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Abstract 
 
Modified Strong Jumping Emerging Patterns (MSJEPs) are those itemsets whose support increases from zero in 
one data set to non-zero in the other dataset with support constraints greater than the minimum support threshold 
(ζ). The support constraint of MSJEP removes potentially less useful JEPs while retaining those with high 
discriminating power. Contrast Pattern (CP)-tree-based discovery algorithm used for SJEP mining is a main-
memory-based method. When the data set is large, it is unrealistic to assume that the CP-tree can fit in the main 
memory. The main idea to handle this problem is to first partition the data set into a set of projected data sets 
and then for each projected data set, we construct and mine its corresponding CP-tree. Trees of the projected 
data sets are called Separated Contrast Pattern Tree “SCP-trees”  and Patterns generated from it are Called 
MSJEPs” Modified Strong Jumping Emerging Patterns”.  Our proposal also investigates the weakness of 
emerging patterns in handling attributes whose values are associated with taxonomies and proposes using an 
MSJEP classifier to achieve better accuracy, better speed, and also handling attributes in taxonomy. 
 
Keywords: Data mining, emerging patterns, classification, machine learning, mining methods, and algorithms 
 
1. Introduction 
 
Data mining is naming to the branch of science interested in extracting valuable knowledge from useless tons of data 
so it’s like the extraction of gold from the sand which is called gold mining, so the right name to the data mining 
should be knowledge mining or knowledge discovery in database (KDD). But the first name is the most popular and 
we will use it interchangeably with KDD. 
 
Data mining can be used in important business decision-making or business strategies. Its applications are wide-
ranging, including medicine, banking, engineering, and so many others. Data mining aims to discover interesting or 
useful patterns and relationships in a large volume of data. Major tasks in data mining include concept description, 
association, classification, prediction, clustering, evolution analysis, and outlier analysis [1]. 
 
CLASSIFICATION is one of the major operations in data mining and it’s the core of this work. Classification has 
also been studied on a wide range in statistics, machine learning, neural networks, and expert systems over decades 
[2, 3] and has been successfully applied to a wide range of application areas, such as scientific experiments, medical 
diagnosis, weather prediction, credit approval, customer segmentation, target marketing, and fraud detection [4, 5]. 
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Classification based on patterns is a relatively new trend. “A Pattern is an expression describing a subset of the data” 
[6] 
 
A Strong Jumping Emerging Pattern (SJEP) is defined as an item set whose support increases suddenly from zero 
in one class of data to nonzero in another class, the ratio of support-increase being infinite like previous classifiers 
called Emerging patterns (EPs) and Jumping Emerging Pattern (JEP) [7, 8] but also must satisfy the condition of 
minimum support threshold in the positive dataset which makes this classifier more accurate. SJEPs represent 
knowledge that discriminates between the different classes of a dataset. This classifier achieves higher accuracy than 
other state-of-the-art classifiers such as C4.5 [9] and CBA [10]. The SJEP-Classifier suffers from some weaknesses. 
The classifier depends on CP-Tree to mine SJEPs and the technique is memory-based. Hence, in large datasets, it’s 
unrealistic to build such a tree. This work tries to solve the problem by proposing an algorithm as we cut this tree into 
equivalent small CP-Trees and we call these trees “Separated CP-Trees” or “Equivalent CP-Trees” and the mined 
patterns from SCP-Trees are called Modified Strong Jumping Emerging Patterns (MSJEPs). 
 This work also investigates the weakness of emerging patterns in handling attributes whose values are associated with 
taxonomies and proposes using an MSJEP classifier to achieve better accuracy, better speed, and also handling 
attributes in taxonomy. 
 
In Section 2: The progression of emerging patterns is defined. 
 
In Section 3: The new technique for generating MSJEPs is proposed. 
 
InSection4: A new technique for generating generalized EP with better accuracy and how to handle attributes in 
taxonomy is presented. 
 
In section 5: Experimental results are given to compare the accuracy of the proposed classifier “MSJEP” with the 
other five classifiers of “the-state-of-art” classifiers on some databases from the UCI machine repository [14]. The 
experimental results show that our proposed classifier is more accurate than other classifiers. Other experimental 
results are given to compare the number of EPs, SJEPs, Generalized EPs, and Generalized SJEPs used in the mining 
process and also the execution time of the last two types.  
 
In section 6: our proposal gives the conclusion and the future work. 
 
 
2. Emerging Patterns Family 
 
Suppose that a dataset D is defined upon a set of attributes    {B1, B2,…, Bn}. For each attribute Bi, this set of permitted 
values is called the domain of that attribute, denoted as domain (Bi). Attributes can be either categorical or continuous.  
 
 For a continuous attribute, our proposal assumes that its value range is discretized into intervals. This work calls each 
(attribute, categorical-value) or (attribute, continuous-interval) pair an item. (Sex, male) and (age, [18, 60]) are two 
examples of items.  
 
