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Abstract
The neutrosophic δ-open set is one of the stronger form then neutrosophic topological spaces. In this article,
we introduce the concept of neutrosophic δ-open maps and neutrosophic δ-closed maps and investigate their
neighbour maps such as δS, δP & e∗ open maps and closed maps of neutrosophic topological spaces. Also, we
analyse some of their related properties and extended to neutrosophic e∗-homeomorphism and neutrosophic
e∗T 1

2
-space in neutrosophic topological spaces. Furthermore, these kinds of δ-open functions have strong ap-

plication in the area of neural network and image processing theory.

Keywords: neutrosophic δ-open map, neutrosophic δ-closed map, neutrosophic e∗-open map, neutrosophic
e∗-closed map, netrosophic e∗T 1

2
-space, neutrosophic e∗-homeomorphism.

1 Introduction
In 1965, the idea of fuzzy set (briefly, fs) gives a degree of membership function was first introduced by
Zadeh.24 In 1968, the concept of fuzzy topological space (briefly, fts) was introduced by Chang.9 In 1983,
the next stage of fuzzy set was developed by Atanassov6–8 which gives a degree of membership and a degree
of non-membership functions named as intutionistic fuzzy set (briefly, Ifs). In 1997, Coker10 introduced the
concept of intutionistic fuzzy topological space (briefly, Ifts) in intutionistic fuzzy set. In 2005, the concept
of neutrosophic crisp set and neutrosophic set (briefly, Nss) was investigated by Smaradache.14, 19, 20 After the
introduction of neutrosophic set, there are many fields of mathematics and various applications.1, 11, 13, 18 In
2012, Salama and Alblowi15 defined neutrosophic topological space (briefly, Nsts) and many of its applica-
tions in.16, 17 The neutrosophic closed sets and neutrosophic continuous functions were introduced by Salama
et al.17 in 2014. Saha22 defined δ-open sets in topological spaces. Vadivel et al. in23 introduced δ-open sets in
a neutrosophic topological space. The generalization of open and closed functions in topological spaces have
been introduced and investigated over the course of years. The open and closed functions stand among the
most important and most researched points in the whole of mathematical science. Its importance is significant
in various areas of mathematics and related sciences.

In this article, we introduce the idea of neutrosophic δ-open maps and neutrosophic δ-closed maps and
relate with their neighbour maps in neutrosophic topological spaces. Futhermore, the work is extended to
neutrosophic e∗-homeomorphism and neutrosophic e∗T 1

2
-space in neutrosophic topological spaces and we

obtain some of its basic properties.

2 Preliminaries
Definition 2.1. 15 Let Y be a non-empty set. A neutrosophic set (briefly, Nss) L is an object having the
form L = {⟨y, µL(y), σL(y), νL(y)⟩ : y ∈ Y } where µL → [0, 1] denote the degree of membership function,
σL → [0, 1] denote the degree of indeterminacy function and νL → [0, 1] denote the degree of non-membership
function respectively of each element y ∈ Y to the set L and 0 ≤ µL(y)+σL(y)+νL(y) ≤ 3 for each y ∈ Y .
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Remark 2.2. 15 A Nss L = {⟨y, µL(y), σL(y), νL(y)⟩ : y ∈ Y } can be identified to an ordered triple
⟨y, µL(y), σL(y), νL(y)⟩ in [0, 1] on Y .

Definition 2.3. 15 Let Y be a non-empty set and theNss’sL andM in the formL = {⟨y, µL(y), σL(y), νL(y)⟩ :
y ∈ Y }, M = {⟨y, µM (y), σM (y), νM (y)⟩ : y ∈ Y }, then

(i) 0N = ⟨y, 0, 0, 1⟩ and 1N = ⟨y, 1, 1, 0⟩,

(ii) L ⊆M iff µL(y) ≤ µM (y), σL(y) ≤ σM (y) & νL(y) ≥ νM (y) : y ∈ Y ,

(iii) L =M iff L ⊆M and M ⊆ L,

(iv) 1N − L = {⟨y, νL(y), 1− σL(y), µL(y)⟩ : y ∈ Y } = Lc,

(v) L ∪M = {⟨y,max(µL(y), µM (y)),max(σL(y), σM (y)),min(νL(y), νM (y))⟩ : y ∈ Y },

(vi) L ∩M = {⟨y,min(µL(y), µM (y)),min(σL(y), σM (y)),max(νL(y), νM (y))⟩ : y ∈ Y }.

