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Abstract 

The presented methodology provides an innovative way to answer a question that is rarely observed in academic 

literature: How can complex data issues like multiple class imbalance be solved using the available models in a 

simple and efficient way? In this approach, observations are modeled without additional preprocessing. Several 

classification models including Random Forest (RF), Support Vector Machines (SVM), and Decision Tree (DT) 

are utilized for conducting the classification analysis. The parameters of these models and the cross-validation 

function are adjusted to each individual set of observations. This approach has not been researched in depth. We 

test it about class imbalance in the target variable. Our results demonstrate the benefits of the proposed method.  

First, parameter tuning of ML models can be an effective strategy to handle class imbalance. Second, random 

shuffling prior to cross validation can be a key to resolving the bias coming from multiclass imbalance. Another 

important finding is that the best results can be achieved when random shuffling, cross validation and parameter 

tuning are combined. These findings are key to handling class imbalance in classification. Therefore, this research 

extends the opportunities to handle class imbalance in a simple, quick, and effective way in cases without adding 

additional complexity to the model. 

Keywords: Multiclass data; Classification; Parameters adjustment; Model evaluation. 

1. Introduction 

Big data has various applications and various sources. The unstructured data is recorded in a file or in a series of 

files. Manayika et al. [1] define big data as “an amount of data that surpasses the capabilities of modern technology 

to process, store and compute them efficiently”. This concise definition fully captures the essence of big data and 

demonstrates their dynamic nature, upon which the dynamics in computer technology for the storage, processing, 

and public presentation of the data. Usually, a dataset is divided into classes; it can be analysed in the sense of 

creating an efficient predictive model of the observations within the set. In this article, the number of classes is 

denoted as m. If m=2, then the set is binary or two-class. If m>2, then the set is multiclass. Often, in a dataset, one 

or more classes have significantly fewer observations compared to the other observations in the set. Such sets are 

called imbalanced. 

The classification of imbalanced data is one of the most critical challenges faced by modern data analysis. 

Particularly when combined with other factors of difficulty such as noise presence and overlapping in class 

distributions, data imbalance can significantly affect the results of classification analysis. Therefore, Branco et al. 

[2] have proposed adjusted classification metrics targeted at imbalanced data. An alternative approach is to balance 

classes artificially which is suggested by Koziarski et al. [3] and the standard classification metrics are applied and 

described by James et al. [4]. The most common balancing technique is the Synthetic Minority Oversampling 

Technique (SMOTE). SMOTE synthesizes new examples of the minority class in the training set by drawing a 

line between two adjacent examples. Then, new examples of the minority class are produced as a combination of 

the two examples.  However, some of the data complexity factors impact the performance of existing oversampling 
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strategies, particularly SMOTE and its derivatives considered by Chawla et al. [5], Han et al. [6], Maldonado et 

al. [7]. This effect is particularly pronounced in a multi-class scenario, where the mutual imbalance of class ratios 

further complicates matters and it is investigated by some authors [3,8,9,10]. Despite that, most modern research 

in the field of data imbalance is focused on tasks with binary classification, while their more challenging multiclass 

counterparts remain relatively underexplored. 

A full review of approaches to handle class imbalance can be found in Rezvani et al. [11]. Most approaches to 

handling class imbalance propose new algorithms that can be applied to the initial dataset as a preprocessing step 

to remove class imbalance. For example, in the article by Koziarski et al. [3], a new algorithm for classifying 

multiclass data is proposed. The authors refer to it as a multiclass Combined Cleaning and Resampling (MC-CCR) 

algorithm Koziarski et al. [3]. The algorithm includes a cleaning stage aimed at reducing the impact of overlapping 

class distributions on the effectiveness of trained algorithms. MC-CCR is less affected by the loss of information 

regarding interclass relationships compared to traditional multiclass decomposition strategies. Based on the results 

of experimental studies conducted on numerous multiclass imbalanced benchmark datasets, the proposed approach 

demonstrated high robustness to noise, as well as superior quality compared to state-of-the-art methods.  

However, the class imbalance is rarely solved without preprocessing the dataset according to Rezvani et al. [11]. 

Academic literature rarely offers a solution by keeping the class imbalance and adjusting the model using its 

parameters in a way that the model is not affected by class imbalance. In this paper, this type of solution is 

discussed. We propose an innovative methodology for conducting classification analysis on multiclass public 

datasets (with more than two classes). In this approach, observations are modeled without additional preprocessing. 

