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Abstract

The manuscript dealt with the problem of the initial value, especially in second-order differential equations with
three degrees of Neutrosophic conditions, which are truth, falsity, and indeterminacy. In addition, we exploited
the Kamal transformation to solve it.

Keywords: Fuzzy logic; Neutrosophic logic; Kamal transform; Neutrosophic initial conditions

1. Introduction

Natural phenomena are described by differential equations under certain initial conditions that control the solutions
of these equations. The classical solution of the differential equation as a function may not be as accurate as it
should be. This has been overcome by using fuzzy sets, which are functions that are independent of the true and
false memberships of an element. Since this logic does not carry the term of indeterminacy, this obstacle has been
dealt with by developing the Neutrosophic set.

Florentin Smarandache tackles several problems using a novel idea called "neutrosophic set theory," which is
drawn from the domain of uncertainty. Underlined searchable fields include description, cause, factual
belongingness, false values, and values of unknown [1]. As a result, fuzzy logic is thought to be generalized by
neutrosophic logic, a new logic in mathematics that is based on the idea of indeterminacy [2]. It has been
established that neoclassical logic is among the most crucial and useful modeling tools in almost all engineering
and research application areas. Differential equations may be used to explain a wide range of real-world events,
allowing the approach to be applied to them (see [3], [4], [5], [6], and [7]).

The Kamal transform (KT), first presented by Abdelilah and Hassan in 2016[14], is employed to address an
ordinary differential equation. In this work, we work through an ordinary differential equation of second order
(2" ODE) in a Neutrosophic environment using the Kamal transform technique, with many cut-point computations
made in the solution.

2. Second order differential equation with Fuzzy Kamal transform

Fuzzy Kamal transform for first order differential equation was defined in [8] by:

3

Assume that y(s)e ~ is an improper Riemann integrable on [0, ) and let y(t) be a continuous fuzzy — valued
I s .

function, therefore fo u(s)e ~ds is known as the fuzzy Kamal transform and is represented by:

[oe]

Kly(s)] = J q(s)e_%ds, (v > 0and integer).
0
Thus,

@ _s @ _s @ _ _s
[ ue vds=(j uGs.@evds, [T 0e vds)
0 0 0
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By the classical definition of KT:

% [us @] = [ uG, a)evds and K[U(s, )] = [ T(s, a)e wds,
then

Rluts, )] = (X [uts, )] K6, o)),

Theorem 2.1[10] Assume that y: [a, b] — [0,1],be a function such that y(s) = <E(5' a),y(s, a)) Jforall @ in[0,1]
then :

1.

If yis a first form — differentiable(i-d) then y(s,a) and y(s,a) and y'(s,a) = (3’(5, a),7q (s, a)) are
differentiable function.

2. 1Ifyisasecond- form differentiable (ii-d) then g(S. a) and y(s,a) and y'(s,a) = (ﬁ'(s, a),g’(s, a)) are
differentiable function
The fuzzy Kamal transform for second-order ordinary differential equation will be defined as follows in this
work:

Definition 2.1 [12] Suppose y be a continuous function with fuzzy values that has the following property:
u(se):(a,b) > R and sy € (a,b). If an elementy”(s,) € R exists, we say that a mapping y is strongly
generalized differentiable at s,, such that:

i. Vt>0 ,sufficiently small,3 u'(so +t) © u'(50),u'(50) O u' (50 — 1) where

W (50O (G50) _ 4. u'(50)OW (s0-8) _
lim " = lim . =1u"(s0) oOr

i. Vt>0 ,sufficiently small,3 y'(s¢) © W' (5o + £),u' (50 — £) O u'($0) where
. 4 (50)0u o+t) _ 1. 4 (50-0OUW (50) _ 1
iy L0051~ ~u'Go) or

ii. VvV£>0 sufficiently small,3 u'(so +£) © u'(50),u'(50 — £) © u'(50) where
.y (50+0)OU (50) _ 1:. 4 (50-DOW (0) _  n
lim " = lim " =" (s0) OF

iv. V&>0 ,sufficiently small,(3u'(so) O u'(so +1),u'(s0) O U (50— 1) where
. y'(50)0u 5o+8) _ 1. ' (50)OW (50-8) _ 1
lim . = lim . =1u" (o)

Theorem 2.2 [11] Given that y(s) = (2(5' a),y(s, a)) Va € [0,1], ,and that y(s) and y'(s) are two fuzzy-valued
differentiable functions, then:

Let u(s) and y'(s)are i-d ,or let u(s) and y’'(s) are ii-d, then y(s, ) and u(s,a) possess 1* - and 2md -

order derivatives such that y”(s) = (g”(s, a), 7 (s, a)).

