
 
International Journal of Neutrosophic Science (IJNS)                                         Vol. 26, No. 02, PP. 204-214, 2025 

204 
DOI: https://doi.org/10.54216/IJNS.260215 

 

 

 

 

 

 

Towards Sustainable Economy: Boosting Financial Credit Risk 

Forecasting Using Bipolar Single-Valued Neutrosophic Graph 

Sets Approach 

 

Elvir Akhmetshin1,2,*, Ilyos Abdullayev3, Aleksey Ilyin4, Denis Shakhov5, Tatyana Khorolskaya6 

1Department of Economics, Mamun University, Khiva, 220900, Uzbekistan 
2Faculty of Economics, RUDN University, Moscow, 117198, Russia 

3Department of Business and Management, Urgench State University, Urgench, 220100, Uzbekistan 
4Kursk Branch, Financial University under the Government of the Russian Federation, Moscow, 125167, Russia 
5Department of Economics and Management, Khorezm University of Economics, Urgench, 220100, Uzbekistan 

6Department of Money Circulation and Credit, Kuban State Agrarian University named after I.T. Trubilin, 

Krasnodar, 350044, Russia 

Emails: akhmetshin@mamunedu.uz; ilyos.a@urdu.uz; aeilin@fa.ru; shakhov@mymail.academy;  

tatyana.e.khorolskaya@yandex.ru  

 

 

Abstract 

A neutrosophic set (NS) contains 3 modules such as the degree of truth (T), degree of falsity (F), and degree of 

indeterminacy (I). While fuzzy graphs (FG) occasionally fall short of providing optimum outcomes, the NS and 

neutrosophic graphs (NG) provide a strong substitute, which efficiently handles the uncertainties related to 

indeterminate and inconsistent data in real-life scenarios. Conversely, bipolar neutrosophic methods, which 

account for both negative and positive effects, deliver a more flexible and applicable technique. Financial crisis 

prediction (FCP) is inherent in the detection of major social and economic impacts that crises of financial might 

hold on a global measure. It generally outcomes in vast financial losses, redundancy, and losses in values of assets 

that lead to significantly affected individuals and businesses. In recent times, the credit risk prediction methods 

have aided businesses in resolving whether to award credit to users who applied. This paper presents the Financial 

Credit Risk Forecasting Using Bipolar Single-Valued Neutrosophic Graph Sets Approach (FCRF-BSVNGSA) 

method. The main intention of the FCRF-BSVNGSA method is to develop an effective method for financial credit 

risk prediction using advanced methods. At first, the data normalization stage utilizes Z-score normalization for 

converting the input data into a beneficial format. Furthermore, for the financial credit risk classification process, 

the proposed FCRF-BSVNGSA model employs the bipolar single-valued neutrosophic graphs (BSVNG) 

approach. Finally, the multi‐objective hippopotamus optimization (MOHO) approach fine-tunes the 

hyperparameter values of the BSVNG model optimally and results in superior classification performance. An 

extensive simulation of the FCRF-BSVNGSA approach is performed under the Statlog (German Credit Data) 

dataset. The experimental validation of the FCRF-BSVNGSA approach portrayed a superior accuracy value of 

95.59% over exisitng techniques. 

Keywords: Financial Credit Risk Forecasting; Data Normalization; Fuzzy Graphs; Bipolar Neutrosophic Set; 

Single-Valued Neutrosophic Graph 

1. Introduction 

The most effective tools for modeling uncertainty in making a decision problem are the NS and its extension lead, 

such as interval NS (INS), complex NS (CNS), and interval complex NS (ICNS) [1]. An effective device for 

vagueness and demonstrating uncertainty in making the decision is the NS, which is the other generality of standard 

set, intuitionistic fuzzy set (IFS), and fuzzy set (FS) by adding triplet kinds of truth, falsity, and indeterminacy of 

a proved statement [2]. It is employed in various processes of decision-making that is. On the other hand, to adapt 

NS to the above real difficult cases, INS and CNS is proposed suitably. The financial crisis became a critical 
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problem for the globe [3]. In recent years, more small and medium enterprises (SMEs) previously weakened by 

the growing collapse, and publicized nil losses or profits. Widely some major bankruptcies are methodically 

published and the financial suffering spreads out to each type of firm across more businesses [4]. The big loss 

arising out of the bankruptcies is in the lead to major disapproval of financial institutions owing to the unsuitable 

assessments of credit hazard [5]. 

The governments can be forced to apply rescue strategies for the methods of banking with much valuable credit 

hazard assessments. It is a challenging and main problem for banking and financial institutions to assess client 

presentation [6]. For this purpose, financial credit hazard estimates help as the motivation to value the credit access 

or possible industry flop of clients to create prior acts before the real financial crisis. Financial crises can lead to 

unemployment, losses in asset values, and huge economic losses, resulting in considerable individuals and affected 

businesses [7]. It is necessary to advance reliable and early predictive systems for financial or company entities to 

predict the possible hazards of the status of a business [8]. Wrongly making decisions in the company may result 

in bankruptcy or an economic flop and vendors, affecting investors, clients, etc [9]. These days, AI technologies 

and statistics are utilized for the recognition of FCP. AI is employed in several methods in FCP that are based on 

a classical which forecasts whether the financial company can undergo a crisis or not [10]. Similarly, earlier 

research concentrated on deep learning (DL), machine learning (ML), and arithmetical models for estimating the 

financial grade of an industry. 