Several classification models including Random Forest (RF), Support Vector Machines (SVM), and Decision Tree 

(DT) with appropriately selected parameters are utilized with the methodology. The parameters of these models 

and the KFold function, which prepares the dataset for classification analysis, are specific to each set of 

observations. The application of the methodology constructs effective classification algorithms for all analyzed 

datasets, achieving parameter values that surpass those of the model MC-CCR [3] and other authors. The 

conducted comparative analysis shows that the methodology achieves high values for the evaluation metrics on 

the 6 tested datasets (see section Results). In most cases, the results of the methodology exceed the corresponding 

results of other researchers. Our methodology is distinguished from other similar ones with its simple organization, 

speed and efficiency.  These advantages of the novel methodology make it particularly suitable for cases when 

additional model complexity is not necessary. The next section describes the models, while the section Results 

discusses our results.  

2. The Methodology 

 

The proposed methodology is generalized, and therefore, it can be used with various classification methods. All 

experiments are conducted in Python 3.7., the Spyder environment. The proposed methodology extends the 

standard classification approach by first, introducing random shuffling prior to splitting the dataset into training 

and test subsets as it is in the standard procedure. With this step, we explore the effectiveness of other techniques 

for avoiding over- and underfitting in the case of class imbalance. Second, the focus of the methodology is on 

tuning the parameters of the model so that class imbalance might not affect the outcome of the model. The 

adjustment made is based on empirical experiments and aims to show that efficient model performance can be 

achieved also by finding the appropriate values of the model. This is a novel way to find a simple model that is 

appropriate for data. Although parameter tuning is not a new concept, its benefits have not been explored much. 

Therefore, our methodology fills this gap by showing that finding the appropriate parameters can be a simple and 

effective solution to the class imbalance issue in multiclass classification. Combining those new steps results in a 

methodology that is easy and simple to apply with various classification models. 

 

2.1. Methodology Overview 

 

Figure 1 demonstrates the proposed methodology. 
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Figure 1: Summary of the Proposed Methodology 

Source: authors 

 

Step 1. Load the dataset. Define X variables that are used as predictors. Unlike the standard methodology that 

requires standardization of the X variables, we do not utilize this transformation. The X variables are used without 

any pre-processing. Then, define the Y variable, which is a categorical target variable. As the paper is aimed at 

multiclass classification, the target variable contains more than two categories. Each category is called a class. 

Therefore, this is called multiclass classification.  

 

Step 2. Random shuffling of the data: 

np.random.seed (28) 

permuted_indices = np.random.permutation(len(Y)) 

 

This step rearranges the initial dataset randomly. This step is necessary due to the class imbalance issue. Class 

imbalance in multiclass problems results in uneven distribution of observations of each class so that one or several 

classes may prevail over the rest. Class prevalence causes biased estimation towards the prevailing class [4]. 

Prediction of minority class becomes inaccurate. The issue is deepened in the case of multiclass classification, as 

each class would be affected biased prediction depending on its minority/majority [4]. In balanced classification, 

the second step is usually a train/test split to avoid under and overfitting [4]. In imbalance classification, however, 

train/test split is not enough to handle the bias from class imbalance [4]. Another approach is necessary. Therefore, 

we examine whether the random shuffling of the whole dataset can be an effective way to predict all classes 

correctly if applied as a prior step to cross validation. 

 

Step 3. Selection of a classification model and parameters. In this step, several machine learning (ML) algorithms 

are applied to each dataset (RF, SVM, and DT). Their performance is compared and analysed in the Results section. 

In this step, the machine learning algorithms used can be extended outside the three models we test. Depending on 

the data, another classification model can be better suited; therefore, it can be applied to replace the RF, SVM or 

DT models we use. However, the parameters of every classification model should be adjusted to describe the data 

best. Regardless of the ML model used, parameters tuning is a necessary step as each parameter aims at adjusting 

the functional form of the model to the data characteristics. The process of finding the appropriate parameters to 

handle class imbalance demonstrates the research value of this paper. We demonstrate that parameters tuning can 

be a key step in simplifying the model in multiclass classification given the class imbalance.   

 

We use three ML models to perform step 3. These are the random forest (RF), support vector machines (SVM) 

and the decision tree classifier (DT). Every ML model has its own parameters. To tune them, start with the most 

appropriate parameters values based on Python’s documentation. Based on classification metrics, evaluate the 

model performance and readjust the parameters until the output is satisfactory. It is important to note that many 

well-performing models may be detected based on tuning parameters. This leads to the detection of many possible 

Step 1
•Load data

Step 2
•Random shuffling

Step 3
•Model selection and parameters tuning

Step 4
•Cross Validation

Step 5
•Model Fitting

Step 6

•Model Evaluation using AvAcc, CBA, and 
mGM
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well-performing models among which the researcher can select the one that reflects the data characteristics best.  

