
Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 37-53, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

37

MSJEP Classifier: “Modified Strong Jumping Emerging Patterns”
for Fast Efficient Mining and for handling attributes whose values

are associated with taxonomies

Mohammed K. Hassan 1*, Ahmed K. Hassan2, Ali I. Eldesouky2
1Mechatronics Department, Faculty of Engineering, Horus University in Egypt (HUE), New Damietta, 34517,

Egypt
2Department of Computers and Systems, Faculty of Engineering, Mansoura University, Mansoura, Egypt

Emails: mkhassan@horus.edu.eg, ahmed.hassan2017@gmail.com, : ali_eldesouky@yahoo.com

Abstract

Modified Strong Jumping Emerging Patterns (MSJEPs) are those itemsets whose support increases from zero in
one data set to non-zero in the other dataset with support constraints greater than the minimum support threshold
(ζ). The support constraint of MSJEP removes potentially less useful JEPs while retaining those with high
discriminating power. Contrast Pattern (CP)-tree-based discovery algorithm used for SJEP mining is a main-
memory-based method. When the data set is large, it is unrealistic to assume that the CP-tree can fit in the main
memory. The main idea to handle this problem is to first partition the data set into a set of projected data sets
and then for each projected data set, we construct and mine its corresponding CP-tree. Trees of the projected
data sets are called Separated Contrast Pattern Tree “SCP-trees” and Patterns generated from it are Called
MSJEPs” Modified Strong Jumping Emerging Patterns”. Our proposal also investigates the weakness of
emerging patterns in handling attributes whose values are associated with taxonomies and proposes using an
MSJEP classifier to achieve better accuracy, better speed, and also handling attributes in taxonomy.

Keywords: Data mining, emerging patterns, classification, machine learning, mining methods, and algorithms

1. Introduction

Data mining is naming to the branch of science interested in extracting valuable knowledge from useless tons of data
so it’s like the extraction of gold from the sand which is called gold mining, so the right name to the data mining
should be knowledge mining or knowledge discovery in database (KDD). But the first name is the most popular and
we will use it interchangeably with KDD.

Data mining can be used in important business decision-making or business strategies. Its applications are wide-
ranging, including medicine, banking, engineering, and so many others. Data mining aims to discover interesting or
useful patterns and relationships in a large volume of data. Major tasks in data mining include concept description,
association, classification, prediction, clustering, evolution analysis, and outlier analysis [1].

CLASSIFICATION is one of the major operations in data mining and it’s the core of this work. Classification has
also been studied on a wide range in statistics, machine learning, neural networks, and expert systems over decades
[2, 3] and has been successfully applied to a wide range of application areas, such as scientific experiments, medical
diagnosis, weather prediction, credit approval, customer segmentation, target marketing, and fraud detection [4, 5].

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 26-36, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

38

Classification based on patterns is a relatively new trend. “A Pattern is an expression describing a subset of the data”
[6]

A Strong Jumping Emerging Pattern (SJEP) is defined as an item set whose support increases suddenly from zero
in one class of data to nonzero in another class, the ratio of support-increase being infinite like previous classifiers
called Emerging patterns (EPs) and Jumping Emerging Pattern (JEP) [7, 8] but also must satisfy the condition of
minimum support threshold in the positive dataset which makes this classifier more accurate. SJEPs represent
knowledge that discriminates between the different classes of a dataset. This classifier achieves higher accuracy than
other state-of-the-art classifiers such as C4.5 [9] and CBA [10]. The SJEP-Classifier suffers from some weaknesses.
The classifier depends on CP-Tree to mine SJEPs and the technique is memory-based. Hence, in large datasets, it’s
unrealistic to build such a tree. This work tries to solve the problem by proposing an algorithm as we cut this tree into
equivalent small CP-Trees and we call these trees “Separated CP-Trees” or “Equivalent CP-Trees” and the mined
patterns from SCP-Trees are called Modified Strong Jumping Emerging Patterns (MSJEPs).
 This work also investigates the weakness of emerging patterns in handling attributes whose values are associated with
taxonomies and proposes using an MSJEP classifier to achieve better accuracy, better speed, and also handling
attributes in taxonomy.

In Section 2: The progression of emerging patterns is defined.

In Section 3: The new technique for generating MSJEPs is proposed.

InSection4: A new technique for generating generalized EP with better accuracy and how to handle attributes in
taxonomy is presented.

In section 5: Experimental results are given to compare the accuracy of the proposed classifier “MSJEP” with the
other five classifiers of “the-state-of-art” classifiers on some databases from the UCI machine repository [14]. The
experimental results show that our proposed classifier is more accurate than other classifiers. Other experimental
results are given to compare the number of EPs, SJEPs, Generalized EPs, and Generalized SJEPs used in the mining
process and also the execution time of the last two types.

In section 6: our proposal gives the conclusion and the future work.

2. Emerging Patterns Family

Suppose that a dataset D is defined upon a set of attributes {B1, B2,…, Bn}. For each attribute Bi, this set of permitted
values is called the domain of that attribute, denoted as domain (Bi). Attributes can be either categorical or continuous.

 For a continuous attribute, our proposal assumes that its value range is discretized into intervals. This work calls each
(attribute, categorical-value) or (attribute, continuous-interval) pair an item. (Sex, male) and (age, [18, 60]) are two
examples of items.

