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Abstract  

The first appearance of COVID-19 in late 2019 and spread rapidly throughout the world until it became a global 

pandemic, and the World Health Organization announced some vaccines, and the emergence of a mutated version 

of COVID-19 was reported in several countries, including Iraq, and we will take care of conducting a study on the 

spread and dynamics of a virus, this work will be based on the study of the dynamics 3D harvesting predator 

(COVID-19) differential-algebraic predator-prey economic model (DA-PPM) with functional responses of Holing 

type-II. The appropriate and realistic description with high accuracy of this phenomenon, which may be natural and 

emerging as such models, has proven the sentimentality and existence of the solution to the system, and the stability 

of the system, was discussed in a manner similar to the stability of Matignon. The numerical results showed that the 

variables of stable unhappy situations have an effect, and this important study can be used as one of the methods of 

health science to control the spread of COVID-19 and its advanced models.  One of the critical aspects of sustainable 

development is building resilient health systems capable of dealing with epidemics and other crises, the 

mathematical model (DA-PPM) was applied to analyze the sustainability of health systems under the pressure of 

Covid-19 and evaluate how long-term public health policies and interventions can prevent overexploitation of 

resources. Ensuring equitable access to care. The application of the mathematical model to understand the spread of 

the epidemic is discussed to observe the spread of the epidemic, the possibility of coexistence with it, its close 

relationship with sustainable development, and to emphasize the importance of the flexibility of the health system. 

In addition, we apply our results on the neutrosophic supposed data that deals with uncertainty in real-life 

measurements and compare it with the classical results. 

Keywords: Epidemiological ecosystem; Prey-Predator model; Economic effort; Harvesting Prey-Predator; Holling 

type-II; Differential-algebraic system; Stability; Neutrosophic environment; Neutrosophic data; Neutrosophic 

variables 

1. Introduction  

During the previous months, many studies and research have been conducted the development of COVID-19 and its 

spread. These studies were concerned with the spread of the virus and expectations and suggestions on how to find 

various ways to treat it, as it was observed that temperature and humidity through contact or breathing are among 

the most common causes of transmission of the virus. In this work, we will design a new COVID-19 mathematical 

model and provide a dynamic behavior analytical study on how infection spreads and person-to-person transmission 

within a community based on Holling-type II modeling. We will also study the dynamic system equilibria and find 

the algebraic solutions of the system and numerical solutions. This research will help hold of positive results in 

develop precipitate, precise, and economic monitoring and disclosure mechanisms to reduce the risks of infection 

with different coronaviruses [1-6] . 

A one crucial aspect of sustainable development in health systems and resilience is building resilient health systems 

capable of handling pandemics and other crises. The mathematical model can be applied to analyze the sustainability 
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of health systems under the strain of COVID-19, assessing how long-term public health policies and interventions 

can prevent overexploitation of resources while ensuring equitable access to care. A study discussed the application 

of mathematical models to understand the spread of the pandemic, which could be linked to sustainable development 

by emphasizing the importance of health system resilience [4] . 

The most useful method for understanding the complexity of nature is to model the dynamics of the biological 

ecology. The economic theory of a common -property in resources [7]. Examines the impact of harvest efforts on 

the ecosystem from an economic standpoint. ecological networks, predator-prey dynamics, and mathematical 

modeling [3]. Particularly research on biological species interactions or population increase. Numerous 

mathematical models illustrate population dynamics and competition  [8]. following the well-known Lotka-Volterra 

prey-predator model [5, 9]. An equation is proposed to examine the dynamical behavior in a harvested differential-

algebraic allelopathic phytoplankton system, as well as the yield of harvest effort of economic relevance [10-13]. 

 The authors studied the differential equations and dynamical systems [14]. Bioeconomic modeling using 

differential-algebraic equations of a predator-prey system [15]. and singular biological economic model dynamics 

and stability [16]. Lotka, Volteraa with their model [17]. and semi-explicit DASs are important sub classes of non-

linear DAS [18]. because of the applications in bifurcation and differential equations with economic interest, a basic 

model of a predator-prey population model with complex dynamics in[19] . Moreover, a predator-prey mathematical 

model with modified leslie-gower and Holling-type II schemes was discussed.   

