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Abstract 

A Decision Support System (DSS) for the recognition of mitotic nuclei (MN) on the histopathological image (HI) 

aids pathologists in cancer diagnoses by automating the MN detection, a key indicator of tumor proliferation and 

cell division. Leveraging innovative image processing and machine learning (ML) algorithms, such a system can 

accurately detect MN, which are crucial indicators of cell division and tumor proliferation. By automating these 

processes, pathologists can focus more on complicated diagnostic tasks while ensuring efficient and consistent 

analysis. ML approaches, comprising support vector machines (SVMs) or convolutional neural networks (CNNs) 

can be widely applied for the classification task. These techniques learn from annotated data to accurately 

discriminate between mitotic and non-MN. Incorporating these technologies into pathology workflow facilitates 

research efforts in oncology for improved treatment strategies, enhances diagnostic accuracy, and reduces 

variability among observers. This study presents an Optimal Bayesian Neural Network based Decision Support 

System for Mitotic Nuclei Detection (OBNN-DSSMND) technique on Histopathologic Imaging. The goal of the 

OBNN-DSSMND technique is to detect the mitotic and non-mitotic cells on the HIs. In the initial phase, the 

OBNN-DSSMND technique undergoes the bilateral filtering (BF) technique to preprocess the input images. Next, 

the OBNN-DSSMND technique involves a feature fusion process encompassing SqueezeNet, DenseNet, and 

VGG-19 models. Meanwhile, the hyperparameter selection of the DL models is performed by using the 

Archimedes Optimization algorithm (AOA). For mitotic nuclei detection, the OBNN-DSSMND technique applies 

a BNN classifier, which recognizes the presence of mitotic and non-mitotic cells on the HIs. The experimental 

assessment of the OBNN-DSSMND approach was examined utilizing a benchmark image dataset. The 

widespread simulation analysis reported that the OBNN-DSSMND technique achieves better results than other 

techniques.  

Keywords: Breast Cancer; Mitotic Nuclei Detection; Decision Support System; Bayesian Neural Network; 
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1. Introduction 

Breast cancer (BC) is a common cancer that mainly affects the lives of women all over the world. BC grows and 

changes due to anomalies in the rate of cell proliferation [1]. The mitotic activity index (MAI) has frequently been 

utilized to evaluate the change in the rate of cell proliferation [2]. MAI was defined as a ratio of cells below 

separation to the entire cell population, and it was assessed by including mitotic bodies (separating nuclei cells). 

It is because, MAI plays a vital part in evaluating the rate of cell proliferation, and it has a predictive importance 

in assessing cancer aggressiveness and BC grading [3]. Bloom-Richardson BC grading method has contained 3 

features, but mitotic count (MC) is a vital measure when compared to others. Being a fragment of the BC grading 

method, the MC has also been measured as a separate analytical biomarker. So, it can be employed in order to 

describe the treatment procedure and project novel healing agents to handle the cell division path [4]. The foremost 

steps detected in typical histopathology are surgery of cancerous tissue, fixation of tissue on a slide of glass, stain 

utilizing Hematoxylin and Eosin (H&E) dye, assortment of areas of interest [5].  
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According to pathologists, the vision classification of mitotic nuclei (MN) is a biased and time-consuming 

challenge with worse accuracy owing to many tasks [6]. Generally, MN are hyper-chromatic entities with 

numerous morphological sizes and shapes. Furthermore, the rate of MN within a ten HPF differs depending upon 

the cancer stage and grade. In aggressive cancers, generally, MN grows in very small dimensions with the highest 

rate are non-different [7]. The accurate classification of MN is based on the knowledge of pathologists and skills. 

Object-level inter-observer research shows pathologists' differences on separate objects. Present growths in 

DCNN and their worthy solution for the classification of images, segmentation, and recognition have enhanced 

their usage in medicinal image concerns [8]. DCNNs are a kind of typical learning systems that mechanically 

remove the related data from raw imageries without placing struggle into the physical planning of feature 

descriptors. CNN-based techniques are efficiently useful in many histopathology problems with attainment, for 

example: classification of breast tissue into benign, normal, aggressive carcinoma, recognition of cancer 

metastasis, quantification of lymphocytes, separation of cancer area, division of cell nuclei, etc [9]. Likewise, 

many CNN-based systems are projected to identify mitosis; but these methods still have a boundary of 

development owing to the stimulating nature of the issue [10]. Automatic recognition of MN is a highly 

challenging task owing to their usual formation and alteration in the surface of cells in dissimilar morphological 

stages. 

