Journal of Artificial Intelligence and Metaheuristics JAIM 2833-5597 10.54216/JAIM https://www.americaspg.com/journals/show/1905 2022 2022 A Deep Learning Approach Visual Recognition of Bird Species in Noisy Environments School of Engineering and Technology, Amity University Kolkata,India P. K. Duta Electrical and Computer Engineering , The Polytechnic University of the Philippines, Manila, 1016, Philippines Nader Behdad In this paper, we propose a deep learning approach for visual recognition of bird species in noisy environments. Bird species recognition has been a challenging task due to the high variation in bird appearances and the presence of noise and clutter in natural environments. Our approach utilizes a deep convolutional neural network (CNN) to learn discriminative features from bird images and classify them into different species. We also incorporate data augmentation techniques to increase the diversity of the training data and improve the robustness of the model. To address the issue of noisy environments, we introduce a novel noise-robust loss function that penalizes the model for incorrect predictions caused by noise. We evaluate our approach on a dataset of bird images collected from diverse environments and compare it with state-of-the-art methods. Our results demonstrate that our approach achieves superior performance in both clean and noisy environments, highlighting the effectiveness of our noise-robust loss function. Our approach has the potential to be applied in real-world scenarios for bird species recognition and conservation. 2023 2023 18 27 10.54216/JAIM.030202 https://www.americaspg.com/articleinfo/28/show/1905