Lety(s) isi-d and u'(s) is the ii-d , or lety(s) be ii-d and y'(s) be ai-d , then y(s, @) and y(s, a) possess
1%t - and 2" -order derivatives such that

Ve = (160" 6.0)

Theorem 2.3 [13] Given a continuous Neutrosophic valued function y(s) and y'(s) on [0, ) and a piecewise

continuous function with Neutrosophic values y"'(s) on [0, o) then,

a K[u'()] = {ZR[u)]© 1u0)} O w'(0) , where y(s) and y'(s) are i-d.

b R[u"()] = Zu(0) © {ZR[uG)1} © v'(0) , where y(s) be i-d and y'(5) be ii-.
¢ Rlw')] =7u© © {ZRE)I}© w0, where y'(s) i-dand u(s) be ii-.
d. K] = ﬁﬂ?[u(s)] © %rq(O) ©u'(0) , where y(s) and y'(s) are ii-d

Proof: a. when y(s) and y’(s) are i-d.
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{ Ku)]©— q(O)} ey'(0)
1 1 1 ,
= <—2 3(5. a) — _E(O' a) —y'(0, a),/lr—2 Ku(s,a)] — . u(0,a) — 4 (0, a)>

since %€ [y s, a)] H[u(s, @] = 7u(0,a) ~ ' (0,),
K[T" G5 )] = SK[EG )] —~T(0,a) — T (0,a) and y(s) and y'(s) are i-d using theorem 2.2.
WG a) =y, v (s a) =1 (5a)
Since y(s) isi-d using theorem 2.1
v'(0,a) = y'(0,@)and y'(0,a) =7 (0,@)
1 [u" (s, @) = S K[l @] - 2u(0,) - y'(0,a) ,
KW (s )] = K [U(s, )] — 70, @) — 4'(0,)
(R0 —u} O w©) = (3 [y @] 1[G @)]) = Ry 6)
R ®)] = {5 R © ()] © w'(©)
b. when y(s) isi-d and y'(s) is ii-d
O O [ RUGI OV ©) = 10,0 + 5 K[As )] - T (0.0
2400, + 5% [us,@)] - ¥(0.a).
Since K[u" (s, )] = S XK [u(s, a)] ——u(O @) —u'(0,a),
K [’ Gs, a)] = ﬁyc |uGs, @] = 2u(0,@) =W (0.0) , y(s) is i-d and ' (s) is ii-d using theorem 2.2

W @) =y a0,y sa) =7 a)
Since y(s) is i-d using theorem 2.1

W(0,0)=7(0,a)y0a)=y(0a)
[y (5,0 = 00, @) + 5 K[aG, ] - (0. 0)
K[ 0] = —u(0,@) + % [uG,0)] - W (0. )
a0 O [ RN O w0 = (3 35 0] 1[G @) = Ry 6)
RI'()] = —u(® © {3 RG] 0y ©)
c.y'(s) is i-dand y(s) is ii-d.
O O [ RGO ©) = 10,0+~ K[A)] W (0,)
Zy0,0) + 5% [ue)]| - T0.0)

Since X[u’ (s, a)] K[GG )l - =8(0,0) — ¥ (0 a)

K [q”(s a)] [q(s) a] —q(O, a) —W(0, @), y(s) isii-dand y'(s) is i-d using theorem 2.2
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W) =u"G o)y (sa) =7 a)
Since y(s) isii-d using theorem 2.1

(0,0) = y'(0,a),y'(0,@) =7 (0,a)
1 1
X w5, = — K[ )] - ~10,) ~ W' (0.)
KW (s, @)] = 5% [uts @] = 2u(0,0) - ¥(0. @)
-1 -1 _ , — Y
—u(0) O {p% [u(s)]} OV (O = (% [y ] X [u" (s, @)]) = K[u"(5)]
Rly" ()] = = (0) © {Z K1} O v (0)
d. when y(s) and y'(s) are ii-d
1 1 _
L . —uluGs @] = —u(0 @) = ¥(0,0)
— R © - u(0) O v/(0) = v
—luts @] ~— 70 @) = ¥ (0.0)
Since
K [w' s 0] = 5% [us, @]~ 2y(0.0) ~W(0.0)
K[ (s, a)] ='%7C[ﬁ($, a)] - iﬁ(o. a) =T (0,a),(s) and y'(s) are ii-d using theorem 2.2
¥(s,@) = 4'(5,0), W5, 0) = 7" (s, @)
Since y(s) is ii-d using theorem 1.2
V0,0 = y'(0,a),y(0,a) =T (0,0)
1 1 _
x5, 0] = — 3¢ [uGs @] — —u(0,@) ~ ¥ (0,a)
KW (s, @)] = KU, )] - ~§(0,a) — ¥ (0, @)
1 1 _ _
SR 0 2u© OV ) = (% [w'6 @] X[W7(s @)]) = K[ (5)]