This paper presents the Financial Credit Risk Forecasting Using Bipolar Single-Valued Neutrosophic Graph Sets 

Approach (FCRF-BSVNGSA) method. The main intention of the FCRF-BSVNGSA method is to develop an 

effective method for financial credit risk prediction using advanced methods. At first, the data normalization stage 

utilizes Z-score normalization for converting the input data into a beneficial format. Furthermore, for the financial 

credit risk classification process, the proposed FCRF-BSVNGSA model employs the bipolar single-valued 

neutrosophic graphs (BSVNG) approach. Finally, the multi‐objective hippopotamus optimization (MOHO) 

approach fine-tunes the hyperparameter values of the BSVNG model optimally and results in superior 

classification performance. An extensive simulation of the FCRF-BSVNGSA approach is performed under the 

Statlog (German Credit Data) dataset. 

A. Contribution of the Study 

The major contribution of the FCRF-BSVNGSA approach is given below. 

The FCRF-BSVNGSA model utilizes Z-score normalization to standardize the input data, ensuring all features 

have a mean of zero and a standard deviation of one. This step improves the consistency of the data and prevents 

any features with larger ranges from dominating the results. As a result, the performance of the model is more 

balanced and reliable. 

The FCRF-BSVNGSA approach employs the BSVNG-based classification model to handle uncertainty and 

imprecision in the data. This approach allows for more accurate representation of complex relationships within the 

dataset. Consequently, it results in improved decision-making and more reliable predictions. 

The FCRF-BSVNGSA methodology incorporates the MOHO model for tuning process to optimize its parameters 

across multiple objectives. This process enables the simultaneous improvement of both predictive accuracy and 

computational efficiency. As a result, the model attains a more effectual balance between performance and 

resource utilization. 

The novelty of the FCRF-BSVNGSA method is in integrating BSVNG technique for classification with MOHO 

model. This integration allows the model to effectually manage uncertainty in decision-making while optimizing 

multiple objectives simultaneously. The result is an improved performance that enhances both predictive accuracy 

and computational efficiency. 

2. A Brief Survey on Financial Risk Prediction Models 

Ji and Li [11] project a dynamic financial risk prediction method for companies depending upon gradient-boosting 

decision trees (DT) for enhancing forecasting precision and adjustability. The projected methodology parameter 

was enhanced over the gradient optimizer by utilizing the sparrow search algorithm. Cui and Yao [12] introduce 

the PSO-SDAE method, an innovative and advanced model for predicting financial risk. By integrating 

optimization algorithms and cutting-edge noise reduction features, the projected method considerably improves 

the reliability and accuracy of financial risk predictions. Particularly, the presented methodology overtakes 

conventional predicting models by tackling the requirement for deciding on the quickly developing setting of 

economic risk management. Mojdehi et al. [13] projected an innovative hybrid Graph Neural Network (GNN) and 

Topological Data Analysis (TDA) to enhance credit risk assessment in SCF. By employing BallMapper (BM) 

topological data analysis method and network-based aspects, the projected method offers better understanding of 

credit risk influences, improving the precision and reliability of credit risk assessment for SMEs. 
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Amarnadh and Moparthi [14] develop credit risk evaluation in the banking area utilizing an Adaptive Binarized 

Spiking Marine Predators Neural Network (ABSMPNN) for precise recognition of client credit qualities in the 

short term. The concentration stage of VCHA effectually attains the collection of appropriate aspects from the 

noisy and inappropriate ones. Alamsyah et al. [15] present an innovative model utilizing sophisticated ML 

methodologies and social media analytics to evaluate the creditworthiness of customers without conventional 

collateral assets and credit histories. Traditional credit scoring models have a tendency to rely heavily on central 

bank credit data, particularly conventional co-lateral abilities like savings accounts or property. This method 

employs psycholinguistics, personality, demographics, and social networking data from the profiles of LinkedIn 

to advance the prediction techniques for a wide-ranging economic dependability evaluation. Zhang and Wang [16] 

project ensemble learning to build a robust credit risk prediction method through combination of many 

fundamental ML methodologies. There are 3 classification-based ML methods such as SVM, radial basis function, 

and ANN models, and “voting” approach was employed to combine into an innovative strong classifier. 

A. Limitations and Research Gap 

Despite the improvements in financial risk and credit risk prediction models, various limitations still exist. Many 

models, such as those based on gradient-boosting DTs or ensemble learning, may not effectually handle the 

complex and dynamic nature of financial markets, resulting in suboptimal performance in rapidly changing 

conditions. Furthermore, while methods such as PSO-SDAE and hybrid models enhance accuracy, they often 

depend on computationally expensive optimization techniques, which can limit scalability. The integration of 

social media and psycholinguistics data for creditworthiness assessment is innovative but may raise concerns 

regarding data privacy and reliability. Moreover, the reliance on historical financial data and conventional 

collateral information in some models does not fully address the needs of unbanked or underbanked populations. 

Lastly, many models are designed for specific contexts, such as SMEs or banks, limiting their general applicability 

across diverse industries or regions. Further research is required to develop more adaptable, scalable, and privacy-

preserving methods for broader financial risk prediction. 

3. The Proposed Method 

In this study, a novel FCRF-BSVNGSA technique is proposed. The primary objective of FCRF-BSVNGSA 

technique is to develop an effective model for financial credit risk prediction using advanced methods. It contains 

three various kinds of processes involved ass z-score normalization, BSVNG-based classification, and MOHO-

based parameter tuning. Fig. 1 signifies the complete workflow of the FCRF-BSVNGSA model. 