In this research, we present some of the parameters of the RF, SVM and DT that resulted in well-performing 

models according to the criteria set in Step 6 and the proposed methodology. In our cases, the parameters that are 

adjusted are: 

 

3.1 Random Forest (RF) is a machine-learning algorithm that combines many decision trees to create a set of trees, 

so to create a forest. Each tree makes a classification or a choice. The forest chooses the classification with most 

of the choices [10] and Ali et al. [13].  

 

The Python function used in these experiments is RandomForestClassifier(n_estimators ,max_depth 

,max_features, class_weight='balanced', random_state=..).  

 

In all experiments with the random forest, we keep class_weight='balanced' to account for the class imbalance. 

Also, experiments are conducted using different values for n_estimators , max_depth and random_state. The 

parameter ‘n_estimators’ defines the number of trees used in the model, the parameter ‘max_depth’ defines the 

number of nodes, and ‘random_state’ controls the reproducibility of the model. ‘Max_features’ defines the number 

of features to use when looking for the best split of the tree. Each value for ‘random_state’ defines the set of 

random values in which the experiments will be conducted. It guarantees that the same results will be produced 

when the same set of random values is used. We have presented the parameters that predicted all classes well in 

Table 3 of the next section.  

 

3.2 Support Vector Machines (SVM) model defines a hyperplane that splits the observations of different classes 

(two or more). The hyperplane is the decision boundary, it is a separator between classes. The full description of 

the Support Vector Machines model can be found in James et al. [4], Wien et al. [14], Ke et al. [15], and many 

other sources in the literature [16]. The function we use is SVC(C=1, kernel='rbf', 

gamma=,class_weight='balanced'). In the SVM model the parameters ‘class_weight’ and ‘kernel’ are kept to 

‘balanced’ and ‘rbf’ in all experiments. The parameter class_weight='balanced' is used to handle the class 

imbalance in the data. ‘Kernel’ defines the function for getting the hyperplane. The default value is ‘rbf’. However, 

the parameters C and Gamma are tested with different values. The parameter ‘gamma’ defines the value for the 

coefficient of the kernel function. Parameter C is a regularization parameter, whose default value in Python is 1. 

It controls the trade-off between accuracy and variance. We have presented the parameters that predicted all classes 

well in Table 4 of the next section.  

 

3.3 Decision tree classifier (DT) is a machine learning model used mainly for classification analysis. Each tree 

consists of nodes and branches. Each node represents features in a group that is to be classified, and each branch 

achieves a value that the node can take, see for example papers [8,9,13].  Instances are classified starting at the 

root node and sorted based on their feature values.  The function used is DecisionTreeClassifier(max_depth, 

class_weight='balanced',  random_state=). Like the rest of the models, the parameter class_weight is fixed to 

'balanced' to account for the class imbalance. The parameters ‘max_depth’ and ‘random_state’ are adjusted.  They 

have the same meaning as in the random forest model.  We have presented the parameters that predicted all classes 

well in Table 5 of the next section. 

 

Step 4. Splitting the dataset into training and testing subsets using the KFold command. There are two types of 

cross validation in class imbalance issue. The first is Kfold and the second is stratified k-fold cross validation. 

Although stratified cross validation can be more suitable, empirical data has shown that the two types of cross 

validation work well in imbalanced datasets. Therefore, we performed experiments only with kfold cross 

validation. The kfold cross validation function is applied with 4 splits and random shuffling. The parameter 

‘shuffle’ is set to true, as the aim is to mix imbalanced classes to have training and test samples that are highly 

diverse. The number of splits is set to 4 but it can be set to any other value different from 1.  The number of splits 

depends on the researcher’s experience and data.  However, experiments with a different value of random_state 

have been conducted. KFold(n_splits=4, shuffle=True,random_state=..). We selected the value of random_state 

that produced the best classification metrics for each ML model. As Table 3 in the Results section shows the 

random_state value in the cross-validation, function is different for each ML model. 

 

Step 5. Fitting of the model. After randomly shuffling the data and splitting the dataset into training and test sets 

using the cross-validation function in Step 4, we fit each of the classification models with the parameters shown 

in Step 3. 

  

Step 6. Evaluation of the model using parameters: AvAcc, CBA, and mGM. This is a model estimation. Each 

classification model is evaluated by computing a special matrix called the confusion matrix. If we denote this 
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matrix as C = (𝑐𝑖𝑗), where 𝑐𝑖𝑗  are the elements of the matrix, and m represents the number of classes. The meaning 

of each element 𝑐𝑖𝑗  is as follows: it is the number of observations from class i in the dataset that the model predicts 

as belonging to class j. The elements 𝑐𝑖𝑖 , i = 1,..., m represent the number of correctly predicted observations, while 

the elements 𝑐𝑖𝑗 , i,j=1,...,m, i<>j represents the misclassified observations or errors of the model.   