Definition 2.4. 15 A neutrosophic topology (briefly,Nst) on a non-empty set Y is a family ΨN of neutrosophic
subsets of Y satisfying

(i) 0N , 1N ∈ ΨN .

(ii) L1 ∩ L2 ∈ ΨN for any L1, L2 ∈ ΨN .

(iii)
∪
Lx ∈ ΨN , ∀ Lx : x ∈ X ⊆ ΨN .

Then (Y,ΨN ) is called a neutrosophic topological space (briefly, Nsts) in Y . The ΨN elements are called
neutrosophic open sets (briefly, Nsos) in Y . A Nss C is called a neutrosophic closed sets (briefly, Nscs) iff
its complement Cc is Nsos.

Definition 2.5. 15 Let (Y,ΨN ) be Nsts on Y and L be an Nss on Y , then the neutrosophic interior of L
(briefly, Nsint(L)) and the neutrosophic closure of L (briefly, Nscl(L)) are defined as

Nsint(L) =
∪

{I : I ⊆ L and I is a Nsos in Y }

Nscl(L) =
∩

{J : L ⊆ J and J is a Nscs in Y }.

Definition 2.6. 5 Let (Y,ΨN ) be Nsts on Y and L be an Nss on Y . Then L is said to be a neutrosophic
regular open set (briefly, Nsros ) if L = Nsint(Nscl(L)).

The complement of a Nsros is called a neutrosophic regular closed set (briefly, Nsrcs) in Y .

Definition 2.7. 23 A set K is said to be a neutrosophic

(i) δ interior ofG (briefly,Nsδint(K)) is defined byNsδint(K) =
∪
{B : B ⊆ K andB is a Nsros in Y }.

(ii) δ closure of K (briefly, Nsδcl(K)) is defined by Nsδcl(K) =
∩
{J : K ⊆ J and J is a Nsrcs in Y }.

Definition 2.8. 23 A set L is said to be a neutrosophic

(i) δ-open set (briefly, Nsδos) if L = Nsδint(L).

(ii) δ-pre open set (briefly, NsδPos) if L ⊆ Nsint(Nsδcl(L)).

(iii) δ-semi open set (briefly, NsδSos) if L ⊆ Nscl(Nsδint(L)).

(iv) δ-α-open set (briefly, Nsδαos) if L ⊆ Nsint(Nscl(Nsδint(L))).

(v) e∗-open set (briefly, Nse
∗os) if L ⊆ Nscl(Nsint(Nsδcl(L))).

The complement of an Nsδos (resp. NsδPos, NsδSos, Nsδαos & Nse
∗os) is called a neutrosophic δ

(resp. δ-pre, δ-semi, δα & e∗) closed set (briefly, Nsδcs (resp. NsδPcs, NsδScs, Nsδαcs & Nse
∗cs)) in Y .

Definition 2.9. 23 Let (X, τN ) and (Y, σN ) be any two Nts’s. A map h : (X, τN ) → (Y, σN ) is said to be
neutrosophic e∗ continuous (briefly, Nse

∗Cts) if the inverse image of every Nsos in (Y, σN ) is an Nse
∗os in

(X, τN ).