Ry (5)] = K] © =y(0) © v (0)

Theorem 2.4 [14-17] Given a continuous valued function at Neutrosophic y: R — H(R) it may be represented as:

ur(s) = [gra(s).ﬁm(s)] , for each a € [0,1]

u(s) = [gzp@).ﬁ,ﬁ(s)] , foreach g € [0,1]

ur(s) = [Ury ($), U, ($)].for each y € [0,1]
Then

1. yre andy,, are differentiable functions and y'(s) = [q’T (5),ﬁ'm($)] Jifyg isi-d.
- — Ta

2. yrq andy,, are differentiable functions and y'(s) = [q’T (s),ﬁ'm(s)],if yr isii-d.
- — Ta

3. ypand U, are differentiable functions and y’'(s) = [E’Iﬁ@),ﬁ'lﬁ(s)],if y; isi-d.

4. g and T, are differentiable functions and y'(s) = [E',ﬁ(s)'ﬁ'w (5)],if u, is ii-d.
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5. ng(s) and ﬁFy (s) are differentiable functions and y'(s) = [E’Ty($)'ﬁlry($)]if yg isi-d.

6. up(s) andy, (s) are differentiable functions and y'(s) = [q' (S),ﬁ’T (s)],if yg is ii-d.
= )4 =Ty Y

We omit the proof since it is similar to the theorem 2.2 proof.

3. Environment Neutrosophic for 2" ORD

Consider the general 2" ORD provided as follows:
r(s) = u(s,r(5), 7' () 3.1)
Withe initial conditions r(s¢) = r5,7' ($9) = wy, where y: [s,[] X R = R.

Suppose that the initial values r, and w,,which are known as Neutrosophic numbers, are characterized by
uncertain and the lower and upper bound of truth, indeterminacy and falsity. The fuzzy differential equations for
initial values that follow are therefore derived from equation 3.1:

r""(s) =7r(s,7r(s),7'(s)), 0<s<T suchthat,

rr(50) =70 = 1 (0. F o], 0<a<1 }

, 3.2
rr(se) = wo = [w, (0, W (0], 0<as<i
ni(so) =1 = [r',O.F @], 0=p=<1 s
ri(s0) = wo = [w', (0, W @], 0<p=1 '
3.4

re(s0) =1 = [r, (0, F (],  0<y<1
rp(s) = wo = [w, (0),Wr ()], 0<y<1

When the given second order differential equation is transformed using the Neutrosophic Kamaml Transform, we
obtain

Kr" ()] = K[u(s, r(s), 7' ()]

Case 1: Theorem 2.4 [18-20] gives us the following if r(s) and r’'(s) are first form differentiable functions or
if r(s) and ' (s) are ii-d functions.

() = [r" ), 7" (5)]-

The differential equation yields the following result:
" (8) = 1ra(5,7(5), 7 (), Tra(50) = 1ra(0), 77, (50) = Wra(s0).

FTa (s) = 7Ta($;r($)»T’($))’fra($0) = 7_”Toz(o)'r_'m@o) = Wrg(So)-

" 56) =115(5.7(9),7'(5)), 115 (50) = 115(0), 7" £ (50) = W (50).

715(5) = T1p(5,7(5), 7' ($)), Tip (50) = T15(0), 7715 (50) = W (50)-

" 8) = 1y (5,709, (9)), 1y (S0) = 15y (0,77 (50) = Wiy (50).

ey (5) = Ty (5,7(5),7'(5)), Ty (50) = Ty (0), 77y (50) = Wy (50)-
by Neutrosophic Kamal transform ,we get
Rlw" )] = {73 X U6 O £ u(0)] © u'(0)

By employing the lower and upper functions, to obtain
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[uny

K [qm(s,r(s) T (s))] _Ta($)] ——174(0) — E’Ta(o)

’—‘Q

1 _
KUy, (57,7 ()] = = K [Fra(s)] — =g (0) = 777,(0)

<

K |wp(s,r).7'®)) = —xnp )] - —JB(O) RO
K [0, 7)) = = K7ip ()] - —m;(m 715(0)
5 [y (5.7, 7' )] = =5 Ky )] = <12, 0~ 7/, )
K[, (5,75). 7' )] = — K[y 5)] ——rFy<o> — 71, (0)

The inverse Neutrosophic Kamal Transform is used to solve this and yield the following:
Tra($) Tra($), 11p ($): Tig ($): Ty ($), Ty (5)

Case2: [20-24] We may obtain the following from theorem 2.4: if r(s) isai-d and r'(s) is a ii-d or if (s) is a ii-
dand r'(s) is a i-d functions,

r'(s) = [r"(s),7 )]
The following is the result of the differential equation:
" ) = Tra(5,7(8),7'(8)), Tra(s0) = 17a(0),7',(50) = Wrg(so)-

FTa (s) = ?Ta(s' r(s), 7"(5)): Tra(So) = T1a(0), 7”_'Ta($o) = Wrg(So)-

" 56) =115(5,7(9),7'(5)), 115 (50) = 115(0), 7" (50) = Wy (50).