Following the authors Branco et al. [2], Koziarski et al. [3], three parameters are defined: Average Accuracy 

(AvAcc), Class Balance Accuracy (CBA), and multi-class G-measure (mGM). They are used for evaluating the 

classification models:  

𝐴𝑣𝐴𝑐𝑐(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) =  
∑ 𝑐𝑖𝑖

𝑚
𝑖=1

∑ 𝑐𝑖𝑗
𝑚
𝑖,𝑗=1

 ,                                                                          (1) 

CBA =  
1

𝑚
∑

𝑐𝑖𝑖

max (∑ 𝑐𝑖𝑗
𝑚
𝑗=1 ,∑ 𝑐𝑗𝑖

𝑚
𝑗=1 )

𝑚
𝑖=1  ,                                                                    (2) 

𝑚𝐺𝑀 =  √∏
𝑐𝑖𝑖

∑ 𝑐𝑖𝑗
𝑚
𝑗=1

𝑚
𝑖=1

𝑚   .                                                                                        (3)     

The process of tuning parameters includes running steps 1-6 with different values of the ‘random_state’ of the 

kfold cross validation function and various values of the parameters of the ML models. Based on the AvACC, 

GBA and mGM, the values of the parameters are changed, and steps 1-6 are run again. We run this methodology 

until we get satisfying results for AvAcc, GBA, mGM and confusion matrix. The tables in the next sections 

demonstrate all parameters we selected using steps 1-6 to perform correct multiclass prediction and solve the class 

imbalance issue. The tables demonstrate only the efficient models. An efficient model is the one resulting in the 

best classification scores and predicts all classes correctly (as defined in step 6). We compare our results with other 

authors. Our experiments illustrate an important finding: Find an efficient’ model for each ML group does not 

require hundreds of reruns of steps 1-6. The loop stops when a model good enough according to the presented 

criteria is identified. During our experiments, an efficient model could be found until the tenth rerun. This finding 

confirms that parameters tuning may not be a complex and time-consuming step, stressing its underestimated 

benefits.  

 

2.2. Data Overview 

 

The suggested methodology is utilized in a set of observations, presented in Tables 1 and 2. Table 1 describes the 

six datasets used, the number of observations, variables and classes in the target variable. It shows that the number 

of variables is relatively small, so feature selection is not necessary at this point. All datasets present the multiclass 

problem as the target variable contains more than two classes. In addition, the methodology is tested on smaller 

and larger datasets.  

 

Table 1: Datasets 

Name Samples Variables Classes Class Distribution 

Balance 

Contraceptive 

Hayes-Roth 

New-thyroid 

Page-blocks 

Thyroid 

625 

1473 

160 

215 

5472 

7200 

4 

9 

4 

5 

10 

21 

3 

3 

3 

3 

5 

3 

288/49/288 

629/333/511 

65/64/31 

150/35/30 

4913/329/28/87/115 

166/368/6666 

 

The column “Class Distribution” demonstrates how the issue of class imbalance is represented in each of the 

datasets. For instance, the target variable in the dataset ‘Balance’ has 288 observations in the first class, 49 in the 

second, and 288 in the third class. The same structure applies to the rest of the datasets. As the last column shows, 

heavy class imbalance is present in each dataset. This issue becomes more complicated as it relates to multiclass 

labels. Table 2 presents the sources of the datasets. 
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Table 2: Public access to the datasets 

Name Sources 

Balance 

Contraceptive 

Hayes-Roth 

New-thyroid 

Page-blocks 

Thyroid 

 

https://archive.ics.uci.edu/dataset/12/balance+scale  

https://archive.ics.uci.edu/dataset/30/contraceptive+method+choice 

https://archive.ics.uci.edu/dataset/44/hayes+roth 

https://sci2s.ugr.es/keel/dataset.php?cod=66 

http://archive.ics.uci.edu/dataset/78/page+blocks+classification 

https://networkrepository.com/thyroid-disease-thyroid0387.php  

https://archive.ics.uci.edu/dataset/102/thyroid+disease 

 

Several classification models, namely RF, SVM, and DT, with appropriately selected parameters are utilized for 

conducting the classification analysis on these datasets. Results from the experiments conducted with this 

methodology are shown in the next section.  

 

 

3. Results 

 

This section describes the final values of the parameters in every efficient ML model we ran (Tables 3-5). In 

addition, we compare our results to other authors. For example, Koziarski et al. [3] apply their algorithm to 20 

public datasets, which are described in Table 1[3]. We apply our methodology to four of the datasets used in [3]. 

