American Journal of Business and Operations Research
AJBOR
2692-2967
2770-0216
10.54216/AJBOR
https://www.americaspg.com/journals/show/2305
2018
2018
Intelligent Stock Price Fusion in Mobile Industries
School of Management, Zhejiang Shuren University, Hangzhou, China
Muddassar
Sarfraz
School of economics, Quaid-i-Azam University, Islamabad, Pakistan
Sana
Ullah
In the tough cell phone business, guessing phone prices right is a key but hard job for new companies. Joining different types of info to look at stock prices may help, but we need strong ways to see how phone things and their costs tie together. This study wants to make stock price checking better in the cell phone business by using ways to join info. The work looks for strong ties between many phone things like memory, camera details, and screen size and how they affect the price. To fix this, very careful work was done to clean and fix the info. The Quadratic Discriminant Analysis rule was then used, along with top classifiers, for saying what will happen. Our findings demonstrate the QDA model's ability to detect subtle patterns and nonlinear correlations in the mobile phone data set. The model's resilience and predictive ability are demonstrated through visualizations such as ROC AUC and Precision-Recall curves. Comparative analyses with current approaches highlight the higher performance of the suggested data fusion approach. The use of QDA in data fusion models demonstrates its versatility in capturing complicated interactions, resulting in nuanced insights into mobile phone price factors. This study adds an improved prediction framework for mobile phone price analysis, which is critical for new enterprises looking to gain a competitive advantage in the volatile mobile industry.
2024
2024
69
78
10.54216/AJBOR.110108
https://www.americaspg.com/articleinfo/1/show/2305