 By aggregating all the domain categorical-values and continuous-intervals across all attributes, the proposal obtains
the set of all items in D, denoted as I, where I = {domain (B1) Ç domain (B2)…. domain (Bn)}. All items are mapped
from I including (attribute, categorical-value) and (attribute, continuous-interval) pairs to consecutive positive
integers, i.e., use 1 to represent the first item in I, 2 to the second item, and so on. By doing this, the original dataset
can be treated as a transaction database [1].
 A set X of items is also called an item set, which is defined as a subset of I. It is assuming that any instance S
contains an itemset X, if X Í S. The support of an itemset X in a dataset D, suppD(X), is countD(X)=|D|, where
countD(X) is the number of instances in D containing X[11].

2.1 Emerging Patterns (EPs)

Emerging Patterns are concerned with two classes of data. This work defines the growth rate of an item set concerning
both classes as follows:

Definition 1 Given two different classes of datasets D1 and D2, the growth rate of an item set X from D1 to D2 is
defined as GrowthRate(X) = GR(X) =

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 37-53, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

39

EPs are those item sets with large growth rates from D1 to D2.

2.2 Jumping Emerging Patterns (JEPs)

Suppose D contains two different classes: D1 and D2.

Definition 2: (Li et al. [7]). A Jumping Emerging Pattern (JEP):

From D1 to D2 is an item set X that satisfies: suppD1 (X) = 0 and suppD2 (X) > 0.

2.3 Strong Jumping Emerging Patterns (SJEPs)

Definition 3: (Fan et al. [11]) Given ζ > 0 as a minimum support threshold, a Strong Jumping Emerging Pattern
(SJEP) from D1 to D2 is an item set X that satisfies the following conditions:
1. SuppD1 (X) = 0 and SuppD2 (X) ≥ ζ and
2. Any proper subset of X does not satisfy condition 1.

 A negative dataset means the absence of (X) in (D) with respect to (X). An SJEP X from D1 to D2 is simply called
an SJEP of D2 and suppD2 (X) is called the support of the SJEP. In this example, D2 is called the positive dataset, and
D1 is called the negative dataset).

Like JEPs [12], SJEP also has strong predictive power due to its infinite growth rates. Unlike JEPs, SJEP requires that
the support of SJEPs in D2 (positive dataset) be above the minimum support threshold ζ (condition 1).

This ensures that an SJEP should cover at least a certain number of instances in a training data set. Condition 2 shows
that any proper subset of an SJEP is not an SJEP, which means SJEP is the shortest JEP satisfying the support
constraint. Consider that JEPs are actually item sets. A shorter JEP means fewer items (attributes). If this proposal
can use fewer attributes to distinguish two classes, adding more attributes will not contribute to classification and will
add more noise to the classification process, so we are interested in the shortest pattern to satisfy our definition and
neglect the superset.

3. The Proposed classifier MSJEPs

The proposed MSJEP classifier retains the high accuracy of the SJEP classifier but tries to handle its weak point in
memory management.
The SJEP classifier constructs one CP-tree for the whole data set [11]. Since this technique is memory-based; it’s
unrealistic that large data sets can fit the main memory.
So this proposal proposes a new classifier technique in which the CP-tree that has been proposed in [11] will be
partitioned into equivalent small CP-trees to solve the problem of memory consumption.
Figure 1 shows the steps representing the proposed classifier

ï
ï
ï

î

ïï
ï

í

ì

>=¥
==

otherwise
X
X

XandXif
XandXif

DD

DD

)(supp
)(supp

0)(supp0)(supp
0)(supp0)(supp0

D1

D2

21

21

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 26-36, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

40

 Datasets

MSJEPs sets

 Aggregation ∑

Fig (1) Hierarchy implementing mining processes for generating MSJEPs & SJEPs using 4 algorithms

3.1.1 Proposed Separated Contrast Pattern Trees (SCP-Tree):
This section proposes a technique for constructing a CP-tree in which the data set is partitioned into small data sets,
each of them is represented by a small SCP-tree and this tree can be treated as the original CP-tree to generate SJEPs
but here, each SCP-tree will generate a subset of SJEPs called MSJEPs holding the same characteristics.
 After each SCP tree has generated a set of MSJEPs, we will free the memory from this tree and store the generated
patterns. This operation will be repeated n times where n is equal to the number of SCP-trees. So this technique
proposes a kind of memory management to solve the problem of the memory consumption that SJEP suffers from.
The following algorithm is proposed for this purpose.

Algorithm 1 (proposed algorithm):

1- Let D=D1 Ç D2
2- Scan D once. Collect the set of items in D
(Along with their support ratios) support ratio for each item ® [A].
3- [B] ¬ [A] sorted descending according to its support ratio.
4- If two or more items in [B] have the same minimum support ratio, we will sort them in lexicographical order.
5- If an item appears as a singleton set, we will reorder [B] putting this item preceding the others discarding
lexicographical order.
6- Splitting dataset according to the first element in each pattern.

Example 1
 In the data set shown in Table 1 [11].

