Journal of Intelligent Systems and Internet of Things

Journal DOI

https://doi.org/10.54216/JISIoT

Submit Your Paper

2690-6791ISSN (Online) 2769-786XISSN (Print)

Volume 6 , Issue 2 , PP: 56-66, 2022 | Cite this article as | XML | Html | PDF | Full Length Article

Federated Resistance Against Adversarial Attacks in Resource-constrained IoT

Mahmoud A. Zaher 1 * , Heba H. Aly 2

  • 1 Faculty of Artificial Intelligence, Egyptian Russian University (ERU), Cairo, Egypt - (Mahmoud.zaher@eru.edu.eg)
  • 2 Faculty of computers and information systems, Beni Sief University , Cairo, Egypt - (Heba.h.ali@fcis.bsu.edu.eg)
  • Doi: https://doi.org/10.54216/JISIoT.060205

    Received: March 18, 2022 Accepted: July 28, 2022
    Abstract

     

    Federated learning (FL) is a recently evolved distributed learning paradigm that gains increased research attention. To alleviate privacy concerns, FL fundamentally suggests that many entities can cooperatively train the machine/deep learning model by exchanging the learning parameters instead of raw data. Nevertheless, FL still exhibits inherent privacy problems caused by exposing the users’ data based on the training gradients. Besides, the unnoticeable adjustments on inputs done by adversarial attacks pose a critical security threat leading to damaging consequences on FL.  To tackle this problem, this study proposes an innovative Federated Deep Resistance (FDR) framework, to provide collaborative resistance against adversarial attacks from various sources in a Fog-assisted IIoT environment. The FDR is designed to enable fog nodes to cooperate to train the FDL model in a way that ensures that contributors have no access to the data of each other, where class probabilities are protected utilizing a private identifier generated for each class.  The FDR mainly emphasizes convolutional networks for image recognition from the Food-101 and CIFAR-100 datasets. The empirical results have revealed that FDR outperformed the state-of-the-art adversarial attacks resistance approaches with 5% of accuracy improvements.

    Keywords :

    Adversarial Attacks , Federated Learning , Fog Computing , Industrial Internet of Things (IIoT)

    References

    [1]  M.  B.  Sariyildiz,  R.  G.  Cinbis,  and  E.  Ayday,  “Key  protected  classification  for  collaborative  learning,”  Pattern Recognit., vol. 104, 2020, doi: 10.1016/j.patcog.2020.107327.

    [2]  L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101 - Mining discriminative components with random forests,” 2014, doi: 10.1007/978-3-319-10599-4_29.

    [3]  A.  Krizhevsky  and  G.  Hinton,  “Learning  multiple  layers  of  features  from  tiny  images.(2009),” Cs.Toronto.Edu, pp. 1–58, 2009.

    [4]  N. Ma, X. Zhang, H. T. Zheng, and J. Sun, “Shufflenet V2: Practical guidelines for efficient cnn architecture design,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11218 LNCS. pp. 122–138, 2018, doi: 10.1007/978-3-030-01264-9_8.

    [5]  S.  Ioffe  and  C.  Szegedy,  “Batch  normalization:  Accelerating deep network  training  by reducing  internal covariate shift,” in 32nd International Conference on Machine Learning, ICML 2015, 2015, vol. 1, pp. 448–456.

    [6]  X. Glorot and Y.  Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Journal of Machine Learning Research, 2010, vol. 9, pp. 249–256.

    [7].  X. Zhang, Y. Zhou, S. Pei, J. Zhuge and J. Chen, "Adversarial Examples Detection for XSS Attacks Basedon  Generative  Adversarial  Networks,"  in  IEEE  Access,  vol.  8,  pp.  10989-10996,  2020,  doi: 10.1109/ACCESS.2020.2965184.

    [8].  K.  Madono,  M.  Tanaka,  M.  Onishi  and  T.  Ogawa,  "SIA-GAN:  Scrambling  Inversion  Attack  Using Generative  Adversarial  Network,"  in  IEEE  Access,  vol.  9,  pp.  129385-129393,  2021,  doi: 10.1109/ACCESS.2021.3112684.

    [9].  D. Wang, L. Dong, R. Wang, D. Yan and J. Wang, "Targeted Speech Adversarial Example Generation With Generative  Adversarial  Network,"  in  IEEE  Access,  vol.  8,  pp.  124503-124513,  2020,  doi: 10.1109/ACCESS.2020.3006130.

    [10].  V. R. Kebande, S. Alawadi, F. M. Awaysheh and J. A. Persson, "Active Machine Learning Adversarial 

    Attack  Detection  in  the  User  Feedback  Process,"  in  IEEE  Access,  vol.  9,  pp.  36908-36923,  2021,  doi: 

    10.1109/ACCESS.2021.3063002.