     By aggregating all the domain categorical-values and continuous-intervals across all attributes, the proposal obtains 
the set of all items in D, denoted as I, where I = {domain (B1) Ç domain (B2)…. domain (Bn)}. All items are mapped 
from I including (attribute, categorical-value) and (attribute, continuous-interval) pairs to consecutive positive 
integers, i.e., use 1 to represent the first item in I, 2 to the second item, and so on. By doing this, the original dataset 
can be treated as a transaction database [1]. 
           A set X of items is also called an item set, which is defined as a subset of I. It is assuming that any instance S 
contains an itemset X, if X Í S. The support of an itemset X in a dataset D, suppD(X), is countD(X)=|D|, where 
countD(X) is the number of instances in D containing X[11].  

2.1 Emerging Patterns (EPs) 
 
Emerging Patterns are concerned with two classes of data. This work defines the growth rate of an item set concerning 
both classes as follows: 
 
Definition 1 Given two different classes of datasets D1 and D2, the growth rate of an item set X from D1 to D2 is 
defined as GrowthRate(X) = GR(X) = 
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EPs are those item sets with large growth rates from D1 to D2. 

2.2 Jumping Emerging Patterns (JEPs) 

Suppose D contains two different classes: D1 and D2. 

Definition 2: (Li et al. [7]). A Jumping Emerging Pattern (JEP):  

From D1 to D2 is an item set X that satisfies: suppD1 (X) = 0 and suppD2 (X) > 0. 

2.3 Strong Jumping Emerging Patterns (SJEPs) 

Definition 3: (Fan et al. [11]) Given ζ > 0 as a minimum support threshold, a Strong Jumping Emerging Pattern 
(SJEP) from D1 to D2 is an item set X that satisfies the following conditions: 
1. SuppD1 (X) = 0 and SuppD2 (X) ≥ ζ and 
2. Any proper subset of X does not satisfy condition 1. 
 
  A negative dataset means the absence of (X) in (D) with respect to (X). An SJEP X from D1 to D2 is simply called 
an SJEP of D2 and suppD2 (X) is called the support of the SJEP. In this example, D2 is called the positive dataset, and 
D1 is called the negative dataset). 

Like JEPs [12], SJEP also has strong predictive power due to its infinite growth rates. Unlike JEPs, SJEP requires that 
the support of SJEPs in D2 (positive dataset) be above the minimum support threshold ζ (condition 1).  

This ensures that an SJEP should cover at least a certain number of instances in a training data set. Condition 2 shows 
that any proper subset of an SJEP is not an SJEP, which means SJEP is the shortest JEP satisfying the support 
constraint. Consider that JEPs are actually item sets. A shorter JEP means fewer items (attributes).  If this proposal 
can use fewer attributes to distinguish two classes, adding more attributes will not contribute to classification and will 
add more noise to the classification process, so we are interested in the shortest pattern to satisfy our definition and 
neglect the superset. 

 
3. The Proposed classifier MSJEPs 
 
The proposed MSJEP classifier retains the high accuracy of the SJEP classifier but tries to handle its weak point in 
memory management. 
The SJEP classifier constructs one CP-tree for the whole data set [11]. Since this technique is memory-based; it’s 
unrealistic that large data sets can fit the main memory. 
So this proposal proposes a new classifier technique in which the CP-tree that has been proposed in [11] will be 
partitioned into equivalent small CP-trees to solve the problem of memory consumption.  
Figure 1 shows the steps representing the proposed classifier 
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Fig (1) Hierarchy implementing mining processes for generating MSJEPs & SJEPs using 4 algorithms                                                                                                                                                             
 
3.1.1 Proposed Separated Contrast Pattern Trees (SCP-Tree): 
This section proposes a technique for constructing a CP-tree in which the data set is partitioned into small data sets, 
each of them is represented by a small SCP-tree and this tree can be treated as the original CP-tree to generate SJEPs 
but here, each SCP-tree will generate a subset of SJEPs called MSJEPs holding the same characteristics.  
 After each SCP tree has generated a set of MSJEPs, we will free the memory from this tree and store the generated 
patterns.  This operation will be repeated n times where n is equal to the number of SCP-trees. So this technique 
proposes a kind of memory management to solve the problem of the memory consumption that SJEP suffers from. 
The following algorithm is proposed for this purpose.  
 
 
 
Algorithm 1 (proposed algorithm): 
 
1- Let D=D1 Ç D2 
2- Scan D once. Collect the set of items in D 
(Along with their support ratios)                    support ratio for each item ® [A]. 
3- [B] ¬ [A] sorted descending according to its support ratio. 
4- If two or more items in [B] have the same minimum support ratio, we will sort them in lexicographical order. 
5- If an item appears as a singleton set, we will reorder [B] putting this item preceding the others discarding 
lexicographical order. 
6- Splitting dataset according to the first element in each pattern. 
 