This study presents an Optimal Bayesian Neural Network based Decision Support System for Mitotic Nuclei 

Detection (OBNN-DSSMND) technique on HIs. In the initial phase, the OBNN-DSSMND technique undergoes 

the bilateral filtering (BF) technique to preprocess the input images. Next, the OBNN-DSSMND technique 

involves a feature fusion process encompassing SqueezeNet, DenseNet, and VGG-19 models. Meanwhile, the 

hyperparameter selection of the DL models is performed by using the Archimedes Optimization algorithm (AOA). 

For mitotic nuclei detection, the OBNN-DSSMND technique applies a BNN classifier, which recognizes the 

existence of mitotic and non-mitotic cells on the HIs. The experimental assessment of the OBNN-DSSMND 

methodology can be examined utilizing a benchmark image database. 

2. Literature Review 

Liu et al. [11] established a deep network model that comprises two sections. The system primarily develops an 

innovative patch learning technique; while the deep supervision method was presented to attain the coherent 

contributions in every scale layer. For improving nuclear localization, the technique develops an iterative 

correction approach to create the predictive increasingly near-the-ground truth that significantly increases the 

accuracy of nuclear localization and enables the choice of neighbor sizes. In [12], an optimization-based 

superpixel-clustering method has been developed. The image pre-processing could be achieved by implementing 

the normalization method. Later normalization and segmentation were executed by applying the superpixel with 

GWO and PSO for segmenting. Afterward, feature extractor has been executed through colour autocorrelogram, 

circularity, solidity, eccentricity, Local Direction Ternary Pattern (LDTP), perimeter, and GLCM. In conclusion, 

the Support Vector Machine (SVM) method has been employed. In [13], an Enhanced Pelican Optimizer 

Algorithm with a DL-Driven MN Classification (EPOADL-MNC) method was introduced. Similarly, the 

ShuffleNet architecture was utilized for the feature extraction technique. During the process of parameter tuning, 

the EPOADL-MNC method creates usage of the EPOA model for modifying the parameter tuning of the 

ShuffleNet architecture. Lastly, an ANFIS technique was deployed for classification and identification. 

In [14], a two-phase cascaded network called FoCasNet was developed to identify the mitosis. During the primary 

phase, a detection model was developed for screening as many candidates as possible. In the secondary phase, a 

classification model was devised to improve the outcomes of the primary phase. Additionally, the hybrid anchor 

branch classification subnet, normalization technique, and attention mechanism have been presented for 

increasing the overall detection efficiency. The authors [15] presented an artificial hummingbird algorithm with 

a TL-based MN classification (AHBATL-MNC) method. For HI segmentation procedures, the PSPNet 

architecture has been employed to recognize the candidate mitotic patterns. Then, the ResNet has been exploited 

as a feature extractor, and the XGBoost algorithm can be executed. The hyperparameter tuning of the XGBoost 

system is executed with the help of the AHBA method. Ghaznavi et al. [16] projected a hybrid DL-based definite 

segmentation and classification technique. The inception component in the Inception-UNet confined kernels with 

various dimensions with similar layers for extracting each feature descriptor. The sequence of residual blocks with 

skip connections at every level of ResNet34-UNet lessened the gradient vanishing complexity and enhanced the 

generalization capability. 

In [17], an advanced DCNN technique has been developed for nuclei detection, segmentation, and classification 

processes. The Recurrent Residual UNet (R2UNet) and R2UNet-based regression method called the University 

of Dayton Net (UD-Net) could be exploited for nuclei detection and segmentation processes correspondingly. In 

[18], a robust and generalizable mitosis detection technique (named as FMDet) was developed. The pixel-level 

interpretations for MN have been acquired by the correlation of the masks produced in a better-trained 

nuclear segmentation method. At the segmentation model, a strong feature extractor must be devised that was 
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made by incorporating a channel-specific multiple scale attention mechanism with a fully connected (FC) 

network model.  

3. The Proposed Method 

In this paper, we have presented an OBNN-DSSMND technique on HIs. The goal of the OBNN-DSSMND 

technique is to detect the mitotic and non-mitotic cells on the HIs. The OBNN-DSSMND technique contains a 

series of processes such as BF-based image preprocessing, feature fusion process, AOA-based parameter tuning, 

and BNN-based classification. Fig. 1 depicts the entire procedure of the OBNN-DSSMND methodology. 

3.1. Preprocessing 

In the initial phase, the OBNN-DSSMND technique undergoes the BF approach to preprocess the input images. 

BF is a nonlinear filtering algorithm utilized in image processing to decrease noise while retaining edges [19]. BF 

considers the similarity of spatial intensity and proximity between pixels, unlike classical linear filtering which 

smoothes equally each pixel. BF can efficiently remove noise while retaining image properties by applying a 

weighted average based on these factors, making it especially suitable in tasks like edge preservation and image 

denoising. This method finds application in different fields such as digital photography, computer vision, and 

medical imaging, where maintaining image detail and clarity is essential. 