Definition 2.10. 12 Let (X, τN ) and (Y, σN ) be any two Nsts’s. A map h : (X, τN ) → (Y, σN ) is said to be
neutrosophic homeomorphism (briefly, NsHom) if h and h−1 are NsCts maps.
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3 Neutrosophic δ-open map
Definition 3.1. Let (X, τN ) and (Y, σN ) be any two Nts’s. A map h : (X, τN ) → (Y, σN ) is said to be
neutrosophic (resp. δ, δS, δP and e∗) open map (briefly, NsO (resp. NsδO, NsδSO, NsδPO and Nse

∗O))
if the image of every Nsos in (X, τN ) is an Nsos (resp. Nsδos, NsδSos, NsδPos and Nse

∗os) in (Y, σN ).

Theorem 3.2. The following statements hold:

(i) Every NsδO map is a NsO map.

(ii) Every NsO map is an NsδSO map.

(iii) Every NsO map is an NsδPO map.

(iv) Every NsδSO map is an Nse
∗O map.

(v) Every NsδPO map is an Nse
∗O map.

(vi) Every NsδαO map is an NsδSO map.

(vii) Every NsδαO map is an NsδPO map.

Proof. (i) Let λ be an Nsδos in X . Since h is NsδO map, h(λ) is an Nsδos in Y . Since every Nsδos is an
Nsos,23 h(λ) is an Nsos in Y . Hence h is an NsO map.

The others are similar.

NsδO map

NsO map

NsδSO map Nse
∗O map NsδPO map

NsδαO map

Figure 1: NsδO map’s in Nts .

Example 3.3. Let X = {l} = Y and define Nss’s X1 in X and Y1 and Y2 in Y by

X1 = ⟨X, ( µl

0.2
,
σl
0.5

,
νl
0.8

)⟩, Y1 = ⟨Y, ( µl

0.2
,
σl
0.5

,
νl
0.8

)⟩, Y2 = ⟨Y, ( µl

0.5
,
σl
0.5

,
νl
0.5

)⟩.

Then we have τN = {0N , X1, 1N} and σN = {0N , Y1, Y2, 1N}. Let h : (X, τN ) → (Y, σN ) be an identity
map, then h is NsO map but not NsδO map.

Example 3.4. Let X = {l,m, n} = Y and define Nss’s X1 in X and Y1, Y2 and Y3 in Y by

X1 = ⟨X, ( µl

0.2
,
µm

0.4
,
µn

0.4
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.8

,
νm
0.6

,
νn
0.6

)⟩,

Y1 = ⟨Y, ( µl

0.2
,
µm

0.3
,
µn

0.4
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.8

,
νm
0.7

,
νn
0.6

)⟩,

Y2 = ⟨Y, ( µl

0.1
,
µm

0.1
,
µn

0.4
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.9

,
νm
0.9

,
νn
0.6

)⟩,

Y3 = ⟨Y, ( µl

0.2
,
µm

0.4
,
µn

0.4
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.8

,
νm
0.6

,
νn
0.6

)⟩.

Then we have τN = {0N , X1, 1N} and σN = {0N , Y1, Y2, 1N}. Let h : (X, τN ) → (Y, σN ) be an identity
map, then h is an
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(i) NsδSO map but not NsO map (resp. NsδαO map).

(ii) Nse
∗O map but not NsδPO map.

Example 3.5. Let X = {l,m, n} = Y and define Nss’s X1 in X and Y1, Y2, Y3 and Y4 in Y by

X1 = ⟨X, ( µl

0.3
,
µm

0.5
,
µn

0.4
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.7

,
νm
0.5

,
νn
0.6

)⟩,

Y1 = ⟨Y, ( µl

0.3
,
µm

0.5
,
µn

0.5
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.7

,
νm
0.5

,
νn
0.5

)⟩,

Y2 = ⟨Y, ( µl

0.4
,
µm

0.2
,
µn

0.6
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.6

,
νm
0.8

,
νn
0.4

)⟩,

Y3 = ⟨Y, ( µl

0.4
,
µm

0.5
,
µn

0.6
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.6

,
νm
0.5

,
νn
0.4

)⟩,

Y4 = ⟨Y, ( µl

0.3
,
µm

0.5
,
µn

0.4
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.7

,
νm
0.5

,
νn
0.6

)⟩.

