International Journal of Neutrosophic Science
IJNS
2690-6805
2692-6148
10.54216/IJNS
https://www.americaspg.com/journals/show/284
2020
2020
NeutroAlgebra is a Generalization of Partial Algebra
University of New Mexico Math & Science Division 705 Gurley Ave., Gallup, NM 87301, USA
Florentin
Smarandache
In this paper we recall, improve, and extend several definitions, properties and applications of our previous 2019 research referred to NeutroAlgebras and AntiAlgebras (also called NeutroAlgebraic Structures and respectively AntiAlgebraic Structures).
Let be an item (concept, attribute, idea, proposition, theory, etc.). Through the process of neutrosphication, we split the nonempty space we work on into three regions {two opposite ones corresponding to and , and one corresponding to neutral (indeterminate) (also denoted ) between the opposites}, which may or may not be disjoint – depending on the application, but they are exhaustive (their union equals the whole space).
A NeutroAlgebra is an algebra which has at least one NeutroOperation or one NeutroAxiom (axiom that is true for some elements, indeterminate for other elements, and false for the other elements).
A Partial Algebra is an algebra that has at least one Partial Operation, and all its Axioms are classical (i.e. axioms true for all elements).
Through a theorem we prove that NeutroAlgebra is a generalization of Partial Algebra, and we give examples of NeutroAlgebras that are not Partial Algebras. We also introduce the NeutroFunction (and NeutroOperation).
2020
2020
08
17
10.54216/IJNS.020103
https://www.americaspg.com/articleinfo/21/show/284