 

Figure 1. Overall flow of FCRF-BSVNGSA approach 

The working process involves three steps as listed below. 

 Z-score based normalization 

 BSVNG based prediction 

 MOHO based parameter selection 

 

A. Data Normalization: Z-score  

At first, the data normalization step applies Z-score normalization for converting an input data into a beneficial 

format. Z-score normalization also known as standardization, is a numerical model applied in financial credit risk 
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prediction to convert data into a typical scale by a mean of 0 and a standard deviation of 1 [17]. It aids in managing 

varying measures in financial data and makes sure fair contrasts across dissimilar risk indicators. By transforming 

raw credit risk features into normalized scores, this normalization improves stability and accuracy of model. It also 

diminishes an impact of outliers, which are general in financial datasets. This model is mainly beneficial in credit 

risk methods depending upon ML and statistical techniques. Standardized data increases convergence in optimizer 

models, which leads to better performance of predictive. 

B. Model Selection  

For the financial credit risk classification process, the proposed FCRF-BSVNGSA model utilizes the BSVNG 

approach. This part recollects some basic definitions related to BFG, BSVNG along dominance important for this 

study [18]. 

Definition: 3.1  

A BFG using a finite set 𝑋 as the primary set represents pairs of 𝐺 = (𝑉, 𝐸), wherein 𝑉 = (𝜇𝑉
+, 𝜇𝑉

−) signifies a bi-

polar fuzzy set (FS) on 𝑋, however 𝐸 = (𝜇𝐸
+, 𝜇𝐸

−) designates a bi-polar fuzzy relation on 𝑋 given that 𝜇𝐸
+(𝑣𝑚𝑣𝑛) ≤

𝜇𝑣
+(𝑣𝑚) ∧ 𝜇𝑣

+(𝑣𝑛) and 𝜇𝐸
−(𝑣𝑚𝑣𝑛) ≥ 𝜇𝑣

+(𝑣𝑚) ∨ 𝜇𝑣
+(𝑣𝑛) whereas 𝑣𝑚𝑣𝑛 ∈ 𝐸. They appeal 𝑉 = (𝜇𝑉

+, 𝜇𝑉
−) the bi-polar 

fuzzy vertex set of 𝑋, whereas 𝐸 = (𝜇𝐸
+, 𝜇𝐸

−) indicates the bi-polar fuzzy edge set of 𝑋. 

Definition: 3.2  

A bi-polar NS A about nonempty set 𝑋 mentions an objective of the method.  

𝐴 = {〈𝑥, 𝑇𝐴
+(𝑥), 𝐼𝐴

+(𝑥), 𝐹𝐴
+(𝑥), 𝑇𝐴

−(𝑥), 𝐼𝐴
−(𝑥), 𝐹𝐴

−(𝑥)〉: 𝑥 ∈ 𝑋}, 

Whereas𝑇𝐴
+, 𝐼𝐴

+, 𝐹𝐴
+: 𝑋 → [0,1]and𝑇𝐴

−, 𝐼𝐴
−, 𝐹𝐴

−: 𝑋 → [−1,0].Now, the positive values 𝑇𝐴
+(𝑥), 𝐼𝐴

+(𝑥), 𝐹𝐴
+(𝑥) 

expressed the truth, indeterminacy in addition to false‐memberships amounts of the component 𝑥 ∈ 𝑋, 

correspondingly, but 𝑇𝐴
−(𝑥), 𝐼𝐴

−(𝑥), 𝐹𝐴
−(𝑥) state the hidden counter properties of the indeterminacy, truth, and 

false‐memberships degrees of the component 𝑥 ∈ 𝑋, consequently, which is equivalent to the bi-polar NS 𝐴. 

Definition: 3.3  

Assume 𝐴 = (𝑇𝐴
+, 𝐼𝐴

+, 𝐹𝐴
+, 𝑇𝐴

−, 𝐼𝐴
−, 𝐹𝐴

−) and 𝐵 = (𝑇𝐵
+, 𝐼𝐵

+, 𝐹𝐵
+, 𝑇𝐵

−, 𝐼𝐵
−, 𝐹𝐵

−) remain bi-polar NG on a set 𝑋. When 

𝐵 = (𝑇𝐵
+, 𝐼𝐵

+, 𝐹𝐵
+, 𝑇𝐵

−, 𝐼𝐵
−, 𝐹𝐵

−) signify a bi-polar Neutrosophic relation on 𝐴 = (𝑇𝐴
+, 𝐼𝐴

+, 𝐹𝐴
+, 𝑇𝐴

−, 𝐼𝐴
−, 𝐹𝐴

−), formerly 

𝑇𝐵
+(𝑥𝑦) ≤ min(𝑇𝐴

+(𝑥), 𝑇𝐴
+(𝑦)), 𝐼𝐵

+(𝑥𝑦) ≥ max(𝐼𝐴
+(𝑥), 𝐼𝐴

+(𝑦)), 𝐹𝐵
+(𝑥𝑦) ≥ max(𝐹𝐴

+(𝑥), 𝐹𝐴
+(𝑦)), 

𝑇𝐵
−(𝑥𝑦) ≥ max(𝑇𝐴

−(𝑥), 𝑇𝐴
−(𝑦)), 𝐼𝐵

−(𝑥𝑦) ≤ min(𝐼𝐴
−(𝑥), 𝐼𝐴

−(𝑦)), 𝐹𝐵
−(𝑥𝑦) ≤ min(𝐹𝐴

−(𝑥), 𝐹𝐴
−(𝑦)), ∀𝑥, 𝑦 ∈ 𝑋. 