 

Figure 1. Overall procedure of OBNN-DSSMND technique 

3.2. Feature Fusion Process 

Next, the OBNN-DSSMND technique involves a feature fusion process encompassing SqueezeNet, DenseNet, 

and VGG-19 models. 

3.2.1. SqueezeNet Model 

As a variant of Deep Neural Network, SqueezeNet is constructed for image classification [20]. The objective is 

to preserve better accuracy levels, while they are smaller and more effective than other DNNs. SqueezeNet 

achieves efficiency and tiny size known as Network compression. SqueezeNet is used to replace the convolution 

layer that is expensive and large with dense and efficient ones. It achieves innovative application by incorporating 

pooling and 1×1 convolutional layers that can considerably reduce the quantity of variables. Furthermore, it is 

noteworthy that SqueezeNet encompasses a Fire Module. The Modules, which include expansion and squeeze 

layers, are the constituent elements of the network.  
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The size of 𝑡ℎ𝑒 1×1 convolution layer has been employed to decrease the input channel counts, while the sizes of 

3×3 and 1×1 convolution layers are incorporated in the expansion layer to increase the number of output channels. 

Finally, the network efficiently gathers properties of local and global input images. Note that the Squeeze uses a 

deep supervision technique, which has the expansion of the network in addition to the classification layer. Multiple 

classification levels result in better model performance than an output classification. 

SqueezeNet receives and predicts the model according to the features extracted from the data. Deep supervision 

can improve the model performance that proposes myriad classification layers. The SqueezeNet model has three 

different stages, the convolutional layer, eight Fire modules, and the ultimate convolution layer. 

3.2.2. DenseNet Model 

The unique principle of DenseNet keeps in its initial thought of a feed‐forward network, donating upon is a 

noticeable power over other network structures [21]. DenseNet provides an excess of absorbing benefits. At 

primary, DenseNet aids in moderating the issue of vanishing gradient. In addition, DenseNet displays its ability 

by increasing the spread of features, raising their restoration, and efficiently decreasing the count of parameters. 

It is attained over the exclusive device of a dense layer that classily combines the output from the previous layer 

by linking them beside the depth element. The DenseNet procedure merges dense blocks and transition layers in 

order to sort an input review based on its substance. If a text can delivered as an input to DenseNet, then it is 

handled over numerous dense blocks. Every layer-mapping feature endure the similar from layer-wise but the 

filters alter from layer-wise in a particular dense block. Depending upon a dense block, data affecting DenseNet 

growth to the subsequent phase is called the transition layer. 

In the DenseNet structure, the transition layer accepts the critical responsibility of performing dual important 

processes such as convolution (Conv) and pooling. These processes are carefully executed in the downsampling 

measures that are well-placed exterior of the dense blocks. During the DenseNet structure, the transition layer 

includes various modules such as batch normalization (BN) and other vital features like Conv and average pooling 

layers, all functioning jointly to enhance computation efficacy and to diminish the amount of input feature map. 

Afterward, a layer of average global pooling was executed, and outcomes were delivered to a classifier of Softmax. 

3.2.3. VGG-19 Model 

VGG19 is a CNN version of VGG16 developed for image classification [22]. It takes three FC layers, comprising 

sixteen convolution (conv) layers and nineteen layers. Assume X is the input image tensor with sizes HxWxC, 

where H,W, and C signify height, width, and channels correspondingly (for example RGB pictures). VGG19’s 1st 

layer is a conv layer with 64 filters, every dimension 3x3x3 (3x3 defines the filter dimension and 3 has the channel 

counts from the input images). 

Assume F1 is the group of filters. The output will be denoted as: 

𝑉1 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝑋, 𝐹1) + 𝑏1)                                            (1) 

In this context, 𝑏1 denotes the bias, 𝑅𝑒𝐿𝑈 means the rectified linear activation function, and ‘conv ()’ indicates 

the operation of convolution. Next, the CL with 64 filters, followed by a MaxPoolLayer (MPL). The resultant of 

the layer will be given below: 

𝑉2 = 𝑀𝑎𝑥𝑃𝑜𝑜𝐿(𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣(𝑍1, 𝐹2) + 𝑏))                                 (2) 

Here 𝑏2 represents the bias term, 𝐹2 means the filter set, max−𝑝𝑜𝑜l () refers to the max pooling function, and. 