These are Contraceptive, Hayes-Roth, New-thyroid, and Page-blocks. The results of the classification analysis 

conducted are described in Tables 3, 4, and 6, respectively for each model. The parameters with which the models 

were applied are added to the tables. The computations were conducted on a laptop with 1.50 GHz Intel(R) 

Core(TM) and 8 GB RAM, running on Windows with Python 3.7 in the Anaconda environment. 

 

Table 3 shows the final parameters of the Random Forest model we selected. The output demonstrates that the 

best results in terms of AvAcc, CBA and mGM on each dataset are achieved using different parameters of the 

Random Forest model for each dataset. Therefore, Table 3 demonstrates that parameter adjustment may be better 

conducted on each dataset rather than applying the same parameters on all datasets. The reason for that is that the 

parameters should best describe the characteristics of the data. Parameters adjustment reflects data anomalies. 

Parameters aim at capturing data anomalies by adjusting the equation of the classification model and making it 

flexible. Every model’s parameter reflects an equivalent parameter in the equation of the ML algorithm. Adjusting 

the model parameters results in adapting the ML equation to the data specifics. Therefore, using different 

parameters on each dataset may be the more sensible approach. 

 

As seen in the table the same dataset may produce different metrics depending on the values of the parameters in 

the Random Forest function. By adjusting the parameter values in the random forest function, the classification 

metrics on the same dataset can be quite different. For instance, Table 3 displays the parameters of the random 

forest function with which the best result was achieved on each dataset. However, throughout the experiment, each 

dataset was tested with various values of the RF parameters. They did not perform so well, so they are not visible 

in Table 3. An important finding is confirmed – an ML algorithm may be a more appropriate model than another 

one depending on the data. As Table 3 illustrates, classification metrics on the same dataset vary depending on the 

ML model used. As every ML model aims at tackling a specific data structure, it is also reasonable to perform 

parameters tuning within each ML model. 

 

3.1. Random Forest, Support Vector Machines, and Decision Tree Classifier 

 

As Table 3 shows, this research proposes an algorithm that is more effective than applying pre-processing 

techniques for class imbalance like SMOTE. Measures like AvAcc, CBA and mGM are higher because of the 

parameter adjustment proposed in this research. As Table 3 shows, parameter adjustment does not provide a single 

model that is efficient. Instead, it provides many models that have better performance than algorithms with pre-

processing techniques for class imbalance. The proposed approach reduces the complexity of the model and allows 

for easier interpretation. It also saves time by reducing the time for building, fitting, and selecting the model.  
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Table 3: Comparison of the Proposed Methodology with Random Forest Model to Koziarski [3] 

Name Indicator Maximum 

values 

(Koziarski 

et al. [3]) 

Random Forest Parameters 

Balance   RandomForestClassifier(n_estimators=120, max_depth=3, 

class_weight='balanced', random_state=6) 

KFold(n_splits=4, shuffle=True, random_state=167) 

 AvAcc [%] 82.87 89.17 

 CBA [%]  64.92 70.34 

 mGM [%]  62.22 74.65 

Contraceptive   RandomForestClassifier(n_estimators=100, max_depth=9, 

random_state=422) 

KFold(n_splits=4, shuffle=True,random_state=667) 

 AvAcc [%] 55.09 62.5 

 CBA [%]  52.97 60.55 

 mGM [%]  52.60 60.38 

Hayes-Roth   RandomForestClassifier(n_estimators=60, max_depth=9, 

random_state=422) 

KFold(n_splits=4, shuffle=True, random_state=561) 

 AvAcc [%] 92.11 95.0 

 CBA [%]  90.03 92.06 

 mGM [%]  85.16 94.99 

New-thyroid   RandomForestClassifier(n_estimators=50, 

max_features="auto") 

KFold(n_splits=4, shuffle=True, random_state=500) 

 AvAcc [%] 96.18 100.0 

 CBA [%]  95.22 100.0 

 mGM [%]  93.46 100.0  

Page-blocks   RandomForestClassifier(n_estimators=80, 

max_features="auto", random_state=6)  

KFold(n_splits=4, shuffle=True, random_state=867)  

 AvAcc [%] 83.71 98.0 

 CBA [%]  84.63 84.27 

 mGM [%]  82.55 90.45 
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Thyroid   RandomForestClassifier(n_estimators=100, max_depth=9, 

random_state=42) 

KFold(n_splits=4, shuffle=True,random_state=519) 

 AvAcc [%] 85.34 99.89 

 CBA [%]  81.99 98.79 

 mGM [%]  81.86 99.96 

 

Table 4 displays the parameters that produce the best results on each dataset using support vector machines. Table 

5 does the same for the Decision Tree Classifier.  All tables provide the same insights as Table 3. In this research, 

the criteria for selecting the best parameters for each dataset are high enough classification metrics and good 

enough confusion metrics. As the tables show, the proposed methodology can produce many models that are a 

good fit by adjusting the parameters. 