(Algorithm 1)
Proposed algorithm for CP-tree separation to SCP-trees

(Algorithm2)
CP-tree construction

(Algorithm3)
Algorithm for discovering SJEPs & MSJEPS

(Algorithm 4)
Algorithm for mine SJEPs & MSJEPs

Set of SJEPs

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 37-53, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

41

Table (1) An Example Data Set with Two Classes

ID

Class
Label

Instances
(Itemsets)

Item sets
Ordered by≺

1 D1 {a,c,d,e} [e.a.c.d]
2 D1 {a} [a]
3 D1 {b,e} [e,b]
4 D1 {b,c,d,e} [e,b,c,d]
5 D2 {a,b} [a,b]
6 D2 {c,e} [e,c]
7 D2 {a,b,c,d} [a,b,c,d]
8 D2 {d,e} [e,d]

Instead of constructing a global CP-tree, this proposal performs the following. Starting from item e, the set of instances
that contain e can be collected into an e-projected data set: three D1 instances {e, a, c, d}, {e, b}, and {e, b, c, d} two
D2 instances {e, c} and {e, b}. The CP-tree for this projected data set is the same as the subtree R.e (means node of
item e in the root) in Figure 2.
Similarly, the a-projected data set contains two D1 instances ({a, c, d} and {a}) and two D2 instances ({a, b} and {a,
b, c, d}).

This approach will split our dataset into small projected data sets; each will be used to build a separate CP-tree. As
shown inFigure(2) this proposal presents an algorithm that separates the complete CP-tree inFigure(3) into two trees
as inFigure(2). Each tree can be used separately to mine a set of SJEPs (Strong Jumping Emerging Patterns) called
MSJEPs (Modified Strong Jumping Emerging Patterns) and then free the memory and use the other tree for mining
another set of MSJEPs. The aggregation of these sets of MSJEPs gives the same original set of SJEPs but with a
kind of memory management, also this operation can be done distributed on several machines for better performance.
Thus, our approach has more scalability due to its adaptable performance with resources and time.

Figure (2) Separating the original CP-tree to a set of SCP-tree according to the new algorithm

3.1.2 Support Ratio of Individual Item

Assume D contains D1 and D2. Let I = {i1, i2,…, in) be the set of all items appearing in D. Note that, for an item iÎ
I, this proposal has a singleton item set {i} Ì I.

Definition 4: (Fan et al. [11]) Given ζ > 0 as a minimum support threshold, the support ratio of item i between D1
and D2, denoted as SupportRatio(i), is defined as

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 26-36, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

42

The larger the support ratio of an item, the sharper discriminating power can this item provide.

Based on the definition of the support ratio (Definition 3), this proposal defines the preceding order on I. Let i, j Î I
will be two items and i ≺ j,

• . If Support Ratio(i) > Support Ratio (j) or
• . If Support Ratio (i) = Support Ratio (j) and i < j (in lexicographical order).

3.2.1 The Contrast Pattern Tree (CP-tree):

The CP-tree data structure (an ordered multi-way tree structure) taken from the FP-tree [11], is used for EP mining
for the first time [10]. A CP-tree registers the counts in both the positive and negative classes. An example of a CP-
tree is illustrated in Figure (3).

Because every training instance is sorted by its support ratio according to the order “≺” between both classes when
inserting into the CP-tree, items with a high ratio, which mostly generated as SJEP located closer to the root. The CP-
tree mapping to an item set is a one-to-one mapping. Using the predefined order ≺, this proposal can produce the
complete set of paths (itemsets) systematically through depth-first searches of the CP-tree. The CP-tree-based
algorithm searches the CP-tree depth-first from the root and performs a powerful technique, node merge, along with
the search.
The CP-tree-based algorithm can discover SJEPs of both D1 and D2 from the CP-tree at the same time, a “single-scan”
algorithm not like the FP-growth algorithm that performs pattern mining from leaf to root and must create many
conditional FP-trees during the mining process [11].

Fig (3) The CP-tree of the example data set

3.2.2 The Construction of the Contrast Pattern Tree:

In this section, our work begins to show the first step of the mining process by building CP-tree from the dataset for
both classes that will be used for the mining process.

Let D=D1ÇD2 be the training data set containing two classes and ζ be the minimum support threshold. Based on its
definition, the CP-tree of input D is constructed using the following procedure: [11]

{ } { }

{ } { }

{ } { }

{ }
{ }

{ }
{ }ï

ï
ï

î

ïï
ï

í

ì

÷
ø
öç

è
æ

=Ù³

Ú³Ù=¥

<Ù<

=

otherwise
i
i

i
i

ii

iiif

iiif

iRatioSupport

)(D2 supp
)(D1 supp

,
)(D1 supp
)(D2 supp

max

)0)(2Dsupp)(D1supp(

))(2Dsupp0)(D1 supp(

)(2Dsupp)(D1 supp0

)(

x

x

xx

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 37-53, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

43

1. Scan D once. Collect the set of items (along with their support ratios) whose support ratios are more than zero,
denoted as J. Sort J in support ratio-descending order, denoted as L.
2. Create the root of the CP-tree, R, with R.itemNumber = 0. For each instance inst in D do:

Select from inst the items that are contained in L and sort them according to the order of L. Let the sorted item list in
inst be [p,P], where p is the first element and P is the remaining list. Call the function insert tree ([p,P],R) (Algorithm
2).

