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Abstract

In this paper we aims to provide a clear definition of Neutrosophic Fuzzy Soft Sets and explain its funda-
mental operations through relevant examples. This work examines the computation of static Expected Time
of Arrival (ETA) utilizing neutrosophic fuzzy soft set values and the fundamental Expected Time of Arrival.
Our research also investigates the incorporation of sophisticated artificial intelligence (AI) methods to create
reliable and adaptable dynamic Expected Time of Arrival(ETA) prediction models. Through the utilization of
many types of data, such as current traffic statistics, weather conditions, road conditions, vehicle status, and
driver behavior, we suggest a comprehensive system that adapts to changing circumstances and consistently
enhances its ability to make accurate predictions. Our methodology utilizes cutting-edge machine learning
algorithms to analyze and interpret vast amounts of diverse data. In addition, we tackle the difficulties of
managing uncertainty and indeterminacy in data by utilizing Neutrosophic Fuzzy Soft Sets, which improve the
model’s resilience and dependability.

Keywords: Neutrosophic Fuzzy Soft Sets; Static Expected Time of Arrival; Dynamic Expected Time of
Arrival

1 Introduction

In contemporary transportation systems, anticipating the estimated time of arrival (ETA) is of utmost im-
portance to guarantee effective and reliable logistics, traffic control, and navigation systems. Conventional
approaches to ETA prediction typically depend on fixed criteria that do not consider the ever-changing aspects
of real-world elements, including traffic circumstances, weather, road quality, car condition, and driver expe-
rience. This constraint can result in notable errors in the estimated time of arrival (ETA) estimates,12 leading
to inefficient decision-making and higher operating expenses.
Advancements in artificial intelligence (AI) and machine learning (ML) have recently enabled the development
of more advanced methods for predicting estimated time of arrival (ETA). These methods utilize up-to-date
information and complex algorithms to adjust to varying circumstances, thereby improving the precision and
dependability of estimated time of arrival (ETA) calculations.13 One of the sophisticated strategies that has
gained attention is the utilization of Neutrosophic Fuzzy soft set values. This approach is considered promis-
ing, as it can effectively deal with uncertainty, indeterminacy, and incompleteness in data.2

Neutrosophic Fuzzy Soft Sets offer a mathematical structure that combines the principles of Neutrosophic and
Fuzzy Soft Sets, enabling a more intricate depiction of real-world phenomena. This approach is especially
suitable for accurately predicting the estimated time of arrival (ETA) in dynamic situations, as it can incorpo-
rate multiple factors of uncertainty and unpredictability that are inherent in transportation systems.14 Using
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fuzzy fuzzy neutrosophic soft set values,15 it is possible to capture the complex connections among many in-
fluencing factors and produce more precise ETA forecasts.
The subsequent sections of this work are structured in the following manner. Section-2 presents an elaborate
examination of previous research in ETA prediction and Neutrosophic Fuzzy soft sets. Section -3 presents the
initial definitions necessary for our study. Section-4 establishes the notion of neutrosophic fuzzy soft sets and
associated arithmetic operations, supported by appropriate examples.Section-5 provides a detailed explanation
of the methodology used for ETA prediction utilizing Neutrosophic Fuzzy Soft Set values. Covers the data
collection process, feature selection, and model implementation. Section-6 presents the experimental find-
ings and analysis, focusing on the enhancements achieved with the incorporation of artificial intelligence into
the prediction of ETA. Section 7 presents a comparative examination of static and dynamic ETA. Section 8
provides an analysis of possible future research and the impact it may have on the area.

2 Related Works

The topic of Estimated Time of Arrival (ETA) prediction has advanced considerably through the utilization of
machine learning techniques and the incorporation of complex logical frameworks like Neutrosophic Fuzzy
Soft Sets. This section examines many pivotal research and approaches that have played a significant role in
the progress of ETA prediction. Vlahogianni et al.16 examine the application of statistical techniques to iden-
tify nonlinearity and nonstationarity in transportation time-series data. The authors specifically concentrate on
the implementation of these methods in the context of road traffic flows, establishing a basis for understanding
how conventional statistical methodologies might be employed for ETA (Estimated Time of Arrival) predic-
tion. Yang and Yan are investigating the application of data fusion technologies to anticipate travel time on
arterial roads in real time. The study integrates data from multiple sources, such as traffic sensors and historical
databases, to improve the precision of the predictions.17 Wang et al.18 investigate the utilization of Support
Vector Machines (SVM) and Random Forest models for the purpose of ETA prediction. The study empha-
sizes the benefits of machine learning models in terms of their adaptability and precision when compared to
conventional methods. Maji et al.19 utilize soft set theory to address a decision-making issue, demonstrat-
ing the adaptability of the framework in managing uncertain data. This study establishes the foundation for
incorporating Neutrosophic Fuzzy Soft Sets into ETA prediction algorithms.