 

Table 4: Comparison of the Proposed Methodology with SVM (kernel='rbf') to Koziarski [3] 

Name Indicator Maximum 

values 

(Koziarski et 

al. [3]) 

SVM (kernel='rbf') Parameters 

Balance   SVC( C=100, kernel='rbf', gamma='auto', 

class_weight='balanced') 

KFold(n_splits=4, shuffle=True,random_state=684)  

 AvAcc [%] 82.87 96.79 

 CBA [%]  64.92 86.68 

 mGM [%]  62.22 97.78 

Contraceptive   SVC( C=0.1, kernel='rbf', gamma='auto', 

class_weight='balanced') 

KFold(n_splits=4, shuffle=True,random_state=16) 

 AvAcc [%] 55.09 60.0 

 CBA [%]  52.97 53.47 

 mGM [%]  52.60 57.08 

Hayes-Roth   SVC (C=100, kernel='rbf', gamma='auto', 

class_weight='balanced') 

KFold(n_splits=4, shuffle=True,random_state=469) 

 AvAcc [%] 92.11 95.0 

 CBA [%]  90.03 95.48 

 mGM [%]  85.16 95.54 

New-thyroid   SVC (C=1, kernel='rbf', gamma=0.01, 

 class_weight='balanced') 
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KFold(n_splits=4, shuffle=True,random_state=3) 

 AvAcc [%] 96.18 98.14 

 CBA [%]  95.22 95.4 

 mGM [%]  93.46 96.15 

Page-blocks   SVC (C=1000, kernel='rbf', gamma=0.000001,          

class_weight='balanced') 

KFold(n_splits=4, shuffle=True,  random_state=147)  

 AvAcc [%] 83.71 92. 

 CBA [%]  84.63 61.8 

 mGM [%]  82.55 81 

Thyroid   SVC( C=1000, kernel='rbf', gamma=10, 

class_weight='balanced') 

KFold(n_splits=4, shuffle=True,random_state=293)  

 AvAcc [%] 85.34 96.78 

 CBA [%]  81.99 82.16 

 mGM [%]  81.86 88.12 

Table 4 shows that the proposed methodology can outperform existing research Koziarski et al. [3] also when 

using the support vector machines. In some cases, like the ‘Balance’ dataset, the performance improvement is 

significant. This is also valid for the decision tree classifier, e.g. the performance on the thyroid dataset is better 

using our methodology (see Table 5).  

 

Table 5: Comparison of the Proposed Methodology with Decision Tree Model to Koziarski [3] 

Name Indicator Maximum 

values 

(Koziarski et 

al. [3]) 

Decision Tree Parameters 

Balance   DecisionTreeClassifier(max_depth=8, 

class_weight='balanced',  random_state=139) 

KFold(n_splits=4, shuffle=True,random_state=139)  

 AvAcc [%] 82.87 84.71 

 CBA [%]  64.92 66.22 

 mGM [%]  62.22 65.65 

Contraceptive   DecisionTreeClassifier(max_depth=6, 

class_weight='balanced', random_state=97) 

KFold(n_splits=4, shuffle=True, random_state=45)  

 AvAcc [%] 55.09 58.42 

 CBA [%]  52.97 52.79 
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 mGM [%]  52.60 59.13 

Hayes-Roth   DecisionTreeClassifier(max_depth=6, 

class_weight='balanced', random_state=97) 

KFold(n_splits=4, shuffle=True, random_state=429)  

 AvAcc [%] 92.11 97.5 

 CBA [%]  90.03 95.56 

 mGM [%]  85.16 97.14 

New-thyroid   DecisionTreeClassifier(max_depth=6, 

class_weight='balanced', random_state=97) 

KFold(n_splits=4, shuffle=True,random_state=749) 

 AvAcc [%] 96.18 98.11 

 CBA [%]  95.22 96.30 

 mGM [%]  93.46 99.07 

Page-blocks   DecisionTreeClassifier(max_depth=14, 

class_weight='balanced', random_state=98) 

KFold(n_splits=4, shuffle=True,random_state= 817) 

 AvAcc [%] 83.71 97.00 

 CBA [%]  84.63 84.15 

 mGM [%]  82.55 90.71 

Thyroid   DecisionTreeClassifier(max_depth=6, 

class_weight='balanced', random_state=97) 