Algorithm 2: [11]

 insert tree ([p,P],T) (function called by CP-tree construction)
1 search T for T.items [i] = p;
2 if T.items[i] is not found then
3 Insert p at the appropriate place in T obeying the ≺order, denoted as T:items[i];
4 Let T.D1counts [i] = T.D2counts[i] = 0;
5 Increment T.itemNumber by 1;
6 switch the class label of the instance [p,P] do
7 Case class D1 increment T.D1counts[i] by 1;
8 Case class D2 increment T.D2counts[i] by 1;
 end
9 if P is nonempty then
10 if T.items[i]’s subtree is empty then create a new node N with N.itemNumber =0 as T.items[i]’s subtree ;
11 Let N be T.items[i]’s subtree, call insert tree (P,N);
 end

Fig (4) Constructing the CP-tree step by step: from an empty tree to the full tree.

3.3 USING THE CONTRAST PATTERN TREE TO DISCOVER SJEPS

After building SCP trees in section 3.2, the mining process is illustrated in this section. The mining process is explained
step by step using the following example. Let the minimum count (in absolute occurrence) be 2. The initial CP-tree
of the example data set is shown inFigure 5a, where R denotes its root and N denotes R.e’s subtree.

First perform a depth-first search of the CP-tree for SJEPs, which is equivalent to the exploration of the pattern
space:{e}, {e, a}, {e, a, c}, {e, a, c, d}, {e, b}, {e, b, c }, {e, b, c, d}, {e, c}, {e, d}, {a}, {a, b}, {a, b, c}, and {a, b, c,
d}. However, only the counts of {e}, {e, a}, {e, a, c}, and {e, a, c, d} are correctly registered in the tree. Note that
there is an “a” (1: 0) in the node R.e. So, we need to merge R.e’s subtree with R itself to adjust the counts of a in R.
For the same reason, in the sub data set containing “e”, the counts of “b” in the node R.e may not be correct. By
merging nodes along with the depth-first search, we can make sure the counts encountered are correct for determining
SJEPs. Basically, the function merges all the nodes of “N” into corresponding sections of “R”.

The process of merging N with R is shown inFigure 5 and the details of the merging operation are presented in
algorithm 3 to adjust the count of the remaining items in the CP-tree [11].

Note that: There is an a (1:0) in the node R.e. So, we need to merge R.e’s subtree with R itself to adjust the counts of
a in R.

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 26-36, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

44

Algorithm 3: [11]

merge_tree (T1; T2) (Function called in mine_tree(T, µ))

/*given two sub trees of a CP-tree, T1 and T2, the function merges T1’s nodes into T2. T2 is updated (including new-
node generation and existing-node changes, but no nodes deletion), while T1 remains unchanged */

1 foreach T1.items[i] do
2 search T2 for T2.items[j] = T1.items[i];
3 if T2.items[j] found then
4 T2.D1counts[j] =T2.D1counts[j] + T1.D1counts[i];
5 T2.D2counts[j] = T2.D2counts[j] + T1.D2counts[i];
else
6 insert T1.items[i] with both its D1 and D2 counts and child (T1.childs[i]) at the appropriate place in T2 obeying the
order ≺ , denoted as T2.items[j];
7 increment T2.itemNumber by 1;
8 if T1.items[i]’s subtree, M is not empty then
9 if T2.items[j]’s subtree is empty then
10 create a new node N with N.itemNumber = 0 as T2.items[j]’s subtree;
 else N ←T2.items[j]’s subtree;
11 call merge tree (M,N);
 end
end

Fig (5) (a) The original CP-tree and (b) the CP-tree after merge (N, R)

3.4 Algorithms for Mining SJEPs

The mining is initiated by calling the recursive function mine-tree() (Algorithm 4) with two arguments: the root of
CP-tree R and an empty item set. The item set µ, which is initially empty, will grow one item at a time when mine-
tree() is called recursively. After completing the search of the CP-tree, select only those minimal patterns by filtering
out those that are supersets of others. The remaining minimal ones are SJEPs since they satisfy the minimum support
threshold ζ.
Algorithm 4: [11]
 mine tree (T,µ) (Function called for mining SJEPs)
/* T is a subtree of the CP-tree and µ is an accumulating item set */
/* ζ is a minimum support threshold for SJEPs */
/* |Di| = the total number of instances in |Di|, where i=1,2 */

1 foreach item of T, T.items[i] do
2 if T.items[i]’s subtree M is not empty then merge (M, T);
3 b= µ Ç T.items[i] ;
4 if (T.D1counts[i] =0^ (T.D2counts[i] ≥ |D2| . ζ)
then generate an SJEP b of D2 with supp(b)=T.D2.counts[i];
5 else if (T.D2counts[i]=0) ^ (T.D1counts[i] ≥ |D1|.ζ)

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 37-53, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

45

then generate an SJEP b of D1 with supp(b)=T.D1.counts[i]; /* Go deeper searching for longer SJEPs */
6 else if (T.items[i]’s subtree N is not empty) ^ (T.D1counts[i] ≥ |D1|.ζ / T.D2counts[i] ≥ |D2| .ζ) then call mine-tree
(N,b);
 /* Finish mining the subtree and free its memory */
 /* This allows mining of large data sets*/
 7 delete T:items[i]’s subtree;
End

4 EPs and attributes in Taxonomies (Concept hierarchies)

A concept hierarchy for a given numerical attribute defines a discretization of the attribute. Concept hierarchies can
be used to reduce the data by collecting and replacing low-level concepts (such as numerical values for the attribute
age or salary (figure (6)) with higher-level concepts (such as youth, middle-aged, or senior) or salary ranges [3].