In this paper, a generalized mathematical model of the harvesting effort predator-prey differential-algebraic system 

in the present economic interest with the functional response of Holling-type II has been represented as a differential-

algebraic mathematical model. The solvability of n-dimensional differential-algebraic system have presented with 

the necessary assumptions and proofs. A stability of 3D harvesting economic differential-algebraic predator-prey 

models (DA-PPM) with functional response of Holling-type II was developed with numerical results. 

2. Epidemiological Ecosystem 

Epidemiological environmental models can represent their temporal evolution through two independent first-order 

continuous-time differential equations as in this study. Natural pandemic ecosystems contain all the necessary 

components that are non-linear, high-dimensional, etc. the ability to support induction, predator harvesting and 

stability is discussed in  [5 ,20] . 

Harvested prey models with economic equation in predator prey model (PPM) have been examined asing a variety 

of analytical methods to study the stability, regularity and continuity of these PPMs in two types of epidemiological 

ecosystems [1, 21] . 

3. Predator Prey Model (PPM) 

The mathematical model in its general form, which describes the dynamics between the types of interaction between 

predator and prey, has the following structure [1, 6]. 

                                                    
𝑑𝑥

𝑑𝑡
= 𝑥𝑔(𝑥) − 𝑦𝑓(𝑥. 𝑦)                            (1a) 

                                                    
𝑑𝑦

𝑑𝑡
= 𝜎𝑦 𝑓(𝑥. 𝑦) − 𝑦𝑑(𝑦)                         (1b) 

Where: 𝑥: the prey density. 

             𝑦: predator density. 

       𝑔(𝑥): denotes the prey growth rate in the absence of a predator. 

            𝜎 : the conversion rate of prey eaten into a new predator. 

       𝑑(𝑦): the predator in the absence of its natural prey death rate. 

    𝑓(𝑥, 𝑦): the prey equation. 

 

4. Mathematical Modeling of a Predator Prey Model 

Significant interest has been shown in the mathematical modeling of PPM interactions. Given that the Lutka and 

Volterra origins worked in the last century in the 1920s, with equations of functional response that are strictly prey 

dependent, such as the Holing family [21]. They predominate in the literatures. In this, work the implementation of 

the Holing type-II functional response, in which the individual consumption rate predator’s increased at a decreasing 

rate with prey density until it became constant at satiation level. It is a hyperbola; the maximal value asymptotically 

approaches 𝑎 =
1

ℎ
 asymptotically, and is defined as. 
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 𝑓(𝑥) =
𝐴𝑥

1+𝐴ℎ𝑥
=

𝑎𝑥

𝑏+𝑥
 , where a search rate A, the time spent on the handling of one prey is h, the maximum attack 

rate is a and b is half the saturation level (𝑓(𝑏) =
𝑎

2
). Their dynamics have been extensively studied for the processes 

that influence the dynamics of PPM and to know which models could best represent the interactions of species with 

their economy, depending on how static they might be, which is modeling with economic interest (profit) [1, 21]. 

Remark 2.1 [22]: 

A pair of differential equations modeling the interaction between the predator (COVID-19) and prey (human) can 

be considered as a special                

                                               {

𝑑𝑁

𝑑𝑡̅
= 𝑟𝑁   (1 −

𝑁

𝐾
) −

𝑎 𝑁

𝑏+𝑁
 �̅�

𝑑�̅�

𝑑𝑡̅
= 𝜎 

𝑎 �̅�

𝑏+�̅�
 �̅� − �̅��̅� − �̅� �̅�

}                                (2) 

where: 𝑁 and �̅�: prey and predator respectively, and r, a , k, 𝜎 and �̅� are positive constants. 

The prey grows logistically with an inherent growth rate of r and a carrying capacity of K when there is no predation. 