771/3 () = 7_"13 ($,T($)'T'($)),771/3 (50) = 7_”1/3’ (0)’7"_'1/3(50) = m1/3 (S0)-

1" 8 = 1oy (5,75), 7 (5)), Ty (50) = 17y (00,77 . (50) = Wiry (50).

FFy(s) = FFy(S,T@).T'(S)), T_Fy($0) = 7_”1«"}/(0),7”_'171/(50) = mFy($o)-
by Neutrosophic Kamal transform ,we get
Rl )] =5 u(0) © {Z RGO v'(0)
Utilizing the lower and upper functions ,to have

1 1 _
K [ura(s, 76,7 )] = = —Fra(0) + 5 K[Fra ()] = 7'14(0)

1 1
K[, (576, 7' $))] = == 172(0) + — K[rra ()] =1/, (0)

1 1 —
K |wip (57 ®)] = =~ 70 + — K[ )] = 7,5(0)

%1 [G,5(5.76), 7 ()] = ——JB(O) ' —K[Jﬁ(s)] 5@
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1 1 —
K |4y (5,76, 7' )] = = =y (0) + — K[y ()] = 771, (O)

1 1
K [0, (5767 )] = = =1y (0 + — K[y )] =1/, (©)

We employ the inverse Neutrosophic Kamal Transform to solve this and obtain the following:

Tra(8) Tra (8), 115 ($): T15 (5)s Ty ($), Ty (5)-

4. Example lllustrative
Think about the initial value problem with Neutrosophic:
r'(s)+r(s) =0
rr(0) = (@ — 0.1,0.1 — a),7'7(0) = (a — 0.1,0.1 — a)
n(0) =B -11=-p)1rs(0)=(B-11-p5)
72(0) = (y — 0.5,0.5 —¥),7',(0) = (y — 0.5,0.5 — y)

Using the provided second order differential equation and the Neutrosophic Kamal transform:

K" )] +K[r(s)] =0
Casel: K[r"(s)] = {%ﬁ[r(s)] S) ir(O)} e r'(0)

For a — cut

4%7([&(5; @] - %KT(O: @) =1’ (0,0) + K[rr(5,@)] = 0

Applying the intial conditions,we get

(4% + 1)“[&(5. @) = (a - 0-1)%+ (a@—0.1)

We solve this equation of .’K[g(s, a)] to get

2

v? 1 v
:}C[KT(S, a)] = 4)2—H(a - 01); + m(a - 01)
/U'Z
v2+1

v

rr(s,@) = (@ = 0.1) =+ (a = 0.1)

rr(s,a) = (@ —0.1)coss + (¢ — 0.1) sins

KT 6D =7 (0,@) = 70,0 + K75, 0] = 0
Applying the intial condition and solve this equation of ¥ [7; (s, a)], we get
7r(s,a) = (0.1 —a)coss+ (0.1 —a)sins
For § — cut

1(s,) = (B —1coss+ (B —Dsins
7i(s,8) = (1 = B)coss + (1 — B)sins
Fory — cut

r(s,7) = (y — 0.5) coss + (y — 0.5) sins
7r(s,7) = (0.5 —y) coss + (0.5 —y)sin s
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Case 2:Since K [r"'(s)] = %r(O) © {%ﬁ[r@)]} o r1r'(0)

For a — cut

—lfT(O, a) + %K[fT(s, )l —r' (0a)+ K|rr (s, )] =0
v v

1 1 , _
—=17(0,@) + — K[ (5, )] =7 10, @) + K[ (5,)] = 0
Applying the intial conditionsand solve these equation of K [r; (s, )] and K [ (s, a)].we get

rr(s,a) = (@ — 0.1) coshs + (¢ — 0.1) sinh s
7r(s,a) = (0.1 — a) coshs + (0.1 — a)sinr s

For § — cut
1(s,8) = (B — 1) coshs + (B — 1) sinhs
7i(s,) = (1 = B)coshs + (1 — B)sinr s
Fory — cut
12(s,¥) = (¥ — 0.5) coshs + (y — 0.5) sinh s
7=(s,¥) = (0.5 —y) coshs + (0.5 — y)sinr s
5. Conclusion

The results highlight the potential of this technique to offer a robust solution framework, contributing significantly
to the field of differential equations and opening avenues for future research in handling uncertainties in
mathematical models.
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