Fig (6) Examples of taxonomic hierarchies (Numeric attribute)

Categorical data are discrete data. Categorical attributes have a finite (but possibly large) number of distinct values,
with no ordering among the values. Examples include geographic location and job category.

A geographic hierarchy can be defined by specifying the total ordering among these attributes at the schema level,
such as street < city < province or state < country seeFigure(7).

Fig (7) hierarchy in categorical attributes

4.1 Problem Description

Emerging patterns have only been capable of representing contrasts between datasets whose attributes are non-
hierarchical. The patterns discovered have been at the lowest level of representation. This can lead to redundancy that
discovers the same patterns, such as attribute values that are distinct, e.g., cities that are all part of the same state.
This creates two problems.

First, the support of each such pattern in isolation will be less than the support of the group of related patterns.

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 26-36, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

46

Second, a large group of similar patterns is more difficult to understand and verify, compared to a single, more general
pattern. So our motivation has been to illustrate a previous algorithm to mine generalized emerging patterns in [13],
which has the capability of dealing with data sets whose attribute values are associated with taxonomies.

But (Fan et al. [11]) show that SJEPs are better than EPs; more accurate, 10 times faster, and have stronger
differentiating power between classes, and more resistant to noise.

A critical challenge in this problem is that attribute hierarchies greatly expand the size of the space of potential EPs
that could be mined. But our proposal shows that algorithm no 1 which is used to divide the dataset into small projected
datasets minimizes the problem when this proposal takes each group of SJEPs (MSJEPs) generated from each SCP-
tree and applies the same technique used for discovering the generalized emerging patterns.

4.2 Generalized EPs and generalized MSJEPs

Given a dataset D, we aim to mine the most general set of generalized EPs which contains items from any level of the
taxonomies and have infinite growth rates from one class to all others. Therefore, all legal generalized EPs must have
the following properties:

(1) At least one of its specializations must have non-zero support in the positive class.
 (2) None of its specializations should have non-zero support in the negative class.

This is according to EPs characteristics.

This work proposes a new kind of pattern called generalized MSJEPs. It has the same two conditions above but also
must satisfy the minimum support threshold in the positive data set. MSJEP is then more accurate, faster and noise
resistant than EP.

4.3 Algorithm G Tree
Let us motivate the algorithm by first considering a brute-force technique used to mine generalized EPs. Our proposal
permits the brute-force approach to take each MSJEP instead of EPs from the collection and enumerate all possible
generalized patterns using ancestors of the items MSJEP contains (higher level in CP-Tree). For each generalized
pattern, check through the negative instances to see whether it is supported in the negative class and delete it if it has
non-zero support in the negative class, and check also the support constraint (ζ) in the positive class. All generalized
patterns that do not have support in the negative class are considered as legal generalized MSJEPs. Before each
generalized MSJEP is added to the final set, it must be checked against the MSJEPs that are already in the set to make
sure that it is removed if it is a specialization of any existing patterns or the specializations of it are removed if it is
considered more general than any existing patterns. The enumeration of generalized patterns is now achieved through
building a set enumeration tree for each input non-hierarchical MSJEP.

4.4 G Tree Construction

G Tree is a set-enumeration tree constructed from a set of patterns resulting from the depth-first search in the CP-tree.
The tree represents all possible generalized patterns that can be enumerated from the leaf-level MSJEPs.

The tree has a root, which is empty and doesn’t have any value. The height of the tree is equal to the length of the
MSJEP. Each path from the root to the leaf represents one possible generalized pattern.

There is an imposed ordering on the tree, such as paths from left to right and they are patterns from the most specific
(ex. state) to the most general (ex. country). Before constructing the tree, this proposal first divides the set of non-
hierarchical MSJEPs into some groups (G1 to Gk) according to the combination of attributes in each pattern, such that
each group should only contain patterns with items from the same combination of attributes. For each group, this
proposal then constructs one tree for all MSJEPs in that group. For example, consider a dataset where {a1, b2} and
{a1, b3} are both non hierarchical MSJEPs.

Each of these MSJEPs will result in the same generalization tree. Consequently, these patterns should be grouped, so
that a single tree can be constructed for both patterns, and then pruning on the negative patterns need to occur only
once to achieve the support constraint.

The Proposed algorithm for constructing a tree is outlined as follows In figure (8) we see an example of attributes
in the hierarchy that we make G tree to implement them

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 37-53, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

47

Given E = {input non-hierarchical minimal MSJEPs}
for each group of EPs Gk Î L do
Tree r ← buildTree (Gk)
BuildTree (group G)
Initialize empty tree with root node r
For each EP Pj Î G do
InsertPattern (r, pj , 1)
return tree r;
Let p[l] denote the Lth item in pattern p
e.g., if p = (a1, b1), p [1] = a1, p [2] = b1
assign ordering of values in attribute l and their generalizations, most specific to most general

insertPattern (node n, pattern p, l)
For each item i Î p[l] Ç generalizations (p[l])
If (iÏ n.children) then
Insert i in n.children according to the order of attribute l
Find node ni Î n.children that corresponds to item i
InsertPattern (ni, p, ++l).