Other layers in VGG19 follow the same pattern of modifying conv and MPLs. The conv layers like 128, 256, 512, 

and 512 filters within the next 4 layers, correspondingly, and every dimension of filters is 3x3x𝑀 in which 𝑀 

refers to the channel counts in the preceding layer. Apart from these CLs, VGG19 features, 3 FC layers, every 

with 4096 neurons. Lastly, the SM layer with output neurons is equivalent to the categorization assignment 

number of classes. The outcome from the final FC layer will be represented as: 

𝑍𝐹 = 𝑅𝑒𝐿𝑈 (( 𝑊𝐹 ∗ 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑍𝐶𝑜𝑛𝑣5)) + 𝑏𝐹)                          (3) 

Where 𝑏𝐹 defines the bias term, 𝑊𝐹 means the weight matrix that can be connected to the FC layer, and fatten () 

refers to the process that fattens the output of the preceding layer to a vector. Also, the resultant of the SM layer 

will be denoted as: 
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𝑌(𝑆𝑀) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 ((𝑊𝑆𝑀 ∗ 𝑍𝐹) + 𝑏𝑆𝑀)                                  (4) 

Here 𝑏𝑆𝑀 defines the bias term, and 𝑊𝑆𝑀 describes the weight matrix that is linked to the softmax layer to the 

preceding layer. The 𝑆𝑜𝑓𝑡𝑀𝑎𝑥() function standardizes the output to a probability distribution through the class 

labels. The major variance between VGG19 and VGG16 is the amount of conv layers. VGG19 takes 3 added conv 

layers with 128, 256, and 512 filters, individually, when related to VGG16. The deeper network permits additional 

intricate features that should be learned and improved effectiveness under the specified image classification 

methods. 

3.3. Hyperparameter Tuning using AOA 

At this phase, the hyperparameter selection of the DL models is performed by using the AOA. The AOA is a state-

of-the-art metaheuristic optimization method that dependent upon Archimedes’ buoyancy principle’s physical 

principles [23]. The object’s location has been upgraded by simulating the object method progressively showing 

neutral buoyancy succeeding a collision. The AOA method offers a specific population by submerging objects 

with acceleration, density, and volume features. The product must determine its place in the fluid reliant on these 

aspects. The AOA upgrades the density, acceleration, and volume of objects in the optimization process. The 

object’s place will be updated in accordance with its individual abilities. During Initialization, upgrading object 

features, upgrading the position of object, and calculation is an important process for stages of the AOA. 

Initialized of the place and features of the object can be derived as given below: 

𝑋𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑( ) ⋅ (𝑢𝑏𝑖 − 𝑙𝑏𝑖),                                   (5) 

Here The variable 𝑟𝑎𝑛𝑑() is a d‐dimensional vector produced arbitrarily in the range of [0,1], 𝑋𝑖 represents a 

candidate solution vector 𝑖𝑡ℎ of object population dimension 𝑁, 𝑖 = 1,2, … , 𝑁, and the limitations 𝑙𝑏𝑖 and 𝑢𝑏𝑖 

describe the lower and upper bounds, correspondingly. The 𝑖‐ 𝑡ℎ object variables of acceleration are denoted as 

𝑐𝑖, volume is represented as 𝑣𝑜𝑖, and density is indicated as 𝑑𝑒𝑖, correspondingly; 𝑣𝑜𝑗 = 𝑟𝑎𝑛𝑑, 𝑑𝑒𝑖 = 𝑟𝑎𝑛𝑑, and 

𝑎𝑐𝑐𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑() ⋅ (𝑢𝑏𝑖 − 𝑙𝑏𝑖). The attributes and place of the optimum object such as 𝑣𝑜𝑏𝑒𝑠𝑡 , 𝑋𝑏𝑒𝑠𝑡 , 𝑑𝑒𝑏𝑒𝑠𝑡 , 

and 𝑎𝑐𝑏𝑒𝑠𝑡—have been chosen objects with the top fitness values based on the computation of every object. 

Object properties stage: At the iteration, the object’s density and volume were upgraded as per the given 

mathematical Eqs (6) – (7): 

𝑣𝑜𝑖
𝑡+1 = 𝑣𝑜𝑖

𝑡 + 𝑟𝑎𝑛𝑑 ⋅ (𝑣𝑜𝑏𝑒𝑠𝑖 − 𝑣𝑜𝑖
𝑡),                                         (6) 

𝑑𝑒𝑖
𝑡+1 = 𝑑𝑒𝑖

𝑡 + 𝑟𝑎𝑛𝑑 ⋅ (𝑑𝑒𝑏𝑒𝑠𝑡 − 𝑑𝑒𝑖
𝑡),                                          (7) 

Here 𝑑𝑒𝑖
𝑡+1 and 𝑣𝑜𝑖

𝑡+1describes the density and volume of the 𝑖𝑡ℎ object at the iteration 𝑡 + 1. The virtual 

collisions among objects at the AOA have been imitated to the Eq. (9) optimization method; the method 

progressively gets equilibrium. A transform variable should be employed as a method to simulate accomplishing 

the transformation of model in the searching exploration to exploitation as represented by: 

𝑇𝑃 = exp (
𝑡 − 𝑡max
𝑡max

)                                                     (8) 

whereas 𝑇𝐹 denotes the transform variable, 𝑡 and 𝑡max describes the existing number of iterations and maximum 

iterations, correspondingly TF slowly rising to 1 over time. 𝑇𝑃 ≤ 0.5 defines one second of iteration under the 

exploration stage. The object features of upgrade acceleration can be compared with the collision objects. 