Definition: 3.4   

Assume that 𝐺 = (𝑉, 𝐸) represents a BSVNG whereas 𝑥, 𝑦 ∈ 𝑉 in 𝐺. Later demonstrate that 𝑥 leads 𝑦 if 

𝑇𝐸
+(𝑥𝑦) = 𝑇𝑉

+(𝜒) ∧ 𝑇𝑉
+(𝑦), 𝐼𝐸

+(𝑥𝑦) = 𝐼𝑉
+(𝑥) ∨ 𝐼𝑉

+(𝑦), 𝐹𝐸
+(𝑥𝑦) = 𝐹𝑉

+(𝑥) ∨ 𝐹𝑉
+(𝑦), 

𝑇𝐸
−(𝑥𝑦) = 𝑇𝑉

−(𝑥) ∨ 𝑇𝑉
−(𝑦), 𝐼𝐸

−(𝑥𝑦) = 𝐼𝑉
−(𝑥) ∧ 𝐼𝑉

−(𝑦), 𝐹𝐸
−(𝑥𝑦) = 𝐹𝑉

−(𝑥) ∧ 𝐹𝑉
−(𝑦) . 

Definition:4.1 

A graph of the type 𝐺̃ = (𝑉, 𝐸, 𝜇+, 𝛾+, 𝜎+, 𝜇−, 𝛾−, 𝜎−, 𝜇1
+, 𝛾1

+, 𝜎1
+, 𝜇1

−, 𝛾1
−, 𝜎1

−) is named double dominating 

BSVNG, whereby 𝜇1
+: 𝑉 → [0,1], 𝛾1

+: 𝑉 → [0,1], and 𝜎1
+: 𝑉 → [0,1], symbolizes a positive membership, 

indeterminacy, and non‐membership degrees,  𝜇1
−: 𝑉 → [−1,0], 𝛾1

−: 𝑉 → [−1,0], and  𝜎1
−: 𝑉 → [−1,0], designates 

a negative membership, indeterminacy, and non‐membership degrees described given that 

𝜇1
+(𝑣𝑚) = min[𝜇

+(𝑣𝑚, 𝑣𝑛)], 𝛾1
+(𝑣𝑚) = max[𝛾

+(𝑣𝑚, 𝑣𝑛)], 𝜎1
+(𝑣𝑚) = max[𝜎+(𝑣𝑚 , 𝑣𝑛)], 𝜇1

−(𝑣𝑚) =
 max [𝜇−(𝑣𝑚, 𝑣𝑛)], 𝛾1

−(𝑣𝑚) = min[𝛾
−(𝑣𝑚, 𝑣𝑛)], 𝜎1

−(𝑣𝑚) = min[𝜎
+(𝑣𝑚, 𝑣𝑛)]. 

Definition: 4.2 

For every BSVNG, 𝐺̃ = (𝑉, 𝐸, 𝜇+, 𝛾+, 𝜎+, 𝜇−, 𝛾−, 𝜎−, 𝜇1
+, 𝛾1

+, 𝜎1
+, 𝜇1

−, 𝛾1
−, 𝜎1

−), a subset 𝐷̃𝑑 ⊆ 𝑉 is identified as 

double dominating set (DDS) in 𝐺̃ given that every vertex in 𝑉 − 𝐷̃𝑑 is dominated by fully dual vertices in 𝐷̃𝑑. 

The reduced cardinality of each DDS of 𝐺̃ is recognized as the double domination number of 𝐺̃, characterized by 

𝛾𝐷𝑑
𝑁 (𝐺̃). 

Definition: 4.3 

Assume 𝐺̃ = (𝑉, 𝐸, 𝜇+, 𝛾+, 𝜎+, 𝜇−, 𝛾−, 𝜎−, 𝜇1
+, 𝛾1

+, 𝜎1
+, 𝜇1

−, 𝛾1
−, 𝜎1

−) signify a double-dominating BSVNG. Assume 

𝑢, 𝑣 ∈ 𝑉. Now, 𝑢 dominates 𝑣 in 𝐺̃. Given that stronger edges occur from 𝑢 to 𝑣. 
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Definition: 4.4 

Assume 𝐺̃ = (𝑉, 𝐸, 𝜇+, 𝛾+, 𝜎+, 𝜇−, 𝛾−, 𝜎−, 𝜇1
+, 𝛾1

+, 𝜎1
+, 𝜇1

−, 𝛾1
−, 𝜎1

−) indicate a two dominating BSVNG. Therefore, 

the adjacency matrix as regards 𝐺̃ is stated as 𝐴𝐷̃𝑑(𝐺̃) = [𝑑𝑚𝑛], wherein 

𝑑𝑚𝑛 =

{
 
 

 
 (

𝜇𝑚𝑛′
+ 𝛾𝑚𝑛′

+ 𝜎𝑚𝑛
+

𝜇𝑚𝑛′𝛾𝑚𝑛′𝜎𝑚𝑛
− )         𝑖𝑓(𝑣𝑚′𝑣𝑛) ∈ 𝐸

(
1,1,1,

−1, −1,−1
)   𝑖𝑓𝑚 = 𝑛 𝑎𝑛𝑑 𝑣𝑚 ∈ 𝐷𝐷̃𝑑

(
0,0,0,
0,0,0

)                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

These dominating bi-polar matrices of the single-valued neutrosophic adjacency, 𝐴𝐷̃𝑑(𝐺) might be stated as 