Then we have τN = {0N , X1, 1N} and σN = {0N , Y1, Y2, Y3, Y1 ∩ Y2, 1N}. Let h : (X, τN ) → (Y, σN ) be
an identity map, then h is an

(i) NsδPO map but not NsO map (resp. NsδαO map).

(ii) Nse
∗O map but not NsδSO map.

Theorem 3.6. A map h : (X, τN ) → (Y, σN ) is Nse
∗O iff for every Nss λ of (X, τN ), h(Nsint(λ)) ⊆

Nse
∗int(h(λ)).

Proof. Necessity: Let h be a Nse
∗O map and λ be a Nsos in (X, τN ). Now, Nsint(λ) ⊆ λ implies

h(Nsint(λ)) ⊆ h(λ). Since h is a Nse
∗O map, h(Nsint(λ)) is Nse

∗os in (Y, σN ) such that h(Nsint(λ)) ⊆
h(λ) therefore h(Nsint(λ)) ⊆ Nse

∗int(h(λ)).
Sufficiency: Assume λ is a Nsos of (X, τN ). Then h(λ) = h(Nsint(λ)) ⊆ Nse

∗int(h(λ)). But Nse
∗int

(h(λ)) ⊆ h(λ). So h(λ) = Nse
∗int(λ) which implies h(λ) is a Nse

∗os of (Y, σN ) and hence h is a Nse
∗O.

Theorem 3.7. If h : (X, τN ) → (Y, σN ) is aNse
∗O map thenNsint(h

−1(λ)) ⊆ h−1(Nse
∗int(λ)) for every

Nss λ of (Y, σN ).

Proof. Let λ be a Nss of (Y, σN ). Then Nsint(h
−1(λ)) is a Nsos in (X, τN ). Since h is Nse

∗O, h(Nsint
(h−1(λ)) is Nse

∗o in (Y, σN ) and hence h(Nsint(h
−1(λ))) ⊆ Nse

∗int(h(h−1(λ))) ⊆ Nse
∗int(λ). Thus

Nsint(h
−1(λ)) ⊆ h−1(Nse

∗int(λ)).

Theorem 3.8. A map h : (X, τN ) → (Y, σN ) is Nse
∗O iff for each Nss µ of (Y, σN ) and for each Nscs λ of

(X, τN ) containing h−1(µ) there is an Nse
∗cs ψ of (Y, σN ) such that µ ⊆ λ and h−1(ψ) ⊆ λ.

Proof. Necessity: Assume h is a Nse
∗O map. Let µ be the Nscs of (Y, σN ) and λ is a Nscs of (X, τN ) such

that h−1(µ) ⊆ λ. Then ψ = (h−1(λc))c is Nse
∗cs of (Y, σN ) such that h−1(ψ) ⊆ λ.

Sufficiency: Assume ω is a Nsos of (X, τN ). Then h−1((h(ω))c ⊆ ωc and ωc is Nscs in (X, τN ).
By hypothesis there is a Nse

∗cs ψ of (Y, σN ) such that (h(ω))c ⊆ ψ and h−1(ψ) ⊆ ωc. Therefore ω ⊆
(h−1(ψ))c. Hence ψc ⊆ h(ω) ⊆ h((h−1(ψ))c) ⊆ ψc which implies h(ω) = ψc. Since ψc is Nse

∗os of
(Y, σN ). Hence h(ω) is Nse

∗o in (Y, σN ) and thus h is Nse
∗O map.

Theorem 3.9. A map h : (X, τN ) → (Y, σN ) is Nse
∗O iff h−1(Nse

∗cl(λ) ⊆ Nscl(h
−1(λ)) for every Nss

λ of (Y, σN ).