𝑎𝑐𝑖
𝑡+1 =

{
 
 

 
 
𝑑𝑒𝑚𝑟 + 𝑣𝑜𝑚𝑟 ⋅ 𝑎𝑐𝑚𝑟

𝑑𝑒𝑖
𝑡+1. 𝑣𝑜𝑖

𝑡+1 , 𝑖𝑓 𝑇𝐹 ≤ 1/2

𝑑𝑒𝑏𝑒𝑠𝑡 + 𝑣𝑜𝑙𝑏𝑒𝑠𝑡
𝑖 ⋅ 𝑎𝑐𝑏𝑒𝑠𝑡

𝑑𝑒𝑖
𝑡+1. 𝑣𝑜𝑖

𝑡+1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (9) 

Now, 𝑑𝑒𝑚𝑟 , 𝑣𝑜𝑚𝑟 , and 𝑎𝑐𝑚𝑟 represent the density, volume, and acceleration of random material (𝑚𝑟), 

correspondingly. When 𝑇𝑃 ≤ 0.5, it will be a collision amongst objects, and mathematical equations for 

acceleration upgrades of object 𝑖 at iteration 𝑡; or else, without any collisions among objects. The standardization 

approach for the acceleration will be upgraded as given below: 
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𝑎𝑐𝑖,𝑛𝑜𝑟𝑚
𝑡+1 = 𝑢𝑟 ⋅

𝑎𝑐𝑖
𝑡+1 −min(𝑎𝑐)

 max(𝑎𝑐) − min(𝑎𝑐)
+ 𝑙𝑟,                              (10) 

Here 𝑎𝑐𝑖,𝑛𝑜𝑟𝑚
𝑡+1  characterizes the standardized acceleration of 𝑖‐ 𝑡ℎ object with respect to the 𝑡 + 1 iteration. The 

𝑢𝑟 and 𝑙𝑟 describe the normalized values that can be set to 0.8 and 0.2, correspondingly. 

Upgrading the place of objects must be executed in this way: When 𝑇𝐹 ≤ 1/2 (exploration stage), the location 

upgrade equation of object 𝑖 in the iteration 𝑡 + 1 will be useful for searching at global to local and region of 

converge wherein the optimum outcome occurs; alternatively, it will be a searching exploitation stage in the 

location upgrading. Once the object is different from the best place, the acceleration values will be large, and the 

object will exist at the exploration stage. If the values of acceleration are smaller, the object could be close to the 

optimum outcome. The exploitation stage will be explained in a detailed manner: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝐶1 ⋅ 𝑟𝑎𝑛𝑑 ⋅ 𝑎𝑐𝑖,𝑛𝑜𝑟𝑚
𝑡+1 ⋅ 𝑑 ⋅ (𝑋𝑟𝑎𝑛𝑑 − 𝑋𝑖

𝑡)                  (11) 

whereas 𝐶1 refers to a constant as a set of 2, and 𝑑 means the density parameter that reduces with respect to time 

like 𝑑 =  exp (
𝑡−𝑡max

𝑡max
) − (

𝑡

𝑡max
). The acceleration modifies from larger to smaller, representing the method’s 

change from exploration to exploitation, correspondingly can support the object methodology and optimum global 

solution. 

𝑋𝑖
𝑡+1 = 𝑋𝑏𝑒𝑠𝑖

𝑡 + 𝐹 ⋅ 𝐶2 ⋅ 𝑟𝑎𝑛𝑑 ⋅ 𝑎𝑐𝑖,𝑛𝑜𝑟𝑚
𝑡+1 ⋅ 𝑑 ⋅ (𝑇 ⋅ 𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖

𝑡)               (12) 

Now 𝐹 means the direction of motion, 𝐶2 characterizes the constant 𝑡; 𝑇 defines the variable proportional to the 

transfer purpose—the percentage utilized for achieving the optimum place - 𝑇 = 𝐶3 × 𝑇𝑃; and the mathematical 

formula will be represented by: 

𝐹 = {
+1, 𝑖𝑓 𝑃 ≤ 0.5
−1, 𝑖𝑓 𝑃 > 0.5

                                               (13) 

We know that 𝑃 is fixed to 2 ⋅ 𝑟𝑎𝑛𝑑 − 𝐶4. 