When a predator (COVID-19) is present, the rate of predation is a, and the prey species N declines proportionately 

to the functional response. 

The operator 𝜎 indicates predation efficiency, which separates the maximum birth rate per capita from predators by 

the maximum consumption rate per master. Without prey, there was no assessment of predation and predatory 

species decreased significantly with mortality (�̅�).   

5. Harvesting and Economic of Predator Prey system 

We must consider prey (humans) and predators (COVID-19) at a new harvest rate. Study ideas provide a rate of 

harvest derived from the ability of viral therapies studied in dynamic models [1, 3, 23]. Thus economic recovery and 

resource management: Sustainable development also emphasizes the efficient use of resources, which in the case of 

COVID-19, translates to managing healthcare resources, economic impacts, and the deployment of vaccines. Using 

the predator-prey model, we could examine how economic efforts (such as investments in healthcare infrastructure) 

influence both the rate of virus spread and economic recovery. The equation modeling economic interest in your 

system mirrors real-world efforts to balance economic and public health objectives, and managing COVID-19's 

spread while considering economic ramifications aligns well with sustainable economic recovery [3]. 

Assumption: Using the two-dimensional normal differential equation system (2), we assume that harvesting take 

place, however in this predatory (COVID-19) segment it is under harvesting and the introduction of the predator 

virus (COVID-19) harvest function of �̅��̅� into the predatory prey system (2). The goal of the economic theory of 

common property resource's is to examine how harvesting affects the ecosystem from an economic perspective [1]. 

According to the equation proposed to investigate the economic harvest effort crop benefit, we have �̅�(𝑡̅) is the 

harvest effort, 𝑁(𝑡̅) and �̅�(𝑡̅) represents the prey and predator harvested population densities respectively. Thus, the 

total revenue of predator (COVID-19) is 

                                                  𝑇𝑅 = �̅� �̅�(𝑡̅) �̅�(𝑡̅)                                (3) 

where �̅�: is the unit price of the harvest (fixed), and the total cost is as follows 

                                                     𝑇𝐶 = 𝑐̅�̅�(𝑡̅)                                        (4) 

where 𝑐̅: is the harvested effort unit cost (constant). 

Combined with (3), the algebraic equation that consider the economic benefit �̅� from the harvest effort �̅�(𝑡̅), and 

can be expressed in relation to the predator (COVID-19) as follows: 

                                              �̅�(𝑡̅)[𝑤 �̅�(𝑡̅) − 𝑐̅] = �̅�                              (5) 

  

6. Differential-Algebraic Predator-Prey Model  

The general form of two- dimensional PPM (2) is ordinary differential equations to transform it to DAS, and the 

following assumption is very important: 

Assumption: The transformation of the ordinary differential equations (2) to the differential algebraic equations, 

which is possible by the effect of harvesting effort only, by adding the economic interest equation as an algebraic 

(constraint) equation, then the system will become as follows: 

https://doi.org/10.54216/IJNS.260201
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𝑑𝑁

𝑑𝑡̅
= 𝑟𝑁   (1 −

𝑁

𝐾
) −

𝑎 𝑁

𝑏+𝑁
 �̅�  

                                                    
𝑑�̅�

𝑑𝑡̅
= 𝜎 

𝑎 𝑁

𝑏+𝑁
 �̅� − �̅��̅� − �̅� �̅�                        (6) 

                                                      0 = �̅�(�̅� �̅� − 𝑐̅) − �̅�  

The above system is called the Differential-Algebraic Prey-Predator economic system with a Holing type-II 

functional response and harvesting of a predator (DA-PPS).  