Example 1 
 In the data set shown in Table 1 [11]. 
 
 
 
 
 
 

(Algorithm 1) 
Proposed algorithm for CP-tree separation to SCP-trees 

(Algorithm2)    
CP-tree construction    

(Algorithm3) 
Algorithm for discovering SJEPs & MSJEPS 

(Algorithm 4)  
Algorithm for mine SJEPs & MSJEPs 

Set of SJEPs 
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Table (1) An Example Data Set with Two Classes 
 

ID 
 

Class 
Label 

Instances 
(Itemsets) 

Item sets 
Ordered by≺ 

1 D1 {a,c,d,e} [e.a.c.d] 
2 D1 {a} [a] 
3 D1 {b,e} [e,b] 
4 D1 {b,c,d,e} [e,b,c,d] 
5 D2 {a,b} [a,b] 
6 D2 {c,e} [e,c] 
7 D2 {a,b,c,d} [a,b,c,d] 
8 D2 {d,e} [e,d] 

 
Instead of constructing a global CP-tree, this proposal performs the following. Starting from item e, the set of instances 
that contain e can be collected into an e-projected data set: three D1 instances {e, a, c, d}, {e, b}, and {e, b, c, d} two 
D2 instances {e, c} and {e, b}. The CP-tree for this projected data set is the same as the subtree R.e (means node of 
item e in the root) in Figure  2.  
Similarly, the a-projected data set contains two D1 instances ({a, c, d} and {a}) and two D2 instances ({a, b} and {a, 
b, c, d}).  
 
This approach will split our dataset into small projected data sets; each will be used to build a separate CP-tree. As 
shown inFigure(2) this proposal presents an algorithm that separates the complete CP-tree inFigure(3) into two trees 
as inFigure(2). Each tree can be used separately to mine a set of SJEPs (Strong Jumping Emerging Patterns) called 
MSJEPs (Modified Strong Jumping Emerging Patterns) and then free the memory and use the other tree for mining 
another set of MSJEPs.  The aggregation of these sets of MSJEPs gives the same original set of SJEPs but with a 
kind of memory management, also this operation can be done distributed on several machines for better performance. 
Thus, our approach has more scalability due to its adaptable performance with resources and time. 
 

 
 

Figure (2) Separating the original CP-tree to a set of SCP-tree according to the new algorithm 
 

3.1.2 Support Ratio of Individual Item 
 
Assume D contains D1 and D2. Let I = {i1, i2,…, in) be the set of all items appearing in D. Note that, for an item  iÎ 
I, this proposal has a singleton item set {i} Ì I. 
 
Definition 4: (Fan et al. [11]) Given ζ > 0 as a minimum support threshold, the support ratio of item i between D1 
and D2, denoted as SupportRatio(i), is defined as 
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The larger the support ratio of an item, the sharper discriminating power can this item provide.  
 
Based on the definition of the support ratio (Definition 3), this proposal defines the preceding order on I. Let i, j Î I 
will be two items and i ≺ j, 
 
• . If Support Ratio(i) > Support Ratio (j)  or 
• . If Support Ratio (i) = Support Ratio (j) and i < j (in lexicographical order). 
 
3.2.1 The Contrast Pattern Tree (CP-tree): 
 
The CP-tree data structure (an ordered multi-way tree structure) taken from the FP-tree [11], is used for EP mining 
for the first time [10]. A CP-tree registers the counts in both the positive and negative classes. An example of a CP-
tree is illustrated in Figure (3). 
  
Because every training instance is sorted by its support ratio according to the order “≺” between both classes when 
inserting into the CP-tree, items with a high ratio, which mostly generated as SJEP located closer to the root. The CP-
tree mapping to an item set is a one-to-one mapping. Using the predefined order ≺, this proposal can produce the 
complete set of paths (itemsets) systematically through depth-first searches of the CP-tree.   The CP-tree-based 
algorithm searches the CP-tree depth-first from the root and performs a powerful technique, node merge, along with 
the search.  
The CP-tree-based algorithm can discover SJEPs of both D1 and D2 from the CP-tree at the same time, a “single-scan” 
algorithm not like the FP-growth algorithm that performs pattern mining from leaf to root and must create many 
conditional FP-trees during the mining process [11]. 
 

 
Fig (3) The CP-tree of the example data set 

 
3.2.2 The Construction of the Contrast Pattern Tree: 
 
In this section, our work begins to show the first step of the mining process by building CP-tree from the dataset for 
both classes that will be used for the mining process. 
 