Fig (8) example to attributes in the hierarchy

4.5 The proposed Pruning from G Tree

In figure (9) we see an example for G Tree building based on the example in Figure 8. Note that underlined nodes
correspond to nodes that are pruned in the discussion of this section.

Fig (9) G Tree building based on the example in Figure 8 Note that underlined nodes correspond to nodes

that are pruned
Pruning invalid SJEPs from the tree requires testing all negative instances one by one and positive instances for the
support ratio

Pruning algorithm

For each pattern p from the negative dataset
PruneTree (root r, p, 1)

PruneTree (node n, pattern p)
For each item i ∈ pattern p
If (attribute type of item i ¹ attribute type of n.children) then
skip to next item i
Else
for each node nc ∈ nc.children

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 26-36, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

48

If (nc.children ¹ null) then
 pruneTree (nc, p)
else delete nc from nc.children

 For example; in Figure 9, once {A2, B1} has been extracted, {A2, b3} is redundant, since b3 is a specialization of
B1.
 Finally, the set of generalized EPs obtained from each group of input leaf-level EPs are aggregated together, in order
to ensure that only the most general EPs are kept.

5 EXPERIMENTAL RESULTS

All experiments were conducted on a Dell Inspiron 6400 (Core Duo 1.86 GHz, 2Gbyte RAM) running on Windows
XP Professional.

5.1 EXPERIMENT 1

Experimental results are given to compare the accuracy of the new classifier “MSJEP” with the other five classifiers
of “the-state-of-art” classifiers on some databases from the UCI machine repository [14].

Table 2 describes the data sets used in the experiments in terms of the number of instances, attributes, and classes.
Data sets were acquired from the UCI Machine Learning repository [14]. Each data set characteristic is explored from
WEKA 3.6.1 for windows [15]. Explorer utility in WEKA gives the description and visualized charts for each attribute
of the data set. Comparison between datasets characteristics is listed in the table (2)

Note: the last attribute in each dataset is the class used usually in classification.

5.1.1 Accuracy Comparison

Table 3 compares the accuracy of the MSJEP Classifier with five other classifiers. The five classifiers are Naive
Bayes, C4.5, bagged C4.5, boosted C4.5, and Random Forest. All these classifiers are different examples to the state-
of-the-art classifiers (Results are obtained using the WEKA implementation).

Results are reported as the mean classification performance over the 10 folds. The accuracy was obtained by using
the methodology of stratified 10 fold cross-validation (CV-10).
10-fold Cross-Validation c/cs.:
• Break data into 10 sets of size n/10.
• Train on 9 datasets and test on 1.
Repeat 10 times and take a mean accuracy

Table (2) Description of Data Set
N
o Dataset #

Instances
#Attribu

tes #Classes

1 Anneal 898 39 5
2 Audiology 226 70 24
3 Autos 205 26 6
4 Balance-

Scale
625 5 3

5 Breast-
cancer

286 10 2

6 Wisconsin-
breast cancer

609 10 2

7 Horse-colic 368 23 2
8 Horse-

colic.org
368 28 2

9 Credit rating 690 16 2
10 German

credit
1000 21 2

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 37-53, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

49

11 Pima
diabetes

768 9 2

12 Glass 214 10 6
13 Cleveland 14

heart
diseases

303 14 2

14 Hungarian
14 heart
diseases

294 14 2

15 Heart statlog 270 14 2
16 Hepatitis 155 20 2
17 Hypothyroid 3772 30 4
18 Ionosphere 351 35 2
19 Iris 150 5 3
20 Kr Vs. Kp 3196 37 2
21 Labor 57 17 2
22 Letter 20000 17 26
23 Lymphograp

hy
148 19 4

24 Mushroom 8124 23 2
25 Primary-

tumor
339 18 21

26 Segment 2310 20 7
27 Sick 3772 30 2
28 Sonar 208 61 2
29 Soybean 683 36 19
30 Splice 3190 62 3
31 Vehicle 846 19 4
32 Vote 435 17 2
33 Vowel 990 14 11
34 Wave form 5000 41 3
35 Zoo 101 18 7

The experimental results show that we retain the accuracy of the SJEP classifier that has been proposed in [11] but
with a kind of memory management because of the proposed technique.

So, the proposed technique solves the problem of memory consumption in SJEP without affecting its superior
accuracy.

.
Table (3) Accuracy comparison

Dataset Navie Bayes C 4.5 Bagging Boosted Random

 Forest

M-SJEP

Anneal 95.95 98.57 98.76 83.63 99.41 95.00
Anneal.Orig 92.59 92.35 93.73 83.63 95.48 95.00
Audiology 76.79 77.26 76.00 46.46 77.08 79.32
Autos 67.26 81.77 66.55 44.90 81.80 89.02
Balance-Scale 71.56 77.82 83.37 71.77 80.11 87.12
Breast-cancer 72.59 74.28 69.10 71.62 69.70 96.96
 w breast cancer 97.20 95.01 95.52 95.14 95.81 98.45
Horse-colic 80.98 85.16 84.85 82.53 85.02 84.17
Horse-colic.org 74.40 66.31 67.69 83.59 70.14 67.01
Credit rating 86.22 85.57 85.67 84.80 85.07 93.17

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 26-36, 2019

50

5.1.2 Ranking

From the accuracy comparison listed above, we will compare between classifiers in terms of datasets each classifier
won and we will arrange
them descending from the strongest to the weakest in the table (4). From table (4) this proposal illustrates MSJEP is
more accurate than the other state-of-the-art classifiers, MSJEP wins 18 from 35, it is noted that a classifier wins more
than the whole other classifiers win.