Calculating the main function includes the computation of fitness values for the main function and then upgrading 

the location of the object at every iterative time. The algorithm with the main function has been applied in fitness 

value assessment by analyzing every object to be detailed with the values of best fitness determined at every 

location, for example, 𝑎𝑐𝑏𝑒𝑠𝑡, 𝑑𝑒𝑏𝑒𝑠𝑡, 𝑋𝑏𝑒𝑠𝑡 , and 𝑣𝑜𝑏𝑒𝑠𝑡  are upgraded for the following generations or iterations. 

The fitness choice is a key aspect controlling the solution of AOA. The parameter solution procedure contains the 

encoded performance to measure the effectiveness of the candidate outcomes. During this case, the AOA assumes 

that accuracy is the main condition to design the fitness function (FF) that can expressed as:  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                                                        (14) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                          (15) 

where 𝑇𝑃 and 𝐹𝑃 demonstrate the true and false positive rates. 

3.4. Mitotic Nuclei Detection using BNN Model 

At last, the OBNN-DSSMND technique applies a BNN classifier, which recognizes the presence of mitotic and 

non-mitotic cells on the HIs for mitotic nuclei detection. A BNN is a method of ANN that unites the versatility 

and flexibility of ANN, with the capability to manage the insecurity of the parameter [24]. It creates the probability 

distribution utilizing Bayesian inference, as tackled to estimates, different standard ANNs. This permits BNN to 

include insecurity in their forecasts and deliver additional precise outcomes. BNN was executed in a wide range 

of applications like reinforcement learning, natural language processing (NLP), and image classification. 

Murat describes the Bayesian structure for neural networks; his tactic concentrates on the probabilistic analyses 

of system structures. On the other hand, in conventional network training, the optimal weights were gained by 

diminishing the function of error; the Bayesian tactic uses a probability distribution of the system weight. 

Therefore, the common system’s forecast is dependent upon a probability distribution. During the theory of 

Bayesian, the weights can be randomly generated and their posterior distribution is adapted as per the rule of 

Bayes. Fig. 2 represents the infrastructure of BNN. 
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Figure 2. Structure of BNN 

 

Therefore, the calculation is as below. 

𝑘(𝜔|𝐶, 𝛼, 𝛽, 𝐿) =
𝐾(𝐶|𝜔, 𝛽, 𝐿)𝐾(𝜔|𝛼, 𝐿)

𝐾(𝐶|𝛼, 𝛽, 𝐿)
                             (16) 

Here, the foremost neural networks method is signified as 𝐾, the sample of training is denoted as 𝐶, the weight 

distribution is defined as 𝑘(𝜔|𝛼𝐿) = (
𝛼

2𝜋
)

𝑚

2
exp {‐

𝛼

2
𝜔1𝜔}, 𝐿 is one of the specific ANNs, and 𝜔 is the vector with 

their weights. 𝐾(𝜔|𝛼, 𝐿) defines the foremost layer of data before the intended data are composed, and 

𝐾(𝐶|𝜔, 𝛽, 𝐿) refers to the parallel function that is the prospect of the data arising assuming the weight. The 

posterior calculation is definite in Eq. (17). 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
                                      (17) 

A BNN generates probabilistic assurances for its forecasts, and the parameter distribution has been acquired from 

the remarks. Therefore, one can develop the kind and procedure neural network from space. These dual features 

make BNNs smart to both practitioners and theorists.  

4. Performance Validation 

The experimental assessment of the OBNN-DSSMND approach can be examined utilizing a benchmark image 

dataset [25]. It takes 150 images with 2 classes as illustrated in Table 1.  Fig. 3 exemplifies the sample images. 

Table 1: Details on database 

Classes No. of Images 

Mitosis 75 

Nonmitosis 75 

Total No. of Images 150 
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Figure 3. Sample images 

 

Figure 4. Confusion matrices of (a-b) 80:20 of TRAST/TESST and (c-d) 70:30 of TRAST/TESST 

Fig. 4 displays the confusion matrices developed by the OBNN-DSSMND methodology at 80:20 and 70:30 of 

TRAST/TESST. These outcomes denote that the OBNN-DSSMND algorithm has effectual recognition and 

classification of mitosis and non-mitosis classes. 

The mitotic nuclei detection results of the OBNN-DSSMND system can be considered with 80%TRAST and 

20%TESST in Table 2 and Fig. 5. These experimental outcomes implied that the OBNN-DSSMND method 

recognizes different two classes under mitosis and non-mitosis. With 80%TRAST, the OBNN-DSSMND 

methodology offers an average 𝑎𝑐𝑐𝑢𝑦 of 83.50%, 𝑝𝑟𝑒𝑐𝑛 of 84.65%, 𝑟𝑒𝑐𝑎𝑙 of 83.50%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 83.22%, and 

https://doi.org/10.54216/IJAACI.070101


 
International Journal of Advances in Applied Computational Intelligence (IJAACI)     Vol. 07, No. 01, PP. 01-16, 2025 

9 
DOI: https://doi.org/10.54216/IJAACI.070101  
Received: September 11, 2024 Revised: November 01, 2024 Accepted: January 05, 2025 

𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 83.64%. Besides, with 20%TESST, the OBNN-DSSMND algorithm achieves an average 𝑎𝑐𝑐𝑢𝑦 of 

96.43%, 𝑝𝑟𝑒𝑐𝑛 of 97.06%, 𝑟𝑒𝑐𝑎𝑙 of 96.43%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.63%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 96.69%, respectively. 