𝐴𝐷̃𝑑(𝐺̃) = (𝜇𝐷̃𝑑
+ (𝐺̃), 𝛾𝐷̃𝑑

+ (𝐺̃), 𝜎𝐷̃𝑑
+ (𝐺̃), 𝜇𝐷̃𝑑

− (𝐺̃), 𝛾𝐷̃𝑑
− (𝐺̃), 𝜎𝐷̃𝑑

− (𝐺̃)) wherein 

𝜇𝐷̃𝑑
+ (𝐺̃) = {

𝜇𝑚𝑛
+  𝑖𝑓 (𝑣𝑚′𝑣𝑛) ∈ 𝐸

1 𝑖𝑓 𝑚 = 𝑛 𝑎𝑛𝑑 𝑣𝑗 ∈ 𝐷̃𝑑,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛾𝐷̃𝑑
+ (𝐺̃) = {

𝛾𝑚𝑛
+  𝑖𝑓 (𝑣𝑚′𝑣𝑛) ∈ 𝐸

1 𝑖𝑓 𝑚 = 𝑛 𝑎𝑛𝑑 𝑣𝑚 ∈ 𝐷̃𝑑,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜎𝐷̃𝑑
+ (𝐺̃) = {

𝜎𝑚𝑛
+  𝑖𝑓 (𝑣𝑚′𝑣𝑛) ∈ 𝐸

1 𝑖𝑓 𝑚 = 𝑛 𝑎𝑛𝑑 𝑣𝑚 ∈ 𝐷̃𝑑,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜇𝐷̃𝑑
− (𝐺) = {

𝜇𝑚𝑛
−  𝑖𝑓 (𝑣𝑚′𝑣𝑛) ∈ 𝐸

−1 𝑖𝑓 𝑚 = 𝑛 𝑎𝑛𝑑 𝑣𝑚 ∈ 𝐷̃,
0 𝑜𝑖ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛾𝐷̃𝑑
− (𝐺̃) = {

𝛾𝑚𝑛
−  𝑖𝑓 (𝑣𝑚′𝑣𝑛) ∈ 𝐸

−1 𝑖𝑓 𝑚 = 𝑛 𝑎𝑛𝑑 𝑣𝑚 ∈ 𝐷̃𝑑,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜎𝐷̃𝑑
− (𝐺̃) = {

𝜎𝑚𝑛
−  𝑖𝑓 (𝑣𝑚′𝑣𝑛) ∈ 𝐸

−1 𝑖𝑓 𝑚 = 𝑛 𝑎𝑛𝑑 𝑣𝑚 ∈ 𝐷̃𝑑.
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Definition: 4.5 

The spectrum regarding the matrix of adjacency of a double-dominating BSVNG 𝐺̃ is represented as 

(𝑆𝐷̃𝑑
𝜇+
, 𝑆𝐷̃𝑑

𝛾+
, 𝑆𝐷̃𝑑

𝜎+ , 𝑆𝐷̃𝑑
𝜇−
, 𝑆𝐷̃𝑑

𝛾+
, 𝑆𝐷̃𝑑

𝜎−), where𝑆𝐷̃𝑑
𝜇+
, 𝑆𝐷̃𝑑

𝑟+, 𝑆𝐷̃𝑑
𝜎+ , 𝑆𝐷̃𝑑

𝜇−
, 𝑆𝐷̃𝑑

𝑟− , 𝑆𝐷̃𝑑
𝜎− represents collections of eigenvalues of 

𝜇𝐷̃𝑑
+ (𝐺̃), 𝛾𝐷̃𝑑

+ (𝐺̃), 𝜎𝐷̃𝑑
+ (𝐺̃), 𝜇𝐷̃𝑑

− (𝐺̃), 𝛾𝐷̃𝑑
− (𝐺̃), and 𝜎𝐷̃𝑑

− (𝐺̃), correspondingly. 

Definition: 4.6 

The energy of the double-dominating BSVNG 𝐺̃ = (𝑉, 𝐸, 𝜇+, 𝛾+, 𝜎+, 𝜇−, 𝛾−, 𝜎−, 𝜇1
+, 𝛾1

+, 𝜎1
+, 𝜇1

−, 𝛾1
−, 𝜎1

−) was 

described as 

𝐸𝐷̃𝑑(𝐺̃) = (𝐸 (𝜇𝐷̃𝑑
+ (𝐺̃)) , 𝐸 (𝛾𝐷̃𝑑

+ (𝐺̃)) , 𝐸 (𝜎𝐷̃𝑑
+ (𝐺̃)) , 𝐸 (𝜇𝐷̃𝑑

− (𝐺̃)) , 𝐸 (𝛾𝐷̃𝑑
− (𝐺̃)) , 𝐸 (𝜎𝐷̃𝑑

− (𝐺̃))) 

= (∑|

𝑛

𝑝=1

𝜁𝑝 |,∑ |

𝑛

𝑝=1

𝜏𝑝| ,∑ |

𝑛

𝑝=1

𝑣𝑝 |,∑ |

𝑛

𝑝=1

𝜃𝑝| ,∑ |

𝑛

𝑝=1

𝜉𝑝 |,∑ |

𝑛

𝑝=1

𝜀𝑝|) 