Table (4) Classifiers Ranking

Classifier No. of datasets
Naive Bayes 4
C 4.5 5
Bagging 3
Boosted 3
Random Forest 6
MSJEPs 18

The second accurate classifier is Random Forest, the third C 4.5, the fourth Naive Bayes, the fifth and the sixth
(weakest) are Bagging and Boosted. Results in Tables 3 and 4 are represented inFigurenos. 10 and 11 respectively

5.2 EXPERIMENT 2

German credit 74.97 71.25 74.13 71.27 73.78 74.00
Pima diabetes 75.25 74.49 75.66 74.92 74.44 78.95
Glass 71.56 67.63 72.48 44.89 76.16 77.40
Cleveland 14 heart
diseases

83.34 76.94 80.16 83.47 80.31 82.96

Hungarian 14
heart diseases

84.57 80.22 79.94 81.41 79.49 86.12

Heart statlog 82.56 78.15 80.56 81.59 80.37 86.15
Hepatitis 84.18 79.22 82.00 81.37 82.47 83.33
Hypothyroid 98.54 99.54 99.55 92.97 99.19 98.07
Ionosphere 89.54 89.74 91.20 90.89 93.11 93.53
Iris 93.20 94.73 94.20 95.40 94.27 93.10
Kr Vs. Kp 87.81 99.44 99.05 93.84 98.86 99.22
Labor 90.60 78.60 83.63 88.37 86.90 82.00
Letter 64.07 88.03 90.07 7.09 92.45 86.81
Lymphography 83.13 75.84 77.37 75.44 80.74 79.03
Mushroom 95.76 100.00 100.00 96.29 100.00 100.00
Primary-tumor 49.71 41.39 43.90 28.91 42.16 66.02
Segment 80.17 96.79 96.58 28.52 97.69 96.04
Sick 92.75 98.72 98.75 97.12 98.23 96.83
Sonar 67.71 73.61 76.11 75.65 81.07 85.10
Soybean 92.94 91.78 87.00 27.96 92.16 93.06
Splice 95.41 94.03 96.07 86.53 97.04 99.04
Vehicle 44.68 72.28 73.25 39.81 74.08 71.36
Vote 90.02 96.57 95.70 95.43 95.95 94.76
Vowel 62.90 80.20 87.01 17.47 95.75 92.34
Wave form 80.01 75.25 81.84 66.78 81.86 83.30
Zoo 94.97 92.61 42.59 60.43 90.98 95.67

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 37-53, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

51

Experiments are conducted to compare the performance of the G.EP algorithm and G.MSJEP on various data sets
with different taxonomies structures. Comparison between G.EP and G.MSJEP in terms of the input stage, output
stage, and execution time are presented in table (5).
The data sets used were acquired from the UCI Machine Learning repository. Since none of the UCI data sets have
taxonomy structures defined on their attribute values, we manually added three-level hierarchies for numerical
attributes by aggregating values into increasing, non-overlapping ranges [14]

Fig (10) Accuracy comparison between classifiers against each data set

Fig (11) No of data sets each classifier won in the experiment

MSJEPsRandom ForestBoostedBaggingC 4.5Navie Bayes

Class ifier

20.00

15.00

10.00

5.00

0.00

N
o.

 o
f

da
ta

se
ts

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 26-36, 2019

52

Fig (12) No. of EPS against MSJEPs in the input stage

Experimental results show that it is better to use MSJEPs instead of EPs. This will minimize the number of input
patterns used to generate generalized patterns to handle attributes in taxonomyFigure(12).

Also, Experiment results show that the number of the generalized MSJEPs is less than the number of generalized EPs
produced from the G tree algorithm that scales well with attributes that are in a hierarchy and also this technique
presents a kind of memory management.Figure(13)

Table (5) Experimental results for the number of patterns and execution time of EPs & MSJEPs classifiers

IrisHeartGlassDiabetesCredit aBreast wBreast cAutos

Dataset

5000.00

4000.00

3000.00

2000.00

1000.00

0.00
No

. o
f P

att
ern

s

Input (No. of MSJEPs)
Input (No. of EPs)

 input output execution time

(sec)

D
at

as
et

N
o

A
tt

N
o.

hi

er
ar

ch
ic

a
l

A
ttr

ib
ut

es

N
o.

EP

s

N
o

G
ro

up
s

N
o.

M

SJ
EP

N
o.

G

.E
P

N
o.

G

.M
SJ

EP

G
 T

re
e

Fo
r

EP

G
 T

re
e

Fo
r

M
SJ

EP

Autos 25 15 662 658 245 675 250 2.8 1.04
Breast cancer 9 3 949 302 667 933 695 0.4 0.29
Breast w

9 9 781 243 289 860 318 2.5 0.92

Credit a

15 6 3015 1375 2754 2982 2714 4.6 4.19

Diabetes

8 8 1015 224 292 1038 299 3.9 1.12

Glass

9 9 84 63 31 96 36 0.3 0.11

Heart

13 6 4032 1792 544 4016 542 5.7 0.77

Ionosphere

34 20 126330 79060 5638 125434 55993 1512 67.42

Iris

4 4 9 4 4 6 3 0.03 0.02

Vehicle 18 18 34463 14253 4201 36902 4498 331.3 40.4

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 26-36, 2019

52

Fig (13) No. of G.EPS against G.MSJEPs in the output stage

Finally, Experiment results show that the time used to generate G.MSJEPs is less than the time used to generate G.EPs.
So this technique presents a kind of time managementFigure(14).