7. Non-Dimensional Transformation 

The plan starts by determining the non-dimensional form of the DA-PPS, and non-dimensional transformation of 

DA-PP (6) can be determine by the following lemma: 

Lemma 3.1 Consider DA-PPS (6), let the linear: 𝒕 = 𝒓 �̅� , 𝑵 =
�̅�

𝑲
, 𝜶 =

𝒂

𝒓
, 𝜷 =

𝒃

𝒌
, 𝑷 =

�̅� 

𝑲
, 𝒅 =

�̅�

𝒓
, 𝑬 =

�̅�

𝒓
, 𝒘 = 𝒓�̅�𝑲, 

𝒄 = 𝒓�̅�, 𝝁 = �̅�. Then, the non-dimensional form of the DA-PPS (6) is 

                                                     
𝑑𝑁

𝑑𝑡
= 𝑁 (1 − 𝑁 −

𝛼𝑃

𝛽+𝑁
)  

                                                     
𝑑𝑃

𝑑𝑡
= 𝑃 (

𝜎𝛼𝑁

𝛽+𝑁
− 𝑑 − 𝐸)                             (7) 

                                                       0 = 𝐸(𝑤𝑃 − 𝑐) − 𝜇  

where 𝑁 𝑎𝑛𝑑 𝑃 represents the prey and predator harvested population densities respectively, 𝜎 is the conversion rate 

of eaten prey into a new predator, 𝑑 is the natural death rate of the predator in the absence of its prey, 𝛼 is the 

maximum attack rate, 𝛽 is half the saturation level, 𝐸 is the harvest effort, 𝑤 is the unit price of the harvest, 𝑐 is the 

unit cost of harvest effort, 𝜇 is the economic benefit from harvest effort [21, 22] .  

8. The Solvability of the DA-PPS 

To study the solvability of DA-PPS (7), consider a system described by the semi-explicit description with set 𝑁1 =
(𝑁, 𝑃)𝑇 ∈ 𝑅𝑛1 as: 

                                       �̇� = 𝐹1(𝑁1, 𝐸; 𝜇) = (
𝑓1(𝑁, 𝑃, 𝐸; 𝜇)

𝑓2(𝑁, 𝑃, 𝐸; 𝜇)
)                        (8a) 

                                       0 = 𝐹2(𝑁, 𝐸; 𝜇)                                                         (8b)   

Assume that: 𝑥1 = 𝑁1 = (𝑁, 𝑃)𝑇 ∈ 𝑅𝑛1, 𝑥2 = 𝐸 ∈ 𝑅𝑛2 with parameter 𝜇. Then, using the problem formulations in 

[16, 20], the system (8) becomes: 

�̇� = 𝐹1(𝑁1, 𝐸; 𝜇) 

0 = 𝐹2(𝑁, 𝐸; 𝜇) 

where, 𝐹1(𝑁1, 𝐸; 𝜇) ∈ 𝐶1(𝐷 × 𝑅𝑛2: 𝑅𝑛1), 𝐹2(𝑁, 𝐸; 𝜇) ∈  𝐶2(𝐷 × 𝑅𝑛2: 𝑅𝑛2),  

(𝑁1; 𝜇) ∈ 𝐷 ⊂ 𝑅𝑛1+1, 𝐷 is an open subset, 𝑁 ∈ 𝑅𝑛1 , 𝐸 ∈ 𝑅𝑛2  and 𝜇 ∈ 𝑅 with 𝑛1 + 𝑛2 = 𝑛. Therefore, system (7) is 

solvable and has a unique solution locally. 

9. Linearization of DA-PPM 

The linearization of DAS (7) about an equilibrium point of the class of equilibrium points in general form determined 

by the Taylor expansion as follows [14, 22] : 

         �̇� − 𝑁∗̇ = 𝐹(𝑁∗, 𝑃∗, 𝐸∗) +
𝜕𝐹

𝜕𝑁
(𝑁∗, 𝑃∗, 𝐸∗)(ℕ − 𝑁∗)  + 𝐻. 𝑂. 𝑇 

            �̇� = 𝐹(𝑁∗, 𝑃∗, 𝐸∗) +

[
 
 
 
 
𝜕𝑓1

𝜕𝑁
     

𝜕𝑓1

𝜕𝑃
    

𝜕𝑓1

𝜕𝐸
𝑑𝑓2

𝜕𝑁
     

𝜕𝑓2

𝜕𝑃
    

𝜕𝑓2

𝜕𝐸
𝜕𝐹2

𝜕𝑁
     

𝜕𝐹2

𝜕𝑃
    

𝜕𝐹2

𝜕𝐸 ]
 