Whereas 𝑆𝐷̃𝑑
𝜇+
= {𝜁𝑝}𝑝=1

𝑛 , 𝑆𝐷̃𝑑
𝛾+
= {𝜏𝑝}𝑝=1

𝑛 , 𝑆𝐷̃𝑑
𝜎+ = {𝜄)𝑝}𝑝=1

𝑛 , 𝑆𝐷̃𝑑
𝜇−
= {𝜃𝑝}𝑝=1

𝑛 , 𝑆𝐷̃𝑑
𝛾−
= {𝜉𝑝}𝑝=1

𝑛  and 𝑆𝐷̃𝑑
𝜎− = {𝜀𝑝}𝑝=1

𝑛 . 
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C. Algorithmic Selection for Parameter Tuning 

Eventually, the MOHO technique fine-tunes the hyperparameter values of the BSVNG technique optimally and 

results in better classification performance. The MOHO model is a population‐based meta-heuristic influenced by 

the hunting and social behaviours of hippopotamuses [19]. This model is separated into 3 stages: defense against 

predators, exploitation, and exploration. Every stage replicates their behaviors monitored by hippopotamuses 

during their connections in ponds and rivers while opposed by hunters. 

Every solution related to a vector 𝑋𝑖 in the searching area, here 𝑖 = 1,2, … , 𝑁𝑖, with 𝑁 depicting the entire searching 

agents. The location of every hunting agent 𝑋𝑖 is initialized based on the equation. 

𝑋𝑖𝑗 = 𝑙𝑏𝑗 + 𝑟𝑗 ∗ (𝑢𝑏𝑗 − 𝑙𝑏𝑗), 𝑓𝑜𝑟 𝑗 = 1,2, … . , 𝑑                                                         (1) 

Where, 𝑙𝑏𝑗 and 𝑢𝑏𝑗 signify the lower and upper limits of the searching area for the 𝑗𝑡ℎ size, 𝑟𝑗 denotes a consistently 

distributed arbitrary number between zero and one, and 𝑑 represents the dimensionality concerns. The fitness value 

and equivalent location from the primary population are stored as 𝑋𝑏𝑒𝑠𝑡  and 𝑓𝑏𝑒𝑠𝑡, correspondingly. 

Phase1: Exploration  

In the level of exploration, the searching agents upgrade their location depending upon connections with the 

prevailing individual and an arbitrarily chosen agent groups. The location of every agent is upgraded: 

1. First Position Update: 

The initial location upgrade 𝑋𝑃1 is affected by the dominant hippopotamus: 

𝑋𝑃1 = 𝑋𝑖 + 𝑟1 ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝐼1 ∗ 𝑋𝑖)                                                                     (2) 

Here: 𝑟1 is a random scalar, and 𝐼1 is an arbitrarily selected value from the set {1,2}. 

2. Second Position Update: 

Another upgrade 𝑋𝑃2 based on the mean spot of an arbitrary community of searching agents 𝑋𝑚𝑒𝑎𝑛 and the 

foremost hippos: 

𝑋𝑃2 = {

𝑋𝑖 + 𝐴 ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝐼2 ∗ 𝑋𝑚𝑒𝑎𝑛), 𝑖𝑓 𝑇 > 0.6

𝑋𝑖 + 𝐵 ∗ (𝑋𝑚𝑒𝑜𝑛 − 𝑋𝑏𝑒𝑠𝑡), 𝑖𝑓 𝑟𝑎𝑛𝑑() > 0.5

𝑙𝑏 + 𝑟2 ∗ (𝑢𝑏 − 𝑙𝑏), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                          (3) 

Here 𝑟2 depicts a randomly formed scalar, 𝐴, and 𝐵 are arbitrary vectors created from the integration of arbitrary 

integers.  𝑇 = 𝑒𝑥𝑝(−𝑟/𝑀𝑎𝑥−𝑖𝑡𝑒𝑟) manages the transition among exploitation and exploration. 𝐼2 signifies integer 

values of 𝑙 or 2 based on the hippo’s location in the level of exploration. 𝑡 represents the existing iteration, and 

Max−iter specifies the maximal iteration counts. 𝑇 manages the evolution of models. 

3. Fitness Comparison: 

Afterwards upgrading the location of 𝑋𝑃2 and 𝑋𝑃𝑙 the novel location is assessed utilizing the FF. The searching 

agent maintains the finest solution: 

𝑋𝑖 = {
𝑋𝑃1, 𝑖𝑓 𝑓 𝑋𝑝1 < 𝑓(𝑥𝑖)

𝑋𝑃2, 𝑖𝑓 𝑓 𝑋𝑝2 < 𝑓(𝑥𝑖)
                                                                (4) 

Phase2: Defense Against Predators  

During the level, the searching agent upgrades their location to protect itself from hunters and arbitrarily creates 

points in the hunting area. The location of predator 𝑋𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟  is created: 

𝑋𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 = 𝑙𝑏 + 𝑟3 ∗ (𝑢𝑏 − 𝑙𝑏)                                                                    (5)  

Every search agent upgrades its location 𝑋𝑃3 depend upon its distance to Levy fight mechanism and predator: 

𝑋𝑃3 =

{
 

 𝑅𝐿 ∗ 𝑋𝑝𝑟𝑒𝑑𝑎𝜏𝑜𝑟 +
𝑏

𝑐 − 𝑏 cos(𝑙)
∗

1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2𝐿𝑒𝑎𝑑𝑒𝑟
)  𝑖𝑓 𝑓 (𝑋𝑝𝑟𝑒𝑑𝑎𝜏𝑜𝑟) < 𝑓(𝑋𝑖)

𝑅𝐿 ∗ 𝑋𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 +
𝑏

𝑐 − 𝑏cos(𝑙)
∗

1

2 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2𝐿𝑒𝑎𝑑𝑒𝑟 + 𝑟4
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  (6) 

𝑅𝐿 means distribution of Levy that presents arbitrariness in the process of hunting and 𝑏, 𝑐, 𝑑, and 𝑙 symbolize 

randomly generated numbers managing the hunter’s influence. 𝑟3 and 𝑟4 in Eqs. (5) & (6) represent consistently 
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dispersed arbitrary numbers among (0,1), employed for regulating randomness in the individual movement. 𝑢𝑏 

and 𝑙𝑏 signifies the upper and lower bound of the searching area for provided decision variables. 