Fig (14) Execution time of G.EPS and G.MSJEPs.

6 CONCLUSION

This proposal proposes a new technique to solve the weakness point of the SJEP classifier in handling large datasets
without affecting its superior accuracy. The proposed MSJEP and SJEP classifiers are 10 times faster than previous
generations but MSJEP is better at dealing with large datasets by solving the problem of memory consumption in
SJEP.

The algorithm which is used for SJEPs mining is a memory-based model. So it’s unrealistic to handle large datasets
and to build a large CP-tree for a huge dataset. This proposal proposes a technique to partition datasets into subsets,
each one is implemented by a small tree and the whole set of these trees is called SCP-trees.
 SCP trees can be constructed and mined consequently; each tree gives a set of MSJEPs. The aggregation process
to all sets of MSJEPs gives the same set of SJEPs. We retain with its accuracy and speed and at the same time overcome
the problem of memory size shortage. These trees can also be distributed over many hosts to manage time
This proposal illustrates the weakness of EPs to deal with attributes associated with hierarchies and proposes to use
MSJEPs instead of EPs. This proposal names the new generation G.MSJEPs. Also, this classifier generates fewer
patterns presenting a kind of memory management and takes less time in the generation process presenting also a kind
of time management.

IrisHeartGlassDiabetesCredit aBreast wBreast cAutos

Dataset

5000.00

4000.00

3000.00

2000.00

1000.00

0.00

No
. o

f P
atte

rns

Output (No. of G.
MSJEPs)

Output (No. of G.EPs)

IrisHeartGlassDiabetesCredit aBreast wBreast cAutos

Dataset

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Ex
ec

ut
io

n
Ti

m
e

execution time for
MSJEPs

execution time for EPs

Journal of Intelligent Systems and Internet of Things (JISIoT) Vol. 0, No. 2, PP. 37-53, 2019

DOI: https://doi.org/10.54216/JISIoT.000201

53

References:

[1] Kotagiri Ramamohanarao, James Bailey and Hongjian Fan: “Efficient Mining of Contrast Patterns and Their
Applications to Classification”. IEEE Transactions on Knowledge and Data Engineering, submitted 2007.

[2] T. Mitchell: “Machine Learning”. McGraw Hill, 1997.

[3] J. Han and M. Kamber: “Data Mining: Concepts and Techniques”. Morgan Kaufmann Publishers, 2000.

[4] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth: “From Data Mining to Knowledge Discovery in Databases”.
AI Magazine, vol. 17, pp. 37-54, 1996.

[5] R. Brachman, T. Khabaza, W. Kloesgen, G. Piatetsky-Shapiro, and E. Simoudis: “Mining Business Databases”
Comm. ACM, vol. 39, no. 11, pp. 42-48, 1996.

[6] Gregory Piatetsky-Shapiro and William J. Frawley: “Knowledge Discovery in Databases”. AAAI/MIT Press,
Cambridge, MA, 1991.

[7] J. Li, K. Ramamohanarao, and G. Dong: “The Space of Jumping Emerging Patterns and Its Incremental
Maintenance Algorithms”. Proc. 17th Int’l Conf. Machine Learning (ICML ’00), pp. 551-558, 2000.

[8] J. Li, T. Manoukian, G. Dong, and K. Ramamohanarao: “Incremental Maintenance on the Border of the Space of
Emerging Patterns”. Data Mining and Knowledge Discovery, vol. 9, no. 1, pp. 89-116, 2004.

[9] J.R. Quinlan: “C4.5: Programs for Machine Learning”. San Mateo, Calif.: Morgan Kaufmann, 1993.

[10] B. Liu, W. Hsu, and Y. Ma: “Integrating Classification and Association Rule Mining”. Proc. Fourth Int’l Conf.
Knowledge Discovery and Data Mining (KDD-98), pp. 80-86, 1998.

[11]Hongjian Fan and Kotagiri Ramamohanarao: “Fast discovery and the generalization of strong jumping emerging
patterns for building compact and accurate classifiers”. IEEE Transactions on Knowledge and Data Engineering, June
2006, vol.18 pp. 721-737.

[12] J. Li, G. Dong, and K. Ramamohanarao: “Making Use of the Most Expressive Jumping Emerging Patterns for
Classification”. Knowledge Information Systems, vol. 3, no. 2, pp. 131-145, 2001.

[13] Xiaoyuan Qian, James Bailey, and Christopher Leckie: Mining Generalized Emerging Patterns. Australian
Conference on Artificial Intelligence 2006: 295-304.

[14] C.L. Blake and C.J. Merz, “UCI Repository of Machine Learning Databases,” 1998,
http://www.ics.uci.edu/~mlearn/MLRepository.html.
[15] WEKA, data mining tool for researches at the University of Waikato, New Zealand
http://www.cs.waikato.ac.nz/ml/weka/ build 3.6.1 2009.