3 Preliminaries

Definition 3.1. 4

Let E be the universal set, Then a fuzzy set X over E is defined by X = {(x, µX(x))/x ∈ E, where µX :
E → [0, 1] is called the membership function of X. The value µX(x) for each x ∈ E, reflects the degree to
which x is a member of the fuzzy set X.

Definition 3.2. 5

Consider the universal set X and x ∈ X . A Single Valued Neutrosophic Set (SVNS) A in X is distin-
guished by function of truth-membership TA, function of indeterminacy-membership IA and function of
falsity-membership FA. For each point x in X, TA(x), IA(x),FA(x) ∈ [0, 1].Thus, a SVNS N is denoted
by, N = {(x, TA(x), IA(x),FA(x))|x ∈ X}
Definition 3.3. 3

Let E be the universal set.Then a Neutrosophic Fuzzy Set(NFS) A on E is defined by
A = {(x, µA(x), TA(x, µ), IA(x, µ),FA(x, µ))/x ∈ E} where each membership value is expressed by a
truth, indeterminacy and falsity membership function which are respectively denoted as TA(x, µ), IA(x, µ)
and FA(x, µ). Moreover TA, IA and FA are real standard or non-standard subsets of ]0−, 1+[ , That is,
TA : E →]0−, 1+[,
IA : E →]0−, 1+[,
FA : E →]0−, 1+[.
where,0− ≤ Sup(TA) + Sup(IA) + Sup(FA) ≤ 3+.

Definition 3.4. 3

Let E be the universal set,then Single-valued Neutrosophic Fuzzy Set(SVNFS) S on E is defined by S =
{(x, µS(x), TS(x, µ), IS(x, µ),FS(x, µ))/x ∈ E}, where TS(x, µ), IS(x, µ),FS(x, µ) ∈ [0, 1],and 0 ≤
TS(x, µ) + IS(x, µ) + FS(x, µ) ≤ 3.
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4 Neutrosophic Fuzzy Soft Sets: A New Paradigm for Uncertainty Modeling

Definition 4.1. 10 Let U be a universal set and P a set of parameters. A pair (f,A) is called a soft set over U
when A is a subset of P and f is a mapping from A to the power set of U .

Definition 4.2. 11 Let U be a universal set to start with, P be a set of parameters, and IU the power set of
fuzzy sets of U . A pair (f,P) is called a fuzzy soft set on U where f is a mapping from A ⊂ P to IU .

Definition 4.3. 3 Let E be a universal set.Then SVNFS S on E is defined by S = {(x, µS(x), TS(x, µ), IS(x, µ),
FS(x, µ))/x ∈ E}, where TS(x, µ), IS(x, µ),FS(x, µ) ∈ [0, 1],and 0 ≤ TS(x, µ)+IS(x, µ)+FS(x, µ) ≤ 3.

We now possess all the necessary elements to establish a precise definition of Neutrosophic Fuzzy Soft
Sets(NFSS).

4.1 Neutrosophic Fuzzy Soft Set(NFSS)

To begin, let U be a universal set, P a set of parameters, and NNFS(U) the power set of Neutrosophic Fuzzy
sets of U . A pair (f,P) is called a fuzzy fuzzy soft set of neutrophilics on U when f is a mapping from A ⊂ P
to NNFS(U).
We can improve the definition by using additional precision derived from the definitions of Deli and Broumi.8

Definition 4.4. Let U be an initial universe set and P be a set of parameters. The set of all NFSs of U is denoted
by NNFS(U). A neutrosophic fuzzy soft set N over U is a set defined by a set valued function fN that maps
P to NNFS(U). This set is a parameterized family of some elements of NNFS(U) and can be expressed as
a set of ordered pairs, N = (p,< x, µfN (p)(x), TfN (p)(x, µ), IfN (p)(x, µ),FfN (p)(x, µ) >: x ∈ U) : p ∈ P .
The truth, indeterminacy and falsity of the membership grade are represented by TfN (p)(x, µ), IfN (p)(x, µ),
FfN (p)(x, µ) ∈ [0, 1] respectively, with the supremum of each being 1. This implies that the inequality
0 ≤ TfN (p)(x, µ) + IfN (p)(x, µ) + FfN (p)(x, µ) ≤ 3 holds.