Let D=D1ÇD2 be the training data set containing two classes and ζ be the minimum support threshold. Based on its 
definition, the CP-tree of input D is constructed using the following procedure: [11] 
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1. Scan D once. Collect the set of items (along with their support ratios) whose support ratios are more than zero, 
denoted as J. Sort J in support ratio-descending order, denoted as L. 
2. Create the root of the CP-tree, R, with R.itemNumber = 0. For each instance inst in D do: 
     
Select from inst the items that are contained in L and sort them according to the order of L. Let the sorted item list in 
inst be [p,P], where p is the first element and P is the remaining list. Call the function insert tree ([p,P],R) (Algorithm 
2). 
 
Algorithm 2: [11] 
 
 insert tree ([p,P],T)  (function called by CP-tree construction) 
1 search T for T.items [i] = p; 
2 if  T.items[i] is not found then 
3 Insert p at the appropriate place in T obeying the ≺order, denoted as T:items[i]; 
4 Let T.D1counts [i] = T.D2counts[i] = 0; 
5  Increment T.itemNumber by 1; 
6 switch the class label of the instance [p,P] do 
7 Case class D1 increment T.D1counts[i] by 1; 
8 Case class D2 increment T.D2counts[i] by 1;           
   end 
9 if P is nonempty then 
10 if T.items[i]’s subtree is empty then create a new node N with N.itemNumber =0 as T.items[i]’s subtree ; 
11 Let N be T.items[i]’s subtree, call insert tree (P,N); 
    end 

 
Fig (4) Constructing the CP-tree step by step: from an empty tree to the full tree. 

 
3.3 USING THE CONTRAST PATTERN TREE TO DISCOVER SJEPS 

After building SCP trees in section 3.2, the mining process is illustrated in this section. The mining process is explained 
step by step using the following example. Let the minimum count (in absolute occurrence) be 2. The initial CP-tree 
of the example data set is shown inFigure  5a, where R denotes its root and N denotes R.e’s subtree.  

First perform a depth-first search of the CP-tree for SJEPs, which is equivalent to  the exploration of the pattern 
space:{e}, {e, a}, {e, a, c}, {e, a, c, d}, {e, b}, {e, b, c }, {e, b, c, d}, {e, c}, {e, d}, {a}, {a, b}, {a, b, c}, and {a, b, c, 
d}. However, only the counts of {e}, {e, a}, {e, a, c}, and {e, a, c, d} are correctly registered in the tree. Note that 
there is an “a” (1: 0) in the node R.e. So, we need to merge R.e’s subtree with R itself to adjust the counts of a in R. 
For the same reason, in the sub data set containing “e”, the counts of “b” in the node R.e may not be correct. By 
merging nodes along with the depth-first search, we can make sure the counts encountered are correct for determining 
SJEPs. Basically, the function merges all the nodes of “N” into corresponding sections of “R”. 
 
The process of merging N with R is shown inFigure  5 and the details of the merging operation are presented in 
algorithm 3 to adjust the count of the remaining items in the CP-tree [11].  
 
Note that: There is an a (1:0) in the node R.e. So, we need to merge R.e’s subtree with R itself to adjust the counts of 
a in R.  
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Algorithm 3: [11] 

merge_tree (T1; T2) (Function called in mine_tree(T, µ)) 

/*given two sub trees of a CP-tree, T1 and T2, the function merges T1’s nodes into T2. T2 is updated (including new-
node generation and existing-node changes, but no nodes deletion), while T1 remains unchanged */ 

1 foreach T1.items[i] do 
2 search T2 for T2.items[j] = T1.items[i]; 
3 if T2.items[j] found then 
4 T2.D1counts[j] =T2.D1counts[j] + T1.D1counts[i]; 
5 T2.D2counts[j] = T2.D2counts[j] + T1.D2counts[i]; 
else 
6 insert T1.items[i] with both its D1 and D2 counts and child (T1.childs[i]) at the appropriate place in T2 obeying the 
order ≺ , denoted as T2.items[j]; 
7 increment T2.itemNumber by 1; 
8 if T1.items[i]’s subtree, M is not empty then 
9 if T2.items[j]’s subtree is empty then 
10 create a new node N with N.itemNumber = 0 as T2.items[j]’s subtree; 
       else N ←T2.items[j]’s subtree; 
11 call merge tree (M,N); 
     end 
end 

 
Fig (5) (a) The original CP-tree and (b) the CP-tree after merge (N, R) 

3.4 Algorithms for Mining SJEPs 
 
The mining is initiated by calling the recursive function mine-tree() (Algorithm 4) with two arguments: the root of 
CP-tree R and an empty item set. The item set µ, which is initially empty, will grow one item at a time when mine-
tree() is called recursively. After completing the search of the CP-tree, select only those minimal patterns by filtering 
out those that are supersets of others. The remaining minimal ones are SJEPs since they satisfy the minimum support 
threshold ζ. 
Algorithm 4: [11] 
 mine tree (T,µ) (Function called for mining SJEPs) 
/* T is a subtree of the CP-tree and µ is an accumulating item set */ 
/* ζ is a minimum support threshold for SJEPs */ 
/* |Di| = the total number of instances in |Di|, where i=1,2 */ 
 