 
 
 

(𝑁∗,𝑃∗,𝐸∗)

. [
𝑁 − 𝑁∗

𝑝 − 𝑝∗

𝐸 − 𝐸∗

] + 𝐻. 𝑂. 𝑇 

Because (𝑁 
∗, 𝑃∗, 𝐸∗) is the equilibrium point, then 𝐹(𝑁 

∗, 𝑃∗, 𝐸∗) = 0. Let 𝑁 − 𝑁∗ = 𝑥1, 𝑃 − 𝑃∗ = 𝑥2, 𝐸 − 𝐸∗ = 𝑥3 

and  �̇� = 𝑁∗̇ = �̇�, since 𝑁∗ is constant ⇒ 𝑁∗̇ = 0 

                      𝐹(𝑁, 𝑃, 𝐸) = 𝐹(𝑥1 + 𝑁∗, 𝑥2 + 𝑃∗, 𝑥3 + 𝐸∗) = 𝐺1(𝑥1, 𝑥2, 𝑥3). 
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Therefore, the linearization system will be as following  

                          �̅� �̇� = �̅� 𝑋                             (9) 

such that �̅� = [
1        0        0
0        1        0
0        0        0

], �̅� is the Jacobian matrix, and 𝑋 = (𝑥1, 𝑥2, 𝑥3). Then we see that 𝑛 = 3 and 

hence 𝑟𝑎𝑛𝑘(�̅�) = 2 < 𝑛 = 3. This is because system (7) has one algebraic equation and two ordinary differential 

equations. 

10. Stability Study of DA-PPS with Harvested Predator and Holling Type-II Functional Response 

Consider the 3D Differential-Algebraic Prey-Predator system in its non-dimensional form, which includes a 

harvested predator and a Holing type-II functional response (7) with the same region of the system (5.9) as well as 

the equilibrium points location. The equilibrium points class of system (7) will consider 𝜇 < 0,then the system as 

follows: 

                                                   �̇� = 𝑁(1 − 𝑁 −
𝛼𝑃

𝛽+𝑁
)   

                                                   �̇� = 𝑃(𝜎
𝛼𝑁

𝛽+𝑁
− 𝑑 − 𝐸)                               (10) 

                                                   0 = 𝐸(𝑤𝑃 − 𝑐) + 𝜇  

which has the equilibrium points: 𝑃1(0,0,
𝜇

𝑐
) and the general positive equilibrium point  

𝑃2
∗(1 −

𝛼𝑃

𝛽+𝑁
,
𝑐𝐸−𝜇

𝑤𝐸
, 𝜎

𝛼𝑁

𝛽+𝑁
− 𝑑). 

 

Theorem 3.1: The equilibrium point 𝑃(0,0,
𝜇

𝑐
) of (10) is saddle, when the rate between the economic benefit from 

the harvest effort and the harvest effort unit costs more than the natural death rate of the predator in the absence of 

prey. 

Proof: Starting with linearization form (9) of the DA-PPS (10), the equilibrium point's Jacobian matrix 𝑃(0,0,
𝜇

𝑐
):  

