Journal of Intelligent Systems and Internet of Things
JISIoT
2690-6791
2769-786X
10.54216/JISIoT
https://www.americaspg.com/journals/show/3583
2019
2019
Enhanced Feature Selection Approach using Artificial Hummingbirds with Genetic Algorithm
Department of Computer Science - College of Science University of Diyala, Iraq
Ismael
Ismael
Department of Computer Science - College of Science University of Diyala, Iraq
Dheyab Salman
Ibrahim
Department of Computer Science - College of Science University of Diyala, Iraq
Bashar Talib AL
AL-Nuaimi
Feature selection (FS) is a crucial preprocessing step in data mining to eliminate redundant or irrelevant features from high-dimensional data. Many optimization algorithms for FS often lack balance in their search processes. This paper proposes a hybrid algorithm, the Artificial Hummingbird Algorithm based on the Genetic Algorithm (AHA-GA), to address this imbalance and solve the FS problem. The main goal of AHA-GA is to select the most crucial characteristics to improve overall model categorization. The UCI datasets are used to assess the performance of the proposed FS method. The proposed feature selection algorithm was compared with five feature selection optimization algorithms: BWOAHHO, HSGW, WOA-CM, BDA-SA, and ASGW. AHA-GA achieved a classification accuracy of 96% across 18 datasets, which was higher than BWOAHHO (93.2%), HSGW (92.5%), WOA-CM (94.4%), BDA-SA (93%), and ASGW (91.6%). When comparing the proposed AHA-GA algorithm to the results obtained by the other five algorithms in terms of selected attribute size, the average feature sizes were as follows: AHA-GA (15.10889), BWOAHHO (16.74222), HSGW (19.43111), WOA-CM (17.05389), BDA-SA (17.275), and ASGW (19.7585). The statistical and experimental tests demonstrated that the proposed AHA-GA performs better than competitive algorithms in selecting effective features.
2025
2025
86
101
10.54216/JISIoT.160108
https://www.americaspg.com/articleinfo/18/show/3583