Phase3: Exploitation stage (Escape from the Predator) 

In this stage, the hunting agent optimizes their location to run away from hunters and travel to the optimum 

solutions. 

𝑋𝑃4 = 𝑋𝑖 + 𝑟5 ∗ (
𝑙𝑏

𝑡
+ 𝐷 ∗ (

𝑢𝑏

𝑡
−
𝑙𝑏

𝑡
))                                                            (7) 

Here 𝑟5 represents an arbitrary scalar, and 𝑡 is existing iterations. 𝐷 in Eq. (7) depicts an arbitrary vector originating 

from pre-defined changes like rotation, refection, or scaling. It fine-tunes the magnitude and direction of movement 

for female or immature hippopotamuses. It improves the adjustability of a model to different optimizer settings. 

A new location is recognized when it leads to an enhancement in fitness: 

𝑋𝑖 = {𝑋𝑃4, 𝑖𝑓 𝑓(𝑋𝑃4) < 𝑓(𝑋𝑖)                                                                    (8) 

The model endures to iterate over the defense, exploitation, and exploration stages until the maximal iteration 

counts Max_iter is achieved. The finest solution 𝑋𝑏𝑒𝑠𝑡  and equivalent fitness value 𝑓𝑏𝑒𝑠𝑡 it came back to output. 

The model of MOHO matches exploitation and exploration over its 3 stages, guaranteeing that the searching agents 

travel the hunting area extensively while converging to the globally optimal. 

The MOHO approach originates a fitness function (FF) for attaining an enhanced performance of classification. 

To signify an enhanced candidate solution performance, the FF states a positive numeral. Here, the classification 

rate of error reduction was determined by FF. The mathematical formulation is shown below: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑛𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100       (9) 

4. Performance Validation  

The simulation validation of FCRF-BSVNGSA technique is inspected under the Statlog (German Credit Data) 

dataset [20]. The dataset was accessed on 27 Feb. 2025. The dataset consists of 1000 instances, classified into two 

classes: "Financial Crisis" with 300 instances and "Non-Financial Crisis" with 700 instances. 

Fig. 2 displays the classifier analysis of the FCRF-BSVNGSA method. Figs. 2a-2b exemplifies the confusion 

matrices through specific identification and classification of each class below 70%TRAPHA and 30%TESPHA. 

Fig. 2c displays the PR inspection, notifying higher outcomes through distinct class labels. Finally, Fig. 2d 

represents the ROC examination, signifying proficient outcomes through high values of ROC for several classes. 

 

Figure 2. Classifier outcome of (a-b) 70% and 30% confusion matrices and (c-d) curves of PR and ROC 

https://doi.org/10.54216/IJNS.260215


 
International Journal of Neutrosophic Science (IJNS)                                         Vol. 26, No. 02, PP. 204-214, 2025 

211 
DOI: https://doi.org/10.54216/IJNS.260215 

Fig. 3 examine the financial credit risk prediction of FCRF-BSVNGSA methodology below 70%TRAPHA and 

30%TESPHA. The performances stated that the FCRF-BSVNGSA methodology suitably classified all the 

samples. Using 70%TRAPHA, the FCRF-BSVNGSA method delivers average 𝑎𝑐𝑐𝑢𝑦 of 94.65%, 𝑠𝑒𝑛𝑠𝑦 of 

94.65%, 𝑠𝑝𝑒𝑐𝑦 of 94.65%, 𝐹1𝑠𝑐𝑜𝑟𝑒of 95.84%, and 𝑀𝐶𝐶 of 91.86%.  Additionally, on 30%TESPHA, the FCRF-

BSVNGSA approach provides average 𝑎𝑐𝑐𝑢𝑦 of 95.59%, 𝑠𝑒𝑛𝑠𝑦  of 95.59%, 𝑠𝑝𝑒𝑐𝑦 of 95.59%, 𝐹1𝑠𝑐𝑜𝑟𝑒of 96.58%, 

and 𝑀𝐶𝐶 of 93.39%.   

 

Figure 3. Average of FCRF-BSVNGSA model under 70%TRAPHA and 30%TESPHA 

In Fig. 4, the TRAN  𝑎𝑐𝑐𝑢𝑦 and VALN 𝑎𝑐𝑐𝑢𝑦 performances of the FCRF-BSVNGSA technique are depicted. 

The values of 𝑎𝑐𝑐𝑢𝑦 are computed across a time of 0-25 epochs. The figure underscored that the values of TRAN 

and VALN 𝑎𝑐𝑐𝑢𝑦 expresses a growing propensity, indicating the capacity of the FCRF-BSVNGSA approach with 

maximum performance across numerous repetitions. Afterward, the TRAN and VALN 𝑎𝑐𝑐𝑢𝑦 values remain close 

through the epochs, notifying diminished overfitting and presenting superior performance of the FCRF-

BSVNGSA approach, which guarantees reliable calculation on hidden samples. 