1 foreach item of T, T.items[i] do 
2 if T.items[i]’s subtree M is not empty then merge (M, T); 
3 b= µ Ç T.items[i] ; 
4 if (T.D1counts[i] =0^ (T.D2counts[i] ≥ |D2| .   ζ)  
then generate an SJEP b of D2 with supp(b)=T.D2.counts[i]; 
5 else if  (T.D2counts[i]=0) ^ (T.D1counts[i] ≥ |D1|.ζ) 
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then generate an SJEP b of D1 with supp(b)=T.D1.counts[i]; /* Go deeper searching for longer SJEPs */ 
6  else if (T.items[i]’s subtree N is not empty) ^ (T.D1counts[i] ≥ |D1|.ζ / T.D2counts[i] ≥ |D2| .ζ ) then call mine-tree 
(N,b);  
          /* Finish mining the subtree and free its memory */ 
           /* This allows mining of large data sets*/ 
  7 delete T:items[i]’s subtree; 
End 
 
4 EPs and attributes in Taxonomies (Concept hierarchies) 

A concept hierarchy for a given numerical attribute defines a discretization of the attribute. Concept hierarchies can 
be used to reduce the data by collecting and replacing low-level concepts (such as numerical values for the attribute 
age or salary (figure (6)) with higher-level concepts (such as youth, middle-aged, or senior) or salary ranges [3]. 

 
Fig (6) Examples of taxonomic hierarchies (Numeric attribute) 

 
Categorical data are discrete data. Categorical attributes have a finite (but possibly large) number of distinct values, 
with no ordering among the values. Examples include geographic location and job category. 
 
A geographic hierarchy can be defined by specifying the total ordering among these attributes at the schema level, 
such as street < city < province or state < country seeFigure(7). 

 

Fig (7) hierarchy in categorical attributes 

4.1 Problem Description 

Emerging patterns have only been capable of representing contrasts between datasets whose attributes are non-
hierarchical. The patterns discovered have been at the lowest level of representation. This can lead to redundancy that 
discovers the same patterns, such as attribute values that are distinct, e.g., cities that are all part of the same state. 
This creates two problems.  
 
First, the support of each such pattern in isolation will be less than the support of the group of related patterns. 



Journal of Intelligent Systems and Internet of Things (JISIoT)                        Vol. 0, No. 2, PP. 26-36, 2019 
 

 
DOI: https://doi.org/10.54216/JISIoT.000201  

46 

Second, a large group of similar patterns is more difficult to understand and verify, compared to a single, more general 
pattern. So our motivation has been to illustrate a previous algorithm to mine generalized emerging patterns in [13], 
which has the capability of dealing with data sets whose attribute values are associated with taxonomies. 
 
But (Fan et al. [11]) show that SJEPs are better than EPs; more accurate, 10 times faster, and have stronger 
differentiating power between classes, and more resistant to noise. 
 
A critical challenge in this problem is that attribute hierarchies greatly expand the size of the space of potential EPs 
that could be mined. But our proposal shows that algorithm no 1 which is used to divide the dataset into small projected 
datasets minimizes the problem when this proposal takes each group of SJEPs (MSJEPs) generated from each SCP-
tree and applies the same technique used for discovering the generalized emerging patterns. 

4.2 Generalized EPs and generalized MSJEPs 

Given a dataset D, we aim to mine the most general set of generalized EPs which contains items from any level of the 
taxonomies and have infinite growth rates from one class to all others. Therefore, all legal generalized EPs must have 
the following properties:  

(1) At least one of its specializations must have non-zero support in the positive class. 
 (2) None of its specializations should have non-zero support in the negative class. 
 
This is according to EPs characteristics. 
 
This work proposes a new kind of pattern called generalized MSJEPs. It has the same two conditions above but also 
must satisfy the minimum support threshold in the positive data set. MSJEP is then more accurate, faster and noise 
resistant than EP. 
 
4.3 Algorithm G Tree 
Let us motivate the algorithm by first considering a brute-force technique used to mine generalized EPs. Our proposal 
permits the brute-force approach to take each MSJEP instead of EPs from the collection and enumerate all possible 
generalized patterns using ancestors of the items MSJEP contains (higher level in CP-Tree). For each generalized 
pattern, check through the negative instances to see whether it is supported in the negative class and delete it if it has 
non-zero support in the negative class, and check also the support constraint (ζ) in the positive class. All generalized 
patterns that do not have support in the negative class are considered as legal generalized MSJEPs. Before each 
generalized MSJEP is added to the final set, it must be checked against the MSJEPs that are already in the set to make 
sure that it is removed if it is a specialization of any existing patterns or the specializations of it are removed if it is 
considered more general than any existing patterns. The enumeration of generalized patterns is now achieved through 
building a set enumeration tree for each input non-hierarchical MSJEP. 
 