Proof. Necessity: Assume h is aNse
∗O map. For anyNss λ of (Y, σN ), h−1(λ) ⊆ Nscl(h

−1(λ)). Therefore
by Theorem 3.8 there exists a Nse

∗cs µ in (Y, σN ) such that λ ⊆ µ and h−1(µ) ⊆ Nscl(h
−1(λ)). Therefore

we obtain that h−1(Nse
∗cl(λ)) ⊆ h−1(µ) ⊆ Nscl(h

−1(λ)).
Sufficiency: Assume λ is a Nss of (Y, σN ) and µ is a Nscs of (X, τN ) containing h−1(λ). Put ζ = cl(λ),

then λ ⊆ ζ and ζ is Nse
∗c and h−1(ζ) ( cl(h−1(λ)) ⊆ µ. Then by Theorem 3.8, h is Nse

∗O map.

Theorem 3.10. If h : (X, τN ) → (Y, σN ) and g : (Y, σN ) → (Z, ρN ) are two neutrosophic maps and
g ◦ h : (X, τN ) → (Z, ρN ) is Nse

∗O. If g : (Y, σN ) → (Z, ρN ) is Nse
∗Irr then h : (X, τN ) → (Y, σN ) is

Nse
∗O map.
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Proof. Let ψ be a Nsos in (X, τN ). Then g ◦ h(ψ) is Nse
∗os of (Z, ρN ) because g ◦ h is Nse

∗O map. Since
g is Nse

∗Irr and g ◦ h(ψ) is Nse
∗os of (Z, ρN ), g−1(g ◦ h(ψ)) = h(ψ) is Nse

∗os in (Y, σN ). Hence h is
Nse

∗O map.

Theorem 3.11. If h : (X, τN ) → (Y, σN ) is NsO and g : (Y, σN ) → (Z, ρN ) is Nse
∗O maps then g ◦ h :

(X, τN ) → (Z, ρN ) is Nse
∗O.

Proof. Let ψ be a Nsos in (X, τN ). Then h(ψ) is a Nsos of (Y, σN ) because h is a NsO map. Since g is
Nse

∗O, g(h(ψ)) = (g ◦ h)(ψ) is Nse
∗os of (Z, ρN ). Hence g ◦ h is Nse

∗O map.

4 Neutrosophic e-closed map
Definition 4.1. Let (X, τN ) and (Y, σN ) be any two Nts’s. A map h : (X, τN ) → (Y, σN ) is said to be
neutrosophic (resp. δ, δS, δP and e∗) closed map (briefly, NsC (resp. NsδC, NsδSC, NsδPC and Nse

∗C))
if the image of every Nscs in (X, τN ) is a Nscs (resp. Nsδcs, NsδScs, NsδPcs and Nse

∗cs) in (Y, σN ).

Theorem 4.2. The following statements are hold:

(i) Every NsδC map is a NsC map.

(ii) Every NsC map is a NsδSC map.

(iii) Every NsC map is a NsδPC map.

(iv) Every NsδSC map is a Nse
∗C map.

(v) Every NsδPC map is a Nse
∗C map.

(vi) Every NsδαC map is a NsδSC map.

(vii) Every NsδαC map is a NsδPC map.

Proof. (i) Let λ be aNsδcs inX . Since h isNsδC map, h(λ) is aNsδcs in Y . Since everyNsδcs is aNscs,23

h(λ) is a Nscs in Y . Hence h is a NsC map.
The others are similar.

NsδC map

NsC map

NsδSC map Nse
∗C map NsδPC map

NsδαC map

Figure 2: NsδC map’s in Nts .

Example 4.3. In Example 3.3, h is a NsC map but not NsδC map.

Example 4.4. In Example 3.4, h is a

(i) NsδSC map but not NsC map (resp. NsδαC map).

(ii) Nse
∗C map but not NsδPC map.

Example 4.5. In Example 3.5, h is a

Doi :10.5281/zenodo.4494382 70



International Journal of Neutrosophic Science (IJNS) Vol. 13, No. 2, PP. 66-74, 2021

(i) NsδPC map but not NsC map (resp. NsδαC map).

