  Artificial  Neural Networks. Applied Sciences, 11(21), p.9797.

    [4]  Lu, Y., McQuade, S. and Hahn, J.K., 2018, July. 3d shape-based body composition prediction model using  machine  learning.  In 2018  40th  Annual  International  Conference  of  the  IEEE  Engineering  in Medicine and Biology Society (EMBC) (pp. 3999-4002). IEEE.

    [5]  Lee,  B.J.,  2019.  Prediction  model  of  hypercholesterolemia  using  body  fat  mass  based  on  machine learning. The Journal of the Convergence on Culture Technology, 5(4), pp.413-420.

    [6]  Chiong,  R.,  Fan,  Z.,  Hu,  Z.  and  Chiong,  F.,  2021.  Using  an  improved  relative  error  support  vector machine for body fat prediction. Computer Methods and Programs in Biomedicine, 198, p.105749.

    [7]  Uçar,  M.K.,  Ucar,  Z.,  Uçar,  K.,  Akman,  M.  and  Bozkurt,  M.R.,  2021.  Determination  of  body  fat percentage by electrocardiography signal with gender based artificial intelligence. Biomedical Signal Processing and Control, 68, p.102650.

    [8]  Uçar,  M.K.,  Ucar,  Z.,  Uçar,  K.,  Akman,  M.  and  Bozkurt,  M.R.,  2021.  Determination  of  body  fat percentage by electrocardiography signal with gender based artificial intelligence. Biomedical Signal Processing and Control, 68, p.102650.

    [9]  Gerl, M.J., Klose, C., Surma, M.A., Fernandez,  C., Melander, O., Männistö, S., Borodulin, K., Havulinna, A.S., Salomaa, V., Ikonen, E. and Cannistraci, C.V., 2019. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS biology, 17(10), p.e3000443.

    [10]  Fan, Z.,  Chiong, R., Hu, Z., Keivanian, F. and Chiong, F., 2022. Body fat prediction through feature extraction based on anthropometric and laboratory measurements. PloS one, 17(2), p.e0263333.

    [11]  Uçar, M.K., Ucar, Z., Köksal, F. and Daldal, N., 2021. Estimation of body fat percentage using hybrid  machine learning algorithms. Measurement, 167, p.108173. 

    [12]  Alves, S.S., Ohata, E.F., Nascimento, N.M., De Souza, J.W., Holanda, G.B., Loureiro, L.L. and Rebouças Filho, P.P., 2021, July. Gender-based approach to estimate the human body fat percentage using Machine Learning. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE. 

    [13]  Hussain,  S.A.,  Cavus,  N.  and  Sekeroglu,  B.,  2021.  Hybrid  Machine  Learning  Model  for  Body  Fat Percentage  Prediction  Based  on  Support  Vector  Regression  and  Emotional  Artificial  Neural Networks. Applied Sciences, 11(21), p.9797. 

    [14]  Fan, Z., Chiong, R. and Chiong, F., 2021. A fuzzy-weighted Gaussian kernel-based machine learning approach for body fat prediction. Applied Intelligence, pp.1-10. 

    [15]  Basha, S.H., Tharwat, A., Abdalla, A. and Hassanien, A.E., 2019. Neutrosophic rule-based prediction system  for  toxicity  effects  assessment  of  biotransformed  hepatic  drugs. Expert  Systems  with Applications, 121, pp.142-157.

    [16]  Rashedi,  E.,  Nezamabadi-Pour,  H.  and  Saryazdi,  S.,  2009.  GSA:  a  gravitational  search algorithm. Information sciences, 179(13), pp.2232-2248.

    [17]  Rashedi,  E.,  Rashedi,  E.  and  Nezamabadi-Pour,  H.,  2018.  A  comprehensive  survey  on  gravitational search algorithm. Swarm and evolutionary computation, 41, pp.141-158.

    [18]  https://www.kaggle.com/fedesoriano/body-fat-prediction-dataset 

    [19]  Shao,  Y.E.,  2014.  Body  fat  percentage  prediction  using  intelligent  hybrid  approaches. The  Scientific World Journal, 2014.

     

    Cite This Article As :
    A., Mahmoud. , K., Nashaat. Intelligent System for Body Fat Percentage Prediction. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2021, pp. 62-71. DOI: https://doi.org/10.54216/JISIoT.050202
    A., M. K., N. (2021). Intelligent System for Body Fat Percentage Prediction. Journal of Intelligent Systems and Internet of Things, (), 62-71. DOI: https://doi.org/10.54216/JISIoT.050202
    A., Mahmoud. K., Nashaat. Intelligent System for Body Fat Percentage Prediction. Journal of Intelligent Systems and Internet of Things , no. (2021): 62-71. DOI: https://doi.org/10.54216/JISIoT.050202
    A., M. , K., N. (2021) . Intelligent System for Body Fat Percentage Prediction. Journal of Intelligent Systems and Internet of Things , () , 62-71 . DOI: https://doi.org/10.54216/JISIoT.050202
    A. M. , K. N. [2021]. Intelligent System for Body Fat Percentage Prediction. Journal of Intelligent Systems and Internet of Things. (): 62-71. DOI: https://doi.org/10.54216/JISIoT.050202
    A., M. K., N. "Intelligent System for Body Fat Percentage Prediction," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 62-71, 2021. DOI: https://doi.org/10.54216/JISIoT.050202