�̅�(𝑃1) = [

𝑎11     𝑎12     𝑎13

𝑎21     𝑎22     𝑎23

𝑎31     𝑎32     𝑎33

] , where 

 𝑎11 =
𝜕𝑓1

𝜕𝑁
= 1 − 2𝑁 −

𝛼𝑃(𝛽+𝑁)−𝛼𝑁𝑃

(𝛽+𝑁)2
 , 𝑎12 = −𝜎𝑁(𝛽 + 𝑁), 𝑎13 = 0, 𝑎21 =

𝜎𝛼𝑃(𝛽+𝑁)−𝜎𝛼𝑁𝑃

(𝛽+𝑁)
, 𝑎22 = 𝜎𝛼𝑁(𝛽 + 𝑁) −

0 − 𝑑 − 𝐸    , 𝑎23 = −𝑃 

 𝑎31 = 0  , 𝑎32 = 𝑤𝐸  , 𝑎33 = 𝑤𝑃 − 𝑐 

                                  ∴ �̅� =

[
 
 
 1 − 2𝑁 −

𝛼𝑃(𝛽+𝑁)−𝛼𝑁𝑃

(𝛽+𝑁)2
−𝜎𝑁(𝛽 + 𝑁) 0

𝜎𝛼𝑃(𝛽+𝑁)−𝜎𝛼𝑁𝑃

(𝛽+𝑁𝐵)2
𝜎𝛼𝑁(𝛽 + 𝑁) − 𝑑 − 𝐸 −𝑃

0 𝑤𝐸 𝑤𝑃 − 𝑐]
 
 
 |

(0,0,
𝜇

𝑐
)
 

                                                       �̅�(𝑃) = [

1 0 0

0 − (𝑑 +
𝜇

𝑐
) 0

0
𝑤𝜇

𝑐
−𝑐

] 

The regularity is determined as follows: 

                                   det(𝜆�̅� − �̅�(𝑃1)) = |

𝜆 − 1          0            0

0     𝜆 + (𝑑 +
𝜇

𝑐
)     0

0         −
𝑤𝜇

𝑐
           𝑐

|   

= 𝑐(𝜆 − 1) (𝜆 + (𝑑 +
𝜇

𝑐
)) = 0      

The classes of regularity are: Regularity of 

  �̅�(𝑃1) = {(𝑥1, 𝑥2, 𝑥3) |𝑠𝑖𝑛𝑐𝑒 𝜇 < 0 𝑤𝑖𝑡ℎ
𝜇

𝑐
= 𝑑} 

https://doi.org/10.54216/IJNS.260201
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Not Regularity of 

                                   �̅�(𝑃1) = {(𝑥1, 𝑥2, 𝑥3) |𝑐 ≠ 0  ,
𝜇

𝑐
≠ 𝑑}, where 𝑃1 ∈ 𝐸𝑄̅̅ ̅̅  

Therefore, the system is not regular with some parameters and constants, so we can determine the stability by 

regularity, the eigenvalues are 𝜆1 = −1   𝑎𝑛𝑑  𝜆2 = −(𝑑 +
𝜇

𝑐
). Because 𝜇 < 0 in this case 𝜆2 =

𝜇

𝑐
− 𝑑. Therefor 

𝜆1 < 0, and if 
𝜇

𝑐
> 𝑑 this implies that  𝜆2 > 0 then 𝑃 is a saddle (unstable (see figure 1). 

Lemma 3.1: If the rate between the economic benefit from the harvest effort and the harvest effort unit cost is less 

than that of predator in the absence of its prey’s natural death rate, then, the equilibrium point 𝑃(0,0,
𝜇

𝑐
)  of (10) is 

stable (see figure 2). 

11. Numerical Results 

In this section we will discuss some of the COVID-19 data acquired for Iraq country by the World Health 

Organization, According to which 2,464,997 confirmed cases of COVID-19 and 25,369 fatalities occurred between 

January 3, 2020, and December 23, 2022, at 4:54 p.m. CET. On December 10, 2022, 19,534,812 doses of the vaccine 

were administered.  

The simulation results are summarized along with the initial conditions used in Figures 1 and 2. The descriptor 

system (10) is numerically integrated with the previously stated model parameter values, and the natural predator 

death rate without its prey is d=0.09, 0.04, and less. The conversion rate of eaten prey into new predator is 𝜎 =

6.1541, ehere the maximum attack rate is 𝛼 = 0.02, half of the saturation level is 𝛽 = 0.04, E=0.01 is the harvest 

effort, w=0.001 is the harvest price, c=0.02 is the harvest cost, and μ=0.002 is the economic gain of the harvest 

effort. 