Table 2: Mitotic nuclei recognition outcome of OBNN-DSSMND methodology with 80%TRAST and 

20%TESST 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑮𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

TRAST (80%) 

Mitosis 73.77 91.84 73.77 81.82 82.31 

Nonmitosis 93.22 77.46 93.22 84.62 84.98 

Average 83.50 84.65 83.50 83.22 83.64 

TESST (20%) 

Mitosis 92.86 100.00 92.86 96.30 96.36 

Nonmitosis 100.00 94.12 100.00 96.97 97.01 

Average 96.43 97.06 96.43 96.63 96.69 

  

 

Figure 5. Average of OBNN-DSSMND technique with 80%TRAST and 20%TESST 

The mitotic nuclei detection outcomes of the OBNN-DSSMND method have been examined with 70%TRAST 

and 30%TESST in Table 3 and Fig. 6. These attained values emphasized that the OBNN-DSSMND method 

recognizes diverse two classes with mitosis and non-mitosis. According to 70%TRAST, the OBNN-DSSMND 

method gains an average 𝑎𝑐𝑐𝑢𝑦 of 95.00%, 𝑝𝑟𝑒𝑐𝑛 of 95.83%, 𝑟𝑒𝑐𝑎𝑙 of 95.00%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.19%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  

of 95.31%. Meanwhile, based on 30%TESST, the OBNN-DSSMND algorithm accomplishes an average 𝑎𝑐𝑐𝑢𝑦 

of 97.50%, 𝑝𝑟𝑒𝑐𝑛 of 98.08%, 𝑟𝑒𝑐𝑎𝑙 of 97.50%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.74%, and 𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 97.76%. 
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Table 3: Mitotic nuclei detection outcome of OBNN-DSSMND technique with 70%TRAST and 30%TESST 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑮𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

TRAST (70%) 

Mitosis 90.00 100.00 90.00 94.74 94.87 

Nonmitosis 100.00 91.67 100.00 95.65 95.74 

Average 95.00 95.83 95.00 95.19 95.31 

TESST (30%) 

Mitosis 100.00 96.15 100.00 98.04 98.06 

Nonmitosis 95.00 100.00 95.00 97.44 97.47 

Average 97.50 98.08 97.50 97.74 97.76 

  

 

Figure 6. Average of OBNN-DSSMND technique at 70%TRAST and 30%TESST 

The efficiency of the OBNN-DSSMND methodology is graphically projected in Fig. 7 in the procedure of training 

accuracy (TRAAC) and validation accuracy (VALAC) curves with 70%TRAST and 30%TESST. The outcome 

displays a useful investigation of the behaviour of the OBNN-DSSMND algorithm at distinct count of epochs, 

representing its learning method and generalized abilities. Primarily, the outcome denotes a constant enhancement 

in the TRAAC and VALAC with progress in epochs. It ensures the adaptive nature of the OBNN-DSSMND 

technique in the pattern identification method under both data. The improved trends in VALAC outline the ability 

of the OBNN-DSSMND method to adjust to the TRA set and surpass to provide correct classification of 

undetected data, demonstrating robust generalized capabilities. 
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Figure 7. 𝐴𝑐𝑐𝑢𝑦 curve of OBNN-DSSMND technique with 70%TRAST and 30%TESST 

 

Figure 8. Loss curve of OBNN-DSSMND algorithm under 70%TRAST and 30%TESST 

Fig. 8 shows a complete outline of the training loss (TRALS) and validation loss (VALLS) results of the OBNN-

DSSMND method over distinct epochs with 70%TRAST and 30%TESST. The progressive minimization in 

TRALS outperforms the OBNN-DSSMND methodology enhancing the weights and decreasing the classifier error 

at both data. The outcome specifies a clear knowledge of the OBNN-DSSMND method connected to the TRA 

data, highlighting its ability in capturing patterns. Mostly, the OBNN-DSSMND system incessantly increases its 

parameters in decreasing the variances among the actual and predictive TRA class labels. 

https://doi.org/10.54216/IJAACI.070101


 
International Journal of Advances in Applied Computational Intelligence (IJAACI)     Vol. 07, No. 01, PP. 01-16, 2025 

12 
DOI: https://doi.org/10.54216/IJAACI.070101  
Received: September 11, 2024 Revised: November 01, 2024 Accepted: January 05, 2025 

 

Figure 9. PR curve of OBNN-DSSMND methodology at 70%TRAST and 30%TESST 

Examining the PR curve, as displayed in Fig. 9, the outcomes ensured that the OBNN-DSSMND system gradually 

attains improved PR rates at each class with 70%TRAST and 30%TESST. It confirms the enriched abilities of the 

OBNN-DSSMND algorithm in the identification of distinct classes, showing ability in the recognition classes.  