4.4 G Tree Construction 

G Tree is a set-enumeration tree constructed from a set of patterns resulting from the depth-first search in the CP-tree. 
The tree represents all possible generalized patterns that can be enumerated from the leaf-level MSJEPs.  
 
The tree has a root, which is empty and doesn’t have any value. The height of the tree is equal to the length of the 
MSJEP. Each path from the root to the leaf represents one possible generalized pattern.  
 
There is an imposed ordering on the tree, such as paths from left to right and they are patterns from the most specific 
(ex. state) to the most general (ex. country). Before constructing the tree, this proposal first divides the set of non-
hierarchical MSJEPs into some groups (G1 to Gk) according to the combination of attributes in each pattern, such that 
each group should only contain patterns with items from the same combination of attributes. For each group, this 
proposal then constructs one tree for all MSJEPs in that group. For example, consider a dataset where {a1, b2} and 
{a1, b3} are both non hierarchical MSJEPs.  
 
Each of these MSJEPs will result in the same generalization tree. Consequently, these patterns should be grouped, so 
that a single tree can be constructed for both patterns, and then pruning on the negative patterns need to occur only 
once to achieve the support constraint. 
 
The Proposed algorithm for constructing a tree is outlined as follows In figure (8) we see an example of attributes 
in the hierarchy that we make G tree to implement them 
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Given E = {input non-hierarchical minimal MSJEPs} 
for each group of EPs Gk Î L do 
Tree r ← buildTree (Gk) 
BuildTree (group G) 
Initialize empty tree with root node r 
For each EP Pj Î G do 
InsertPattern ( r, pj , 1) 
return tree r; 
Let p[l] denote the Lth item in pattern p 
e.g., if p = (a1, b1), p [1] = a1, p [2] = b1 
assign ordering of values in attribute l and their generalizations, most specific to most general  
 
insertPattern ( node n, pattern p, l ) 
For each item i Î  p[l] Ç generalizations (p[l]) 
If (iÏ n.children ) then 
Insert i in n.children according to the order of attribute l 
Find node ni Î  n.children that corresponds to item i 
InsertPattern ( ni, p, ++l ). 

 

Fig (8) example to attributes in the hierarchy 

4.5 The proposed Pruning from G Tree 

In figure (9) we see an example for G Tree building based on the example in Figure 8. Note that underlined nodes 
correspond to nodes that are pruned in the discussion of this section. 

 
Fig (9) G Tree building based on the example in Figure 8 Note that underlined nodes correspond to nodes 

that are pruned 
Pruning invalid SJEPs from the tree requires testing all negative instances one by one and positive instances for the 
support ratio 
 
Pruning algorithm 
 
For each pattern p from the negative dataset 
PruneTree (root r, p, 1) 
 
PruneTree (node n, pattern p) 
For each item i ∈ pattern p 
If (attribute type of item i ¹ attribute type of n.children) then  
skip to next item i 
Else 
for each node nc ∈ nc.children 
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If (nc.children ¹ null) then 
 pruneTree (nc, p) 
else delete nc from nc.children 
 
 For example; in Figure 9, once {A2, B1} has been extracted, {A2, b3} is redundant, since b3 is a specialization of 
B1.  
 Finally, the set of generalized EPs obtained from each group of input leaf-level EPs are aggregated together, in order 
to ensure that only the most general EPs are kept. 

5 EXPERIMENTAL RESULTS 

All experiments were conducted on a Dell Inspiron 6400 (Core Duo 1.86 GHz, 2Gbyte RAM) running on Windows 
XP Professional. 

5.1 EXPERIMENT 1 

Experimental results are given to compare the accuracy of the new classifier “MSJEP” with the other five classifiers 
of “the-state-of-art” classifiers on some databases from the UCI machine repository [14]. 

Table 2 describes the data sets used in the experiments in terms of the number of instances, attributes, and classes. 
Data sets were acquired from the UCI Machine Learning repository [14]. Each data set characteristic is explored from 
WEKA 3.6.1 for windows [15].  Explorer utility in WEKA gives the description and visualized charts for each attribute 
of the data set. Comparison between datasets characteristics is listed in the table (2) 

Note: the last attribute in each dataset is the class used usually in classification. 
 

5.1.1 Accuracy Comparison  

Table 3 compares the accuracy of the MSJEP Classifier with five other classifiers. The five classifiers are Naive 
Bayes, C4.5, bagged C4.5, boosted C4.5, and Random Forest. All these classifiers are different examples to the state-
of-the-art classifiers (Results are obtained using the WEKA implementation). 
 