According to the research results, descriptor system (10) outperforms its integer-order equivalent in terms of 

convergence to the coexistence equilibrium point (see Fig. 2). The dynamics of the suggested Holing type-II of 

COVID-19 are better described by the differential-algebraic predator-predator system with a harvested predator and 

Holing type-II functional response (10). The simulation findings also show that, the injury curves can be flattened 

using these parameters as control units. Therefore, until the conditions and causes of infection are established, these 

models may offer better public health policies to either coexist with the lethal epidemic or attenuate or slow its rapid 

expansion. 

 

 

Figure 1. Phase plots of system (10) with 
𝜇

𝑐
> 𝑑. 
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Figure 2. Phase plots of system (10) with 
𝜇

𝑐
< 𝑑. 

12. Applications in neutrosophic environment 

The differential-algebraic system is one of the strong and modern systems to be applied in many areas of life. In this 

study, we applied the above system to one of the vital topics (Covid-19) to determine the extent of people’s 

coexistence with the virus as well as access to fundamental ideas such as treatment for infected cases or elimination 

of the virus. With environmental sustainability and pandemic response, environmental sustainability is another 

element of sustainable development. The global pandemic highlighted how human behavior affects the environment, 

and COVID-19 provided a brief example of reduced human activity leading to environmental improvements. 

Integrating this into your mathematical model might allow for the exploration of how pandemic responses can 

protect public health and contribute to or detract from environmental sustainability. 

For applying our results in neutrosophic environment, we must do a neutrosophication to real variables to be 

neutrosophic variables as follows: 

Neutrosophic Differential-Algebraic Predator-Prey Model  

Assumption: The transformation of the ordinary differential equations (2) to the neutrosophic differential algebraic 

equations, which is possible by the effect of harvesting effort only, by adding the economic interest equation as an 

algebraic (constraint) equation, where we substitute the real variables 𝑁, 𝑃, 𝑡 with generalized neutrosophic versions  

(𝑁 ̅) = 𝑚 + 𝑛𝐼, (𝑃) = 𝑣 + 𝑤𝐼, (𝑡) = 𝑥 + 𝑦𝐼 

 then the system will become as follows: 

                                                    
𝑑(𝑁)̅̅̅̅

𝑑(𝑡)̅
= (𝑟)(𝑁)   (1 −

𝑁

𝐾
) −

𝑎 �̅�

𝑏+�̅�
 (𝑃̅̅ ̅)  

                                                    
𝑑(𝑃)̅̅ ̅

𝑑(𝑡)̅̅ ̅̅ = 𝜎 
𝑎 �̅�

𝑏+𝑁
 (𝑃)̅̅ ̅̅̅ − �̅�(𝑃)̅̅ ̅̅̅ − �̅� (�̅�)                         

                                                      0 = �̅�(�̅� �̅� − 𝑐̅) − �̅�  

The above system is called the neutrosophic Differential-Algebraic Prey-Predator economic system. 

Neutrosophic Non-Dimensional Transformation 

Consider the previous system, let the linear: (𝑁) = 𝑚 + 𝑛𝐼, (𝑃) = 𝑣 + 𝑤𝐼, (𝑡) = 𝑥 + 𝑦𝐼 

 

 (𝒕) = 𝒓 (�̅�) , (𝑵) =
(�̅�)

𝑲
, 𝜶 =

𝒂

𝒓
, 𝜷 =

𝒃

𝒌
, (𝑷) =

(�̅�) 

𝑲
, 𝒅 =

�̅�

𝒓
, 𝑬 =

�̅�

𝒓
, 𝒘 = 𝒓�̅�𝑲, 𝒄 = 𝒓�̅�, 𝝁 = �̅�. With the 

neutrosophication of variables   

Hence:                                                     
𝑑(𝑁)

𝑑(𝑡)
= (𝑁) (1 − (𝑁) −

𝛼𝑃

𝛽+(𝑁)
)  

                                                     
𝑑(𝑃)

𝑑(𝑡)
= 𝑃 (

𝜎𝛼(𝑁)

𝛽+(𝑁)
− 𝑑 − 𝐸)                                                                                    0 =