Example 4.5. The set of movies m1,m2,m3 is evaluated based on four parameters, namely Direction, Script,
Casting, and Marketing strategies, denoted by X = {p1, p2, p3, p4}. These parameters are used to measure
the success or failure of movies.
fN (p1) = {< m1, (0.5, 0.7, 0.3, 0.2) >,< m2, (0.3, 0.2, 0.5, 0.7) >,< m3, (0.7, 0.9, 0.3, 0.2) >}
fN (p2) = {< m1, (0.2, 0.3, 0.2, 0.2) >,< m2, (0.6, 0.7, 0.2, 0.1) >,< m3, (0.7, 0.9, 0.1, 0.2) >}
fN (p3) = {< m1, (0.8, 0.7, 0.2, 0.2) >,< m2, (0.2, 0.3, 0.5, 0.7) >,< m3, (0.7, 0.8, 0.3, 0.2) >}
fN (p4) = {< m1, (0.9, 0.7, 0.3, 0.2) >,< m2, (0.5, 0.2, 0.6, 0.7) >,< m3, (0.3, 0.4, 0.5, 0.6) >}
Then
N = {(p1, fN (p1)), (p2, fN (p2)), (p3, fN (p3)), (p4, fN (p4))} is the Neutrosophic Fuzzy soft set over (U ,P).

4.2 Fundamental Set Operations on Neutrosophic Fuzzy Soft Sets

Definition 4.6. The complement of a Neutrosophic Fuzzy Soft Set N is denoted by N c and is defined as
N c = {(p,< x, 1− µfN (p)(x),FfN (p)(x, µ), 1− IfN (p)(x, µ), TfN (p)(x, µ) >: x ∈ U) : p ∈ P}

Example 4.7. Assume U = {u1, u2, u3} represents the collection of gadgets being examined. The set of
parameters is denoted by P = {p1, p2, p3, p4}, for instance, the parameters branded (p1), inexpensive (p2),
uniqueness (p3) and attractiveness(p4)are represented by these terms. Let
fN (Branded) = {< u1, (0.6, 0.7, 0.4, 0.2) >,< u2, (0.4, 0.2, 0.5, 0.7) >,< u3, (0.7, 0.7, 0.3, 0.2) >}
fN (Inexpensive) = {< u1, (0.3, 0.3, 0.2, 0.2) >,< u2, (0.6, 0.8, 0.2, 0.1) >,< u3, (0.7, 0.8, 0.1, 0.2) >}
fN (Uniqueness) = {< u1, (0.8, 0.7, 0.2, 0.2) >,< u2, (0.2, 0.4, 0.5, 0.7) >,< u3, (0.7, 0.8, 0.3, 0.1) >}
fN (Attractiveness) = {< u1, (0.9, 0.8, 0.3, 0.2) >,< u2, (0.5, 0.3, 0.6, 0.7) >,< u3, (0.4, 0.4, 0.5, 0.6) >}
Then
N = {(p1, fN (p1)), (p2, fN (p2)), (p3, fN (p3)), (p4, fN (p4))} is the Neutrosophic Fuzzy soft set over (U ,P).
For describing N c we have,
fN c(NotBranded) = {< u1, (0.4, 0.2, 0.6, 0.7) >,< u2, (0.6, 0.7, 0.5, 0.2) >,< u3, (0.3, 0.2, 0.7, 0.7) >}
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fN c(expensive) = {< u1, (0.7, 0.2, 0.8, 0.3) >,< u2, (0.4, 0.1, 0.8, 0.8) >,< u3, (0.3, 0.2, 0.9, 0.8) >}
fN c(NotUnique) = {< u1, (0.2, 0.2, 0.8, 0.7) >,< u2, (0.8, 0.7, 0.5, 0.4) >,< u3, (0.3, 0.1, 0., 0.8) >}
fN c(NotAttractive) = {< u1, (0.1, 0.2, 0.7, 0.8) >,< u2, (0.5, 0.7, 0.4, 0.3) >,< u3, (0.6, 0.6, 0.5, 0.4) >}
Then
N c = {(p1, fN c(NotBranded)), (p2, fN c(expensive)), (p3, fN c(NotUnique)), (p4, fN c(NotAttractive))}