(ii) Nse
∗C map but not NsδSC map.

Theorem 4.6. A map h : (X, τN ) → (Y, σN ) is Nse
∗C iff for each Nss µ of (Y, σN ) and for each Nsos λ of

(X, τN ) containing h−1(µ) there is an Nse
∗os ψ of (Y, σN ) such that µ ⊆ ψ and h−1(ψ) ⊆ λ.

Proof. Necessity: Assume h is a Nse
∗C map. Let µ be the Nscs of (Y, σN ) and λ is a Nsos of (X, τN ) such

that h−1(µ) ⊆ λ. Then ψ = Y − h−1(λc) is Nse
∗os of (Y, σN ) such that h−1(ψ) ⊆ λ.

Sufficiency: Assume ψ is a Nscs of (X, τN ). Then (h(ψ))c is a Nss of (Y, σN ) and ψc is Nsos in
(X, τN ) such that h−1((h(ψ))c) ⊆ ψc. By hypothesis there is a Nse

∗os ψ of (Y, σN ) such that (h(ψ))c ⊆ ψ
and h−1(ψ) ⊆ ψc. Therefore ψ ⊆ (h−1(ψ))c. Hence ψc ⊆ h(ψ) ⊆ h((h−1(ψ))c) ⊆ ψc which implies
h(ψ) = ψc. Since ψc is Nse

∗cs of (Y, σN ). Hence h(ψ) is Nse
∗c in (Y, σN ) and thus h is Nse

∗C map.

Theorem 4.7. If h : (X, τN ) → (Y, σN ) is NsC and g : (Y, σN ) → (Z, ρN ) is Nse
∗C, then g ◦ h :

(X, τN ) → (Z, ρN ) is Nse
∗C.

Proof. Let ψ be a Nscs in (X, τN ). Then h(ψ) is Nscs of (Y, σN ) because h is NsC map. Now (g ◦h)(ψ) =
g(h(ψ)) is Nse

∗cs in (Z, ρN ) because g is Nse
∗C map. Thus g ◦ h is Nse

∗C map.

Theorem 4.8. If h : (X, τN ) → (Y, σN ) is Nse
∗C map, then Nse

∗cl(h(ψ)) ( h(Nscl(ψ)).

Proof. Obvious.

Theorem 4.9. Let h : (X, τN ) → (Y, σN ) and g : (Y, σN ) → (Z, ρN ) be Nse
∗C maps. If every Nse

∗cs of
(Y, σN ) is Nsc then, g ◦ h : (X, τN ) → (Z, ρN ) is Nse

∗C.

Proof. Let ψ be a Nscs in (X, τN ). Then h(ψ) is Nse
∗cs of (Y, σN ) because h is Nse

∗C map. By hypothesis
h(ψ) is Nscs of (Y, σN ). Now g(h(ψ)) = (g ◦ h)(ψ) is Nse

∗cs in (Z, ρN ) because g is Nse
∗C map. Thus

g ◦ h is Nse
∗C map.

Theorem 4.10. Let h : (X, τN ) → (Y, σN ) be an objective map, then the following statements are equivalent:

(i) h is a Nse
∗O map.

(ii) h is a Nse
∗C map.

(iii) h−1 is Nse
∗Cts map.

Proof. (i) ⇒ (ii): Let us assume that h is a Nse
∗O map. By definition, ψ is a Nsos in (X, τN ), then h(ψ) is a

Nse
∗os in (Y, σN ). Here, ψ is Nscs in (X, τN ), then X −ψ is a Nsos in (X, τN ). By assumption, h(X −ψ)

is a Nse
∗os in (Y, σN ). Hence, Y − h(X − ψ) is a Nse

∗cs in (Y, σN ). Therefore, h is a Nse
∗C map.