    [11].  X. Hu, D. Cheng, J. Chen, X. Jin and B. Wu, "Multiontology Construction and Application of Threat Model Based on Adversarial Attack and Defense Under ISO/IEC 27032," in  IEEE Access, vol. 10, pp. 117955-117972, 2022, doi: 10.1109/ACCESS.2022.3220637.

    [12].  A. Kuppa and N.  -A. Le-Khac, "Adversarial XAI Methods in Cybersecurity," in  IEEE Transactions on Information Forensics and Security, vol. 16, pp. 4924-4938, 2021, doi: 10.1109/TIFS.2021.3117075.

    [13].  Y.  -Y.  Chen,  C.  -T.  Chen,  C.  -Y.  Sang,  Y.  -C.  Yang  and  S.  -H.  Huang,  "Adversarial  Attacks  Against Reinforcement Learning-Based Portfolio Management Strategy," in IEEE Access, vol. 9, pp. 50667-50685, 2021, doi: 10.1109/ACCESS.2021.3068768.

    [14].  I. Aliyu, S. Van Engelenburg, M. B. Mu’Azu, J. Kim and C.  G. Lim, "Statistical Detection of Adversarial Examples in Blockchain-Based Federated Forest In-Vehicle Network Intrusion Detection Systems," in IEEE Access, vol. 10, pp. 109366-109384, 2022, doi: 10.1109/ACCESS.2022.3212412.

    [15].  I. Alsmadi et al., "Adversarial Machine Learning in Text Processing: A Literature Survey," in IEEE Access, vol. 10, pp. 17043-17077, 2022, doi: 10.1109/ACCESS.2022.3146405.

    [16].  Y. Zheng, Y. Lu and S. Velipasalar, "An Effective Adversarial Attack on Person Re-Identification in Video Surveillance  via  Dispersion  Reduction,"  in  IEEE  Access,  vol.  8,  pp.  183891-183902,  2020,  doi: 10.1109/ACCESS.2020.3024149.

    [17].  W. Zhang, "Generating Adversarial Examples in One Shot With Image-to-Image Translation GAN," in IEEE Access, vol. 7, pp. 151103-151119, 2019, doi: 10.1109/ACCESS.2019.2946461.

    [18].  C. Park, Y. Kim, J. -G. Park, D. Hong and C. Seo, "Evaluating Differentially Private Generative Adversarial Networks  Over  Membership  Inference  Attack,"  in  IEEE  Access,  vol.  9,  pp.  167412-167425,  2021,  doi: 10.1109/ACCESS.2021.3137278.

    [19].  X.  Zhang,  J.  Wang  and  S.  Zhu,  "Dual  Generative  Adversarial  Networks  Based  Unknown  Encryption Ransomware  Attack  Detection,"  in  IEEE  Access,  vol.  10,  pp.  900-913,  2022,  doi: 10.1109/ACCESS.2021.3128024.

    [20].  F.  Nikfam,  A.  Marchisio,  M.  Martina  and  M.  Shafique,  "AccelAT:  A  Framework  for  Accelerating  the Adversarial Training of Deep Neural Networks Through Accuracy Gradient," in  IEEE Access, vol. 10, pp. 108997-109007, 2022, doi: 10.1109/ACCESS.2022.3213734.

    [21].  Y.  Sun  and  L.  Fu,  "A  New  Threat  for  Pseudorange-Based  RAIM:  Adversarial  Attacks  on  GNSS Positioning," in IEEE Access, vol. 7, pp. 126051-126058, 2019, doi: 10.1109/ACCESS.2019.2939141.

    [22].  T. -T. -H. Le, H. Kang and H. Kim, "Robust Adversarial Attack Against Explainable Deep Classification Models Based on Adversarial Images With Different Patch Sizes and Perturbation Ratios," in IEEE Access, vol. 9, pp. 133049-133061, 2021, doi: 10.1109/ACCESS.2021.3115764

    [23].  X.  Kang,  B.  Song,  X.  Du  and  M.  Guizani,  "Adversarial  Attacks  for  Image  Segmentation  on  Multiple Lightweight Models," in IEEE Access, vol. 8, pp. 31359-31370, 2020, doi: 10.1109/ACCESS.2020.2973069.

    [24].  X. Zhang, Y. Zhou, S. Pei, J. Zhuge and J. Chen, "Adversarial Examples Detection for XSS Attacks Based on  Generative  Adversarial  Networks,"  in  IEEE  Access,  vol.  8,  pp.  10989-10996,  2020,  doi: 10.1109/ACCESS.2020.2965184.