 

Figure 4. 𝐴𝑐𝑐𝑢𝑦 Curve of FCRF-BSVNGSA model 

In Fig. 5, the TRANLOS and VALNLOS graph of the FCRF-BSVNGSA methodology is revealed. The values of 

loss are computed through a time of 0-25 epochs. It is exemplified that the values of TRANLOS and V VALNLOS 

represent a declining propensity, which indicates the competency of the FCRF-BSVNGSA methodology in 

corresponding to an equilibrium between generalization and data fitting. The progressive dilution in values of loss 

as well as securities the superior performance of the FCRF-BSVNGSA approach and tune the calculation results 

after a while. 

 

Figure 5. Loss curve of FCRF-BSVNGSA model 
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Fig. 6 studies the 𝑠𝑒𝑛𝑠𝑦 , and 𝑠𝑝𝑒𝑐𝑦 analysis of FCRF-BSVNGSA model with existing methodologies [21]. 

According to 𝑠𝑒𝑛𝑠𝑦 , the FCRF-BSVNGSA technique has maximum 𝑠𝑒𝑛𝑠𝑦  of 95.59% although the HHPODL-

FCP, QABO-LSTM-RNN, LSTM-RNN, ACO, MLP, SVM, and AdaBoost approaches have gained lower 𝑠𝑒𝑛𝑠𝑦  

of 93.59%, 87.25%, 82.21%, 78.32%, 73.89%, 72.71%, and 71.40%, correspondingly. In addition, according to 

𝑠𝑝𝑒𝑐𝑦 ,the FCRF-BSVNGSA technique has superior 𝑠𝑝𝑒𝑐𝑦 of 95.59% although the HHPODL-FCP, QABO-

LSTM-RNN, LSTM-RNN, ACO, MLP, SVM, and AdaBoost approaches have reached diminished 𝑠𝑝𝑒𝑐𝑦 of 

94.04%, 93.59%, 88.56%, 69.32%, 66.91%, 66.44%, and 61.35%, correspondingly. 

 

Figure 6. 𝑆𝑒𝑛𝑠𝑦, and 𝑆𝑝𝑒𝑐𝑦 outcome of FCRF-BSVNGSA technique with existing models 

Fig. 7 examines 𝑎𝑐𝑐𝑢𝑦, and 𝐹1𝑠𝑐𝑜𝑟𝑒  analysis of FCRF-BSVNGSA model with existing methodologies. With 

𝑎𝑐𝑐𝑢𝑦, the FCRF-BSVNGSA model has increased 𝑎𝑐𝑐𝑢𝑦 of 95.59% although the HHPODL-FCP, QABO-LSTM-

RNN, LSTM-RNN, ACO, MLP, SVM, and AdaBoost models have attained minimal 𝑎𝑐𝑐𝑢𝑦 of 94.93%, 91.97%, 

84.59%, 75.79%, 70.97%, 71.20%, and 67.55%, respectively. Afterwards, using 𝐹1𝑠𝑐𝑜𝑟𝑒 ,the FCRF-BSVNGSA 

method has increased 𝐹1𝑠𝑐𝑜𝑟𝑒  of 96.58% although the HHPODL-FCP, QABO-LSTM-RNN, LSTM-RNN, ACO, 

MLP, SVM, and AdaBoost models have gained diminished 𝐹1𝑠𝑐𝑜𝑟𝑒 of 93.73%, 90.12%, 88.76%, 85.41%, 75.13%, 

71.79%, and 71.29%, correspondingly.  

 

Figure 7. 𝐴𝑐𝑐𝑢𝑦 and 𝐹1𝑠𝑐𝑜𝑟𝑒  outcome of FCRF-BSVNGSA technique with existing models 

5. Conclusion  

In this paper, a new FCRF-BSVNGSA method is proposed. The main intention of the FCRF-BSVNGSA approach 

is to develop an effective method for financial credit risk prediction using advanced methods. At first, the data 

normalization stage applies Z-score normalization for converting input data into a beneficial format. For the 

financial credit risk classification process, the proposed FCRF-BSVNGSA model utilizes the BSVNG approach. 

Finally, the MOHO model fine-tunes the hyperparameter values of the BSVNG model optimally and results in 

great classification performance. An extensive simulation of the FCRF-BSVNGSA approach is performed under 

the Statlog (German Credit Data) dataset. The experimental validation of the FCRF-BSVNGSA approach 

portrayed a superior accuracy value of 95.59% over exisitng techniques. The limitations of the FCRF-BSVNGSA 

approach comprise the reliance on a relatively small dataset, which may not fully capture the diverse conditions 

or complexities of financial crises in diverse economic contexts. Moreover, the binary classification of financial 

crisis versus non-financial crisis may overlook more complex or intermediate categories, mitigating the capability 

of the model to detect subtle shifts in economic conditions. The study also does not address potential biases in the 

data, such as regional or sectoral disparities, which could affect the generalizability of the findings. Furthermore, 

the lack of real-time data integration restricts the adaptability of the model in dynamic economic environments. 
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Future work may concentrate on expanding the dataset to comprise more instances from diverse economic regions 

and integrating multi-class classification to better capture varying crisis severity levels. Additionally, exploring 

hybrid approaches that incorporate real-time data with historical trends could improve the predictive capability of 

the model. Enhanced model interpretability and transparency should also be prioritized to enhance trust in the 

predictions. 
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