Similarly, in Fig. 10, ROC curves acquired by the OBNN-DSSMND methodology exhibited the classification of 

distinct labels with 70%TRAST and 30%TESST. It gives a widespread data of the tradeoff between TPR as well 

as FRP over distinct recognition threshold values and count of epochs. The outcome emphasized the higher 

classifier results of the OBNN-DSSMND algorithm with every class, outlining the efficacy in overcoming several 

classification issues. 

 

Figure 10. ROC curve of OBNN-DSSMND model with 70%TRAST and 30%TESST 

https://doi.org/10.54216/IJAACI.070101


 
International Journal of Advances in Applied Computational Intelligence (IJAACI)     Vol. 07, No. 01, PP. 01-16, 2025 

13 
DOI: https://doi.org/10.54216/IJAACI.070101  
Received: September 11, 2024 Revised: November 01, 2024 Accepted: January 05, 2025 

To ensure the mitotic nuclei detection assessment of the OBNN-DSSMND method, a wide-ranging comparative 

outcome is stated in Table 4 and Fig. 11 [15]. These experimentation outcome values result from the display that 

the VGG16 method has shown poorer performance with decreased values. Likewise, the ResNext-50, Inception-

V3, ResNet-18, DenseNet-201, DHE-Mit, and AHBATL-MNC algorithm have described closer values. But, the 

OBNN-DSSMND algorithm achieves superior outcomes with 𝑎𝑐𝑐𝑢𝑦 of 97.50%, 𝑝𝑟𝑒𝑐𝑛 of 98.08%, 𝑟𝑒𝑐𝑎𝑙 of 

97.50%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.74%.  

Table 4: Comparative outcomes of OBNN-DSSMND technique with recent models 

Methods 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 

OBNN-DSSMND 97.50 98.08 97.50 97.74 

AHBATL-MNC 96.79 96.79 96.79 96.68 

DHE-Mit  86.85 86.12 76.95 79.02 

DenseNet-201 Model 85.47 84.80 75.48 77.95 

ResNet-18 Model 83.67 82.96 73.28 75.78 

Inception-V3 Model 80.07 79.14 69.69 72.29 

ResNext-50 Model 79.11 77.78 68.52 71.17 

VGG-16 Model 76.49 75.49 66.60 69.27 

 

 

Figure 11. Comparative analysis of OBNN-DSSMND technique with other models 

To examine the mitotic nuclei detection assessment of the OBNN-DSSMND method, an extensive comparative 

computational time (CT) outcome is reported in Table 5 and Fig. 12. These experimentation outcomes represent 

that the VGG16 technique gets the lowest performance with increased values.  
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Table 5: CT outcome of OBNN-DSSMND technique with recent other algorithms 

Methods Computational Time (s) 

OBNN-DSSMND 8.11 

AHBATL-MNC 12.36 

DHE-Mit  25.19 

DenseNet-201  42.60 

ResNet-18  41.05 

Inception-V3  59.69 

ResNext-50  39.38 

VGG-16  56.16 

 

Figure 12. CT analysis of OBNN-DSSMND technique with other models 

Alternatively, the ResNext-50, Inception-V3, ResNet-18, DenseNet-201, DHE-Mit, and AHBATL-MNC 

methods have been denoted as significant values. Nevertheless, the OBNN-DSSMND system achieves enhanced 

performance with a lessened CT of 8.11s, respectively.  

5. Conclusion 

In this study, we have presented an OBNN-DSSMND technique on HIs. The goal of the OBNN-DSSMND 

technique is to detect the mitotic and non-mitotic cells on the HIs. In the initial phase, the OBNN-DSSMND 

technique undergoes the BF technique to preprocess the input images. Next, the OBNN-DSSMND technique 

involves a feature fusion process encompassing SqueezeNet, DenseNet, and VGG-19 models. Meanwhile, the 
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hyperparameter selection of the DL models is performed by using the AOA. For mitotic nuclei detection, the 

OBNN-DSSMND technique applies a BNN classifier, which recognizes the presence of mitotic and non-mitotic 

cells on the HIs. The experimental assessment of the OBNN-DSSMND technique can be examined utilizing a 

benchmark image database. The widespread simulation analysis reported that the OBNN-DSSMND technique 

achieves better results than other techniques. 

Data Availability Statement: The authors confirm that the data supporting the findings of this study are available 

within the article [25]. 
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