KFold(n_splits=4, shuffle=True,random_state=45) 

 AvAcc [%] 85.34 99.67 

 CBA [%]  81.99 97.66 

 mGM [%]  81.86 99.54 

 

As Tables 3-5 illustrate, tuning the parameters in every model resulted in an efficient model that can predict well 

all classes despite the class imbalance and outperform other algorithms focused on modifying the model rather 

than parameters tuning. However, parameters tuning involves observing several criteria before deciding whether 

the model is a good fit. These are AvAcc, CBA, mGM and confusion matrices. Observing confusion matrices is a 

key step in the model evaluation. Confusion matrices reveal how accurately each class is predicted. Cases when 

AvAcc, CBA and mGM are high but the confusion matrix demonstrates that some classes are not predicted 

accurately cannot be defined as a good fit. In this case, the confusion matrix can highlight a biased model. In this 

case, parameters tuning continues until a model where AvAcc, CBA and mGM are high enough and the confusion 

matrix confirms that all classes are predicted accurately. If these criteria are fulfilled, tuning the parameters stops. 

The model with these parameters is selected. Our experiments showed that finding parameters that fulfil these 

criteria often happens during the first several trials if the initial parameters values were set in accordance with data 

characteristics and the appropriate values based on the Python documentation. Therefore, the adjustment of 

parameters does not start with random values. This approach to parameter tuning often saves time and becomes 

efficient as the good fit can be captured quickly. Another important consideration is that parameters tuning suggest 
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that more than one good fit is available. When the researchers stop depends on their aim. In some cases, discovering 

the first good fit may be enough. In other cases, finding several good fits would be good. Every good fit would 

have different parameters, but all good fits should have AvAcc, CBA and mGM that are high enough and the 

confusion matrix confirms that all classes are predicted accurately.  

 

Another important finding is that random resampling prior to cross validation can be an effective step to avoid 

under and overfitting when class imbalance is present. Tables 3-5 demonstrate that our results outperform other 

authors. Parameters tuning contributes to this outcome. However, handling class imbalance also has an important 

contribution to this outcome. Random shuffling prior to cross validation allows more class diversity in training 

and test samples, which mitigates the effects of class imbalance prior to parameters tuning. Most Python 

classification algorithms have a built-in parameter called ‘class_weight’ that is set to ‘balanced’ to tackle class 

imbalance. However, in multiclass problems with heavy class imbalance, using this parameter is not enough to 

reduce the bias from the imbalance. Therefore, the bias from class imbalance cannot be handled by adjusting the 

remaining parameters. Therefore, the class imbalance should be handled separately and then adjustment of the 

parameters is made. In this paper, we illustrate that random sampling prior to cross validation can mitigate the bias 

coming from class imbalance, which also helps to identify model’s parameters that would result in accurate 

prediction of all classes.  

 

3.2. Comparison with other authors 

 

The construction of algorithms for classification analysis of big multi-class data has attracted the attention of many 

researchers, who propose diverse and efficient algorithms of high complexity, such as those proposed in the 

following articles [15-22]. In this section, we compare our results presented in section 3.1 with those of other 

authors in their papers 19-22]. The experimental results from MC-NRO [19] are displayed in Table 6.  Compared 

with the corresponding measures computed by our methodology with the Random Forest model (see the second 

column of Table 6) we note that the values are higher than the MC-NRO values. Our Random Forest model 

outperforms the MC-NRO method. 

 

Table 6: Results after applying the MC-NRO method introduced by Shen et al. [19]. Compared to our RF results 

 

Name Indicator Random 

Forest 

Model 

MC-NRO   

Tables 7,8,9 [19] 

Balance    

 AvAcc [%] 89.17 85.70 

 CBA [%]  70.34 69.53 

 mGM [%]  74.65 64.39 

Contraceptive    

 AvAcc [%] 62.5 54.01 

 CBA [%]  60.55 52.95 

 mGM [%]  60.38 52.85 

Hayes-Roth    

 AvAcc [%] 95.0 93.64 

 CBA [%]  92.06 92.45 

 mGM [%]  94.99 88.12 
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New-thyroid    

 AvAcc [%] 100.0 97.89 

 CBA [%]  100.0 95.33 

 mGM [%]  100.0  97.96 

Page-blocks    

 AvAcc [%] 98.0 88.57 

 CBA [%]  84.27 87.43 

 mGM [%]  90.45 88.37 

Thyroid    

 AvAcc [%] 99.89 96.67 

 CBA [%]  98.79 91.93 

 mGM [%]  99.96 93.10 

 

Results obtained with the MC-MBRC algorithm [20] are presented in Table 7 for some datasets (see Table 7). Our 

RF results are introduced as a column in Table 7.   The Random Forest model showed higher results received for 

measures AvAcc and CBA, which indicates the model's efficiency for multiclass datasets. 