𝐸(𝑤𝑃 − 𝑐) − 𝜇  
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The Solvability of The neutrosophic system 

Consider a neutrosophic system described by the semi-explicit description with the previous neutrosophication of 

variables: 

 (𝑁1) = ((𝑁), (𝑃))𝑇 ∈ 𝑅𝑛1  as: 

                                       (�̇�) = 𝐹1((𝑁1), 𝐸; 𝜇) = (
𝑓1((𝑁), 𝑃, 𝐸; 𝜇)

𝑓2((𝑁), 𝑃, 𝐸; 𝜇)
)                         

                                       0 = 𝐹2((𝑁), 𝐸; 𝜇)                                                          

Assume that: (𝑥1) = (𝑁1) = ((𝑁), (𝑃))𝑇 ∈ 𝑅𝑛1, 𝑥2 = 𝐸 ∈ 𝑅𝑛2  with parameter 𝜇. Then, the system becomes: 

(�̇�) = 𝐹1((𝑁1), 𝐸; 𝜇) 

0 = 𝐹2((𝑁), 𝐸; 𝜇) 

where, 𝐹1((𝑁1), 𝐸; 𝜇) ∈ 𝐶1(𝐷 × 𝑅𝑛2: 𝑅𝑛1), 𝐹2((𝑁), 𝐸; 𝜇) ∈  𝐶2(𝐷 × 𝑅𝑛2: 𝑅𝑛2),  

((𝑁1); 𝜇) ∈ 𝐷 ⊂ 𝑅𝑛1+1, 𝐷 is an open subset, (𝑁) ∈ 𝑅𝑛1 , 𝐸 ∈ 𝑅𝑛2 and 𝜇 ∈ 𝑅 with 𝑛1 + 𝑛2 = 𝑛.   

Neutrosophic numerical Results 

We will apply our study on some supposed data written with neutrosophic variables and coefficients. 

we will discuss some of the data acquired , According to which 2,464,997+I confirmed cases of COVID-19 and 

25,369+I fatalities. 

The descriptor system is numerically integrated with the previously stated model parameter values, and the natural 

predator death rate without its prey is d=0.09+0.01𝐼, 0.04 + 0.02𝐼, and less. The conversion rate of eaten prey into 

new predator is 𝜎 = 6.1541 + 𝐼, ehere the maximum attack rate is 𝛼 = 0.02 + 0.01𝐼, half of the saturation level is 

𝛽 = 0.04 + 0.02𝐼, E=0.01 + 𝐼 is the harvest effort, 𝑤 = 0.001 + 𝐼 is the harvest price, c=0.02+0.01𝐼 is the harvest 

cost, and μ=0.002+0.001𝐼 is the economic gain of the harvest effort. 

According to the research results, descriptor system outperforms its integer-order equivalent in terms of convergence 

to the coexistence equilibrium point. 

The dynamics of the suggested Holing type-II of COVID-19 are better described by the differential-algebraic 

predator-predator system with a harvested predator and Holing type-II functional response. 

We show the results in two figures. The figure (3) shows the results on the real part of the neutrosophic variable, 

and figure (4) shows the results on the neutrosophic part (coefficients of the indeterminacy I). 

 

 

Figure 3. Phase plots of system for the real part with 
𝜇

𝑐
+ 𝐼 > 𝑑 + 𝐼. 
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Figure 4. Phase plots of system for the neutrosophic part with 
𝜇

𝑐
+ 𝐼 < 𝑑 + 𝐼. 

13. Conclusion 

This work is based on the study of chromosomes dynamics in the three-dimensional harvesting predator (COVID-

19) differential-algebraic prey-predator economic model (DA-PPM) with Holing type-II functional responses. The 

appropriate and realistic description with high accuracy of this phenomenon and mathematical modeling of the 

original predator-prey model, harvesting predator, and economic theory as a constraint equation with non-

dimensional form has proven, the sentimentality and existence of the solution to the system, and numerical modeling 

results have demonstrated stability. 
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