Journal of Intelligent Systems and Internet of Things
JISIoT
2690-6791
2769-786X
10.54216/JISIoT
https://www.americaspg.com/journals/show/2542
2019
2019
Spider Monkey Optimization with Deep Learning-based Hindi Short Text Sentiment Analysis
Department of Computer Science and Engineering, Amity University Madhya Pradesh, Gwalior,
Praloy
Praloy
Department of Computer Science and Engineering, Amity University Madhya Pradesh, Gwalior, India
A.
Daniel
Department of Computer Science and Engineering, The Neotia University, West Bengal, Kolkata, India
Subhrendu Guha
Neogi
Sentiment analysis (SA) intends to categorize a text respective to sentimental polarity of individual opinions, like neutral, positive, or negative. The study of Hindi is limited because of the grammatical and morphological complexities of the Hindi language while many research work concentrates on drawing features from English text. The hindi languages make the sentiment classification procedure for Hindi short text a tedious process. The Hindi language has complicated morphology and variation based on phonetics, spelling, and vocabulary; the common usage of numerous dialects between Hindi in India produces a massive volume of glossaries. In this study, we introduce a Spider Monkey Optimization with stacked recurrent neural network (SMO-SRNN) for short text SA on Hindi Corpus. The proposed SMO-SRNN technique mainly aims to identify and categorize the Hindi short text into three distinct classes, namely negative, positive, and neutral. In the presented SMO-SRNN method, the SRNN approach is exploited for the investigation and classification of sentiment. Moreover, the SMO model is employed to finetune the hyperparameter related to the SRNN model. A detailed set of experiments is applied to ensure the high efficiency of the SMO-SRNN algorithm. The comparative outcome highlighted the enhancement of the SMO-SRNN technique over other methods.
2024
2024
97
109
10.54216/JISIoT.120108
https://www.americaspg.com/articleinfo/18/show/2542