Results are reported as the mean classification performance over the 10 folds.  The accuracy was obtained by using 
the methodology of stratified 10 fold cross-validation (CV-10).  
10-fold Cross-Validation c/cs.: 
• Break data into 10 sets of size n/10. 
• Train on 9 datasets and test on 1. 
Repeat 10 times and take a mean accuracy 
 
 
 

Table (2) Description of Data Set 
N
o Dataset # 

Instances 
#Attribu

tes #Classes 

1 Anneal 898 39 5 
2 Audiology 226 70 24 
3 Autos 205 26 6 
4 Balance-

Scale 
625 5 3 

5 Breast-
cancer 

286 10 2 

6 Wisconsin-
breast cancer 

609 10 2 

7 Horse-colic 368 23 2 
8 Horse-

colic.org 
368 28 2 

9 Credit rating 690 16 2 
10 German 

credit 
1000 21 2 
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11 Pima 
diabetes 

768 9 2 

12 Glass 214 10 6 
13 Cleveland 14 

heart 
diseases 

303 14 2 

14 Hungarian 
14 heart 
diseases 

294 14 2 

15 Heart statlog 270 14 2 
16 Hepatitis 155 20 2 
17 Hypothyroid 3772 30 4 
18 Ionosphere 351 35 2 
19 Iris 150 5 3 
20 Kr Vs. Kp 3196 37 2 
21 Labor 57 17 2 
22 Letter 20000 17 26 
23 Lymphograp

hy 
148 19 4 

24 Mushroom 8124 23 2 
25 Primary-

tumor 
339 18 21 

26 Segment 2310 20 7 
27 Sick 3772 30 2 
28 Sonar 208 61 2 
29 Soybean 683 36 19 
30 Splice 3190 62 3 
31 Vehicle 846 19 4 
32 Vote 435 17 2 
33 Vowel 990 14 11 
34 Wave form 5000 41 3 
35 Zoo 101 18 7 

The experimental results show that we retain the accuracy of the SJEP classifier that has been proposed in [11] but 
with a kind of memory management because of the proposed technique. 

So, the proposed technique solves the problem of memory consumption in SJEP without affecting its superior 
accuracy.  

. 
Table (3) Accuracy comparison 

Dataset Navie Bayes C 4.5 Bagging Boosted Random 

 Forest 

M-SJEP 

Anneal 95.95 98.57 98.76 83.63 99.41 95.00 
Anneal.Orig 92.59 92.35 93.73 83.63 95.48 95.00 
Audiology 76.79 77.26 76.00 46.46 77.08 79.32 
Autos 67.26 81.77 66.55 44.90 81.80 89.02 
Balance-Scale 71.56 77.82 83.37 71.77 80.11 87.12 
Breast-cancer 72.59 74.28 69.10 71.62 69.70 96.96 
 w breast cancer 97.20 95.01 95.52 95.14 95.81 98.45 
Horse-colic 80.98 85.16 84.85 82.53 85.02 84.17 
Horse-colic.org 74.40 66.31 67.69 83.59 70.14 67.01 
Credit rating 86.22 85.57 85.67 84.80 85.07 93.17 
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5.1.2 Ranking 
 
From the accuracy comparison listed above, we will compare between classifiers in terms of datasets each classifier 
won and we will arrange  
them descending from the strongest to the weakest in the table (4).  From table (4) this proposal illustrates MSJEP is 
more accurate than the other state-of-the-art classifiers, MSJEP wins 18 from 35, it is noted that a classifier wins more 
than the whole other classifiers win. 

Table (4) Classifiers Ranking 

Classifier   No. of datasets 
Naive Bayes                     4 
C 4.5         5 
Bagging 3 
Boosted 3 
Random Forest 6 
MSJEPs  18 

 

The second accurate classifier is Random Forest, the third C 4.5, the fourth Naive Bayes, the fifth and the sixth 
(weakest) are Bagging and Boosted.  Results in Tables 3 and 4 are represented inFigurenos. 10 and 11 respectively 

5.2 EXPERIMENT 2 

German credit 74.97 71.25 74.13 71.27 73.78 74.00 
Pima diabetes 75.25 74.49 75.66 74.92 74.44 78.95 
Glass 71.56 67.63 72.48 44.89 76.16 77.40 
Cleveland 14 heart 
diseases 