(ii) ⇒ (iii): Let ψ be aNscs in (X, τN ) By (ii), h(ψ) is aNse
∗cs in (Y, σN ). Hence, h(ψ) = (h−1)−1(ψ),

so h−1 is a Nse
∗cs in (Y, σN ). Hence, h−1 is Nse

∗Cts.
(iii) ⇒ (i): Let ψ be a Nsos in (X, τN ) By (iii), (h−1)−1(ψ) = h(ψ) is a Nse

∗O map.

5 Neutrosophic e∗-homeomorphism
Definition 5.1. A bijection h : (X, τN ) → (Y, σN ) is called a Nse

∗-homeomorphism (briefly Nse
∗Hom) if

h and h−1 are Nse
∗Cts.

Theorem 5.2. Each NsHom is a Nse
∗Hom.

Proof. Let h be NsHom, then h and h−1 are NsCts. But every NsCts function is Nse
∗Cts. Hence, h and

h−1 are Nse
∗Cts. Therefore, h is a Nse

∗Hom.

Example 5.3. Let X = {l,m, n} = Y and define Nss’s X1, X2 and X3 in X and Y1 in Y by

X1 = ⟨X, ( µl

0.2
,
µm

0.3
,
µn

0.4
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.8

,
νm
0.7

,
νn
0.6

)⟩,

X2 = ⟨X, ( µl

0.1
,
µm

0.1
,
µn

0.4
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.9

,
νm
0.9

,
νn
0.6

)⟩,

X3 = ⟨X, ( µl

0.2
,
µm

0.4
,
µn

0.4
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.8

,
νm
0.6

,
νn
0.6

)⟩,

Y1 = ⟨Y, ( µl

0.2
,
µm

0.4
,
µn

0.4
), (

σl
0.5

,
σm
0.5

,
σn
0.5

), (
νl
0.8

,
νm
0.6

,
νn
0.6

)⟩.
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Then we have τN = {0N , X1, X2, 1N} and σN = {0N , Y1, 1N}. Let h : (X, τN ) → (Y, σN ) be an identity
map, then h is Nse

∗Hom but not NsHom.

Theorem 5.4. Let h : (X, τN ) → (Y, σN ) be a bijective map. If h is Nse
∗Cts, then the following are

statements are equivalent:

(i) h is a Nse
∗C map.

(ii) h is a Nse
∗O map.

(iii) h−1 is a Nse
∗Hom.

Proof. (i) ⇒ (ii) : Assume that h is a bijective map and a Nse
∗C map. Hence, h−1 is a Nse

∗Cts map. We
know that each Nsos in (X, τN ) is a Nse

∗os in (Y, σN ). Hence, h is a Nse
∗O map.

(ii) ⇒ (iii) : Let h be a bijective and NsO map. Further, h−1 is a Nse
∗Cts map. Hence, h and h−1 are

Nse
∗Cts. Therefore, h is a Nse

∗Hom.
(iii) ⇒ (i): Let h be a Nse

∗Hom, then h and h−1 are Nse
∗Cts. Since each Nscs in (X, τN ) is a Nse

∗cs
in (Y, σN ), h is a Nse

∗C map.

Definition 5.5. A Nsts (X, τN ) is said to be a neutrosophic e∗T 1
2

(briefly, Nse
∗T 1

2
)-space if every Nse

∗cs is
Nsc in (X, τN ).

Theorem 5.6. Let h : (X, τN ) → (Y, σN ) be a Nse
∗Hom, then h is a NsHom if (X, τN ) and (Y, σN ) are

Nse
∗T 1

2
-space.

Proof. Assume that ψ is aNscs in (Y, σN ), then h−1(ψ) is aNse
∗cs in (X, τN ). Since (X, τN ) is anNse

∗T 1
2

-
space, h−1(ψ) is a Nscs in (X, τN ). Therefore, h is NsCts. By hypothesis, h−1 is Nse

∗Cts. Let ζ be a Nscs
in (X, τN ). Then, (h−1)−1(ζ) = h(ζ) is a Nscs in (Y, σN ), by presumption. Since (Y, σN ) is a Nse

∗T 1
2

-
space, h(ζ) is a Nscs in (Y, σN ). Hence, h−1 is NsCts. Hence, h is a NsHom.