    [25].  R. Wang, Z. Chen, H. Dong and Q. Xuan, "You Can’t Fool All the Models: Detect Adversarial Samples via Pruning Models," in IEEE Access, vol. 9, pp. 163780-163790, 2021, doi: 10.1109/ACCESS.2021.3133334.

    [26].  K. Yamanaka, R. Matsumoto, K. Takahashi and T. Fujii, "Adversarial Patch Attacks on Monocular Depth Estimation  Networks,"  in  IEEE  Access,  vol.  8,  pp.  179094-179104,  2020,  doi: 10.1109/ACCESS.2020.3027372.

    [27].  Z. Li, C. Feng, J. Zheng, M. Wu and H. Yu, "Towards Adversarial Robustness via Feature Matching," in IEEE Access, vol. 8, pp. 88594-88603, 2020, doi: 10.1109/ACCESS.2020.2993304.

    [28].  Á. L. Perales Gómez, L. F. Maimó, F. J. G.  Clemente, J. A. M. Morales, A. H. Celdrán and G. Bovet, "A Methodology  for  Evaluating  the  Robustness  of  Anomaly  Detectors  to  Adversarial  Attacks  in  Industrial Scenarios," in IEEE Access, vol. 10, pp. 124582-124594, 2022, doi: 10.1109/ACCESS.2022.3224930.

    [29].  Y. Bakhti, S. A. Fezza, W. Hamidouche and O. Déforges, "DDSA: A Defense Against Adversarial Attacks Using  Deep  Denoising  Sparse  Autoencoder,"  in  IEEE  Access,  vol.  7,  pp.  160397-160407,  2019,  doi: 10.1109/ACCESS.2019.2951526.

    [30].  F. O. Catak, M. Kuzlu, E. Catak, U. Cali and O. Guler, "Defensive Distillation-Based Adversarial AttackMitigation  Method  for  Channel  Estimation  Using  Deep  Learning  Models  in  Next-Generation  Wireless Networks," in IEEE Access, vol. 10, pp. 98191-98203, 2022, doi: 10.1109/ACCESS.2022.3206385.

    [31].  R.  H.  Randhawa,  N.  Aslam,  M.  Alauthman,  H.  Rafiq  and  F.  Comeau,  "Security  Hardening  of  Botnet Detectors Using Generative Adversarial Networks," in  IEEE Access, vol. 9, pp. 78276-78292, 2021, doi: 10.1109/ACCESS.2021.3083421.

    [32].  Z.  Liu  and  X.  Yin,  "LSTM-CGAN:  Towards  Generating  Low-Rate  DDoS  Adversarial  Samples  for Blockchain-Based Wireless Network Detection Models," in  IEEE Access, vol. 9, pp. 22616-22625, 2021, doi: 10.1109/ACCESS.2021.3056482.

    [33].  X. Kuang, H. Liu, Y. Wang, Q. Zhang, Q. Zhang and J. Zheng, "A CMA-ES-Based Adversarial Attack on Black-Box  Deep  Neural  Networks,"  in  IEEE  Access,  vol.  7,  pp.  172938-172947,  2019,  doi: 10.1109/ACCESS.2019.2956553.

    Cite This Article As :
    A., Mahmoud. , H., Heba. Federated Resistance Against Adversarial Attacks in Resource-constrained IoT. Journal of Intelligent Systems and Internet of Things, vol. , no. , 2022, pp. 56-66. DOI: https://doi.org/10.54216/JISIoT.060205
    A., M. H., H. (2022). Federated Resistance Against Adversarial Attacks in Resource-constrained IoT. Journal of Intelligent Systems and Internet of Things, (), 56-66. DOI: https://doi.org/10.54216/JISIoT.060205
    A., Mahmoud. H., Heba. Federated Resistance Against Adversarial Attacks in Resource-constrained IoT. Journal of Intelligent Systems and Internet of Things , no. (2022): 56-66. DOI: https://doi.org/10.54216/JISIoT.060205
    A., M. , H., H. (2022) . Federated Resistance Against Adversarial Attacks in Resource-constrained IoT. Journal of Intelligent Systems and Internet of Things , () , 56-66 . DOI: https://doi.org/10.54216/JISIoT.060205
    A. M. , H. H. [2022]. Federated Resistance Against Adversarial Attacks in Resource-constrained IoT. Journal of Intelligent Systems and Internet of Things. (): 56-66. DOI: https://doi.org/10.54216/JISIoT.060205
    A., M. H., H. "Federated Resistance Against Adversarial Attacks in Resource-constrained IoT," Journal of Intelligent Systems and Internet of Things, vol. , no. , pp. 56-66, 2022. DOI: https://doi.org/10.54216/JISIoT.060205