Journal of Cognitive Human-Computer Interaction
JCHCI
2771-1463
2771-1471
10.54216/JCHCI
https://www.americaspg.com/journals/show/2660
2021
2021
Application of SAFARI in Prediction of Heart Disease
University of Kashmir India
Irfan
Irfan
University of Kashmir India
M. Arif
Wani
Cardiovascular disease has been the major cause of mortality worldwide for last several decades. Diagnosis of heart disease through traditional approaches is a complex, time consuming and error prone process. To address this issue, several techniques have been proposed to automate the process of diagnosing the heart disease accurately in timely manner. However these techniques report limited accuracy of diagnosing the disease. In this paper SAFARI algorithm is used to diagnose the heart disease. Safari uses rule based approach i.e. it extracts rules from a dataset and uses the extracted rules for diagnosis. The various attribute values are first discretised into specific ranges, each range corresponds to a symbol. This results in a symbol table. Safari extracts rules from this symbol table. The approach has been thoroughly tested on the heart disease dataset publicly available on UCI machine learning repository. The results obtained using this approach are compared with the results of various techniques reported by other authors, a significant improvement was observed.
2024
2024
08
16
10.54216/JCHCI.070201
https://www.americaspg.com/articleinfo/25/show/2660