Theorem 5.7. Let h : (X, τN ) → (Y, σN ) be a Nsts, then the following are equivalent if (Y, σN ) is a
Nse

∗T 1
2

-space.

(i) h is Nse
∗C map.

(ii) If ψ is a Nsos in (X, τN ), then h(ψ) is Nse
∗os in (Y, σN ).

(iii) h(Nsint(ψ)) ⊆ Nscl(Nsint(h(ψ))) for every Nss ψ in (X, τN ).

Proof. (i) ⇒ (ii): Obvious.
(ii) ⇒ (iii): Let ψ be a Nss in (X, τN ). Then, Nsint(ψ) is a Nsos in (X, τN ). Then, h(Nsint(ψ))

is a Nse
∗os in (Y, σN ). Since (Y, σN ) is a Nse

∗T 1
2

-space, h(Nsint(ψ)) is a Nsos in (Y, σN ). Therefore,
h(Nsint(ψ)) = Nsint(h(Nsint(ψ))) ⊆ Nscl(Nsint(h(ψ))).

(iii) ⇒ (i): Let ψ be a Nscs in (X, τN ). Then, ψc is a Nsos in (X, τN ). From, h(Nsint(ψ
c)) ⊆

Nscl(Nsint(h(ψ
c))). Hence, h(ψc) ⊆ Nscl(Nsint(h(ψ

c))). Therefore, h(ψc) is Nse
∗os in (Y, σN ). There-

fore, h(ψ) is a Nse
∗cs in (X, τN ). Hence, h is a NsC map.

Theorem 5.8. Let h : (X, τN ) → (Y, σN ) and g : (Y, σN ) → (Z, ρN ) beNse
∗C, where (X, τN ) and (Z, ρN )

are two Nsts’s and (Y, σN ) a Nse
∗T 1

2
-space, then the composition g ◦ h is Nse

∗C map.

Proof. Let ψ be a Nscs in (X, τN ). Since h is Nse
∗c and h(ψ) is a Nse

∗cs in (Y, σN ), by assumption, h(ψ)
is a Nscs in (Y, σN ). Since g is Nse

∗c, g(h(ψ)) is Nse
∗c in (Z, ρN ) and g(h(ψ)) = (g ◦ h)(ψ). Therefore,

g ◦ h is Nse
∗C map.

Theorem 5.9. Let h : (X, τN ) → (Y, σN ) and g : (Y, σN ) → (Z, ρN ) be two Nsts’s, then the following
hold:

(i) If g ◦ h is Nse
∗O and h is NsCts, then g is Nse

∗O map.

(ii) If g ◦ h is NsO and g is Nse
∗Cts, then h is Nse

∗O map.

Proof. Obvious.
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6 Conclusions
The open and closed sets play a very a prominent role in general Topology and its applications. Indeed a
significant theme in General Topology, Real analysis and many other branches of mathematics concerns the
variously modified forms of continuity, separation axioms etc., by utilizing generalized open and closed sets.
One of the well-known notions and strong form in topology and their applications is the notion of δ-open
sets. The importance of general topological spaces rapidly increases in both the pure and applied directions.
In this paper we introduced and investigated the notions of new classes of functions in neutrosophic δ-open
set which may have very important applications in mathematics. The new idea of neutrosophic δ-open maps
and neutrosophic δ-closed maps and relate with their neighbour maps in neutrosophic topological spaces were
discussed. Furthermore, the work was extended as neutrosophic e∗-homeomorphism and neutrosophic e∗T 1

2
-

space in Nsts with their related properties. In future, the further research can be carried out on somewhat
neutrosophic δ continuous maps and somewhat δ irresolute maps in a neutrosophic topological spaces.
Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
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