83.34 76.94 80.16 83.47 80.31 82.96 

Hungarian 14 
heart diseases 

84.57 80.22 79.94 81.41 79.49 86.12 

Heart statlog 82.56 78.15 80.56 81.59 80.37 86.15 
Hepatitis 84.18 79.22 82.00 81.37 82.47 83.33 
Hypothyroid 98.54 99.54 99.55 92.97 99.19 98.07 
Ionosphere 89.54 89.74 91.20 90.89 93.11 93.53 
Iris 93.20 94.73 94.20 95.40 94.27 93.10 
Kr Vs. Kp 87.81 99.44 99.05 93.84 98.86 99.22 
Labor 90.60 78.60 83.63 88.37 86.90 82.00 
Letter 64.07 88.03 90.07 7.09 92.45 86.81 
Lymphography 83.13 75.84 77.37 75.44 80.74 79.03 
Mushroom 95.76 100.00 100.00 96.29 100.00 100.00 
Primary-tumor 49.71 41.39 43.90 28.91 42.16 66.02 
Segment 80.17 96.79 96.58 28.52 97.69 96.04 
Sick 92.75 98.72 98.75 97.12 98.23 96.83 
Sonar 67.71 73.61 76.11 75.65 81.07 85.10 
Soybean 92.94 91.78 87.00 27.96 92.16 93.06 
Splice 95.41 94.03 96.07 86.53 97.04 99.04 
Vehicle 44.68 72.28 73.25 39.81 74.08 71.36 
Vote 90.02 96.57 95.70 95.43 95.95 94.76 
Vowel 62.90 80.20 87.01 17.47 95.75 92.34 
Wave form 80.01 75.25 81.84 66.78 81.86 83.30 
Zoo 94.97 92.61 42.59 60.43 90.98 95.67 
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Experiments are conducted to compare the performance of the G.EP algorithm and G.MSJEP on various data sets 
with different taxonomies structures. Comparison between G.EP and G.MSJEP in terms of the input stage, output 
stage, and execution time are presented in table (5). 
The data sets used were acquired from the UCI Machine Learning repository. Since none of the UCI data sets have 
taxonomy structures defined on their attribute values, we manually added three-level hierarchies for numerical 
attributes by aggregating values into increasing, non-overlapping ranges [14] 
 
 

 
Fig (10) Accuracy comparison between classifiers against each data set 

 
 
 

 
 

Fig (11) No of data sets each classifier won in the experiment 
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Fig (12) No. of EPS against MSJEPs in the input stage 

 
Experimental results show that it is better to use MSJEPs instead of EPs. This will minimize the number of input 
patterns used to generate generalized patterns to handle attributes in taxonomyFigure(12). 
 
Also, Experiment results show that the number of the generalized MSJEPs is less than the number of generalized EPs 
produced from the G tree algorithm that scales well with attributes that are in a hierarchy and also this technique 
presents a kind of memory management.Figure(13) 
 
 
 
 
Table (5) Experimental results for the number of patterns and execution time of EPs & MSJEPs classifiers   
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Autos 25 15 662 658 245 675 250 2.8 1.04 
Breast cancer 9 3 949 302 667 933 695 0.4 0.29 
Breast w 
 

9 9 781 243 289 860 318 2.5 0.92 

Credit a 
 

15 6 3015 1375 2754 2982 2714 4.6 4.19 

Diabetes 
 

8 8 1015 224 292 1038 299 3.9 1.12 

Glass 
 

9 9 84 63 31 96 36 0.3 0.11 
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13 6 4032 1792 544 4016 542 5.7 0.77 

Ionosphere 
 

34 20 126330 79060 5638 125434 55993 1512 67.42 

Iris 
 

4 4 9 4 4 6 3 0.03 0.02 

Vehicle 18 18 34463 14253 4201 36902 4498 331.3 40.4 
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Fig (13) No. of G.EPS against G.MSJEPs in the output stage 

 
 
Finally, Experiment results show that the time used to generate G.MSJEPs is less than the time used to generate G.EPs. 
So this technique presents a kind of time managementFigure(14). 
 

 
 

Fig (14) Execution time of G.EPS and G.MSJEPs. 
 
6 CONCLUSION 
 
This proposal proposes a new technique to solve the weakness point of the SJEP classifier in handling large datasets 
without affecting its superior accuracy. The proposed MSJEP and SJEP classifiers are 10 times faster than previous 
generations but MSJEP is better at dealing with large datasets by solving the problem of memory consumption in 
SJEP.   
 
The algorithm which is used for SJEPs mining is a memory-based model. So it’s unrealistic to handle large datasets 
and to build a large CP-tree for a huge dataset. This proposal proposes a technique to partition datasets into subsets, 
each one is implemented by a small tree and the whole set of these trees is called SCP-trees. 
     SCP trees can be constructed and mined consequently; each tree gives a set of MSJEPs. The aggregation process 
to all sets of MSJEPs gives the same set of SJEPs. We retain with its accuracy and speed and at the same time overcome 
the problem of memory size shortage. These trees can also be distributed over many hosts to manage time 
This proposal illustrates the weakness of EPs to deal with attributes associated with hierarchies and proposes to use 
MSJEPs instead of EPs. This proposal names the new generation G.MSJEPs. Also, this classifier generates fewer 
patterns presenting a kind of memory management and takes less time in the generation process presenting also a kind 
of time management. 
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