 

Table 7: Results after applying the MC-MBRC method introduced by Ma et al. [20]. Compared to our RF results 

Name Indicator Random 

Forest 

Model 

Algorithm MC-

MBRC  

(Tables 3 and 5,   

Ma et al. [20] ) 

Contraceptive    

 AvAcc [%] 62.5 60.53 

 CBA [%]  60.55 33.13 

New-thyroid    

 AvAcc [%] 100.0 95.36 

 CBA [%]  100.0 85.45 

Page-blocks    

 AvAcc [%] 98.0 96.87 

 CBA [%]  84.27 57.27 

Thyroid    

 AvAcc [%] 99.89 94.36 
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 CBA [%]  98.79 63.64 

 

We compare results served by Ongko et al. [21] for datasets Balance и Newthyroid.  The value of Av Acc for the 

Balance dataset is 86.50% and for the Newthyroid dataset is 97.2% (Table 4 [21]). The value of mGM for the 

Balance dataset is 91.50% and for the Newthyroid dataset is 89.80% (Table 5 [21]). Our best results for these 

datasets are for the Balance dataset. The SVM model and the Newthyroid dataset 96.79% and 97.78% obtain the 

metrics Av Acc and mGM. The RF model 100% and 100% obtains the same measures. Thus, our methodology 

increases the values of Ac Acc and mGM for these datasets.   

 

Table 8 describes some of the datasets and results obtained by Grina et al. [22]. The measurements used by Grina 

et al. [22] are mGM and F1-score. Comparing Grina’s results in Table 8 with our findings in Tables 3 and 4, we 

conclude that our values compete with Grina’s results. 

 

Table 8: Results after applying the Grina’s methodology [22]. Our results from Tables 4 and 5 are given in 

brackets. Compared to our RF results. 

Name Indicator SVM model 

Table 2 [22] 

DT model 

Table 4 [22] 

Our RF 

model  

Balance     

 mGM [%]  88.5 (97.78) 89.7 (65.65) 74.65 

Contraceptive     

 mGM [%]  54.7 (57.08) 95.2 (59.13) 60.38 

New-thyroid     

 mGM [%]  96.6 (96.15) 53.8 (99.07)  100.0 

Page-blocks     

 mGM [%]  59.2 (81.0) 55.8 (90.71) 90.45 

Thyroid     

 mGM [%]  98.7 (88.12)  99.0 (99.54) 99.96 

 

The last Tables 6, 7, and 8 present the results of other authors on multiclass set classification problems. These 

results are comparable and even lower than the results of the proposed methodology.  

 

4. Conclusion 

 

These findings lead to several important discoveries for handling class imbalance in multiclass problems. First, 

parameter tuning of ML models can be an effective strategy to handle class imbalance. However, the selection of 

initial parameter values should be made based on the dataset characteristics and Python documentation. If that is 

the case, a good fit can be found in the initial rounds of tuning. Second, random shuffling prior to cross validation 

can be a key to resolving the bias coming from multiclass imbalance. Another important finding is that the best 

results can be achieved when random shuffling, cross validation and parameter tuning are combined. We 

demonstrated this in the proposed methodology. In addition, parameters tuning should be done for each dataset 

and for each ML algorithm used.  As the experiments show tuning the parameters of classification models in case 

of class imbalance may be an effective way to resolve the bias that would come with class imbalance. In some 

cases, this approach may be better than using pre-processing techniques to handle the issue with class imbalance. 

The advantages of the proposed algorithm lie in the simplicity and fast resolving of the class imbalance issue, 

which makes this methodology appropriate as a data exploratory technique or a full classification methodology 

https://doi.org/10.54216/FPA.180215


 

Fusion: Practice and Applications (FPA)                                                        Vol. 18, No. 02. PP. 200-214, 2025     

213 
DOI: https://doi.org/10.54216/FPA.180215         
Received: July 14, 2024 Revised: October 21, 2024 Accepted: January 06, 2025 

even in multiclass datasets. However, tuning the parameters requires experiments and evaluation of the effects of 

the given parameter on the model. Using cross validation is a way to avoid bias in classification in this approach. 

However, more research should be conducted on the parameters influence on the model’s performance in 

multiclass datasets. Therefore, we recommend the proposed algorithm to be used to explore and understand the 

underlying data better. It can be used as a classification technique in the case of multiclass issue, when the aim is 

classification. We do not recommend using this approach in multiclass problems for feature selection as 

parameter’s effects on the selection of variables is not addressed in this research. 
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