Definition 4.8. N1 and N2 are two NFSSs over (U ,P) then N1 is a subset of N2 if
µfN1

(p)(x) ≤ µfN2
(p)(x)

TfN1
(p)(x, µ) ≤ TfN2

(p)(x, µ)
IfN1

(p)(x, µ) ≤ IfN2
(p)(x, µ)

FfN1
(p)(x, µ) ≥ FfN2

(p)(x, µ)
We write N1 ⊆ N2

Example 4.9. Let us examine two Neutrosophic Fuzzy Soft Sets (NFSSs) N and M over the same universe.
The universal set U = {u1, u2, u3} depicts a collection of distinct food products. NFSS N delimits the out-
ward characteristics of each food item, while NFSS M delimits its nutritional composition. Each element of
the universal set is evaluated in NFSS N using the following criteria: color, odor, shape, texture, and each
element of the universal set is evaluated in NFSS M using the following criteria: calories, amount of fiber,
protein content, and digestibility.
fN1

(p1) = {< u1, (0.5, 0.7, 0.3, 0.2) >,< u2, (0.3, 0.2, 0.5, 0.7) >,< u3, (0.7, 0.9, 0.3, 0.2) >}
fN1

(p2) = {< u1, (0.2, 0.3, 0.2, 0.2) >,< u2, (0.6, 0.7, 0.2, 0.1) >,< u3, (0.7, 0.9, 0.1, 0.2) >}
fN1

(p3) = {< u1, (0.8, 0.7, 0.2, 0.2) >,< u2, (0.2, 0.3, 0.5, 0.7) >,< u3, (0.7, 0.8, 0.3, 0.2) >}
fN1

(p4) = {< u1, (0.9, 0.7, 0.3, 0.2) >,< u2, (0.5, 0.2, 0.6, 0.7) >,< u3, (0.3, 0.4, 0.5, 0.6) >}
Then
N1 = {(p1, fN1(p1)), (p2, fN1(p2)), (p3, fN1(p3)), (p4, fN1(p4))}
fN2

(p1) = {< u1, (0.6, 0.7, 0.4, 0.3) >,< u2, (0.4, 0.2, 0.6, 0.7) >,< u3, (0.8, 0.9, 0.4, 0.2) >}
fN2

(p2) = {< u1, (0.3, 0.4, 0.2, 0.2) >,< u2, (0.7, 0.8, 0.3, 0.1) >,< u3, (0.8, 0.9, 0.2, 0.2) >}
fN2

(p3) = {< u1, (0.9, 0.8, 0.2, 0.2) >,< u2, (0.3, 0.4, 0.6, 0.7) >,< u3, (0.7, 0.9, 0.4, 0.2) >}
fN2

(p4) = {< u1, (0.9, 0.7, 0.4, 0.2) >,< u2, (0.6, 0.3, 0.6, 0.7) >,< u3, (0.3, 0.5, 0.6, 0.6) >}
Then
N2 = {(p1, fN2(p1)), (p2, fN2(p2)), (p3, fN2(p3)), (p4, fN2(p4))}
Clearly N1 ⊆ N2

Definition 4.10. Let N1 and N2 be two NFSSs on (U ,P) then N1 = N2 if and only if N1 ⊆ N2 and
N2 ⊆ N1.

Definition 4.11. Let P = {p1, p2, p3, ...., pn} be the set of parameters then the NOT set of P is denoted by
¬(P) and is defined as ¬(P) = {¬(p1),¬(p2),¬(p3), ....,¬(pn)}, where ¬(pi) =not pi∀i

Example 4.12. Assume U = {u1, u2, u3} represents the collection of gadgets being examined. The set of
parameters is denoted by P = {p1, p2, p3, p4}, for instance, the parameters branded (p1), inexpensive (p2),
uniqueness (p3) and attractiveness(p4)are represented by these terms,then
¬(P)={not branded,expensive,not unique,not attractive}

Definition 4.13. N1 and N2 are two NFSSs over (U ,P) then
N1 ∪N2 = {(p,< x, µfN1∪N2

(p)(x), TfN1∪N2
(p)(x, µ), IfN1∪N2

(p)(x, µ),FfN1∪N2
(p)(x, µ) >: x ∈ U) : p ∈ P}

where, µfN1∪N2
(p)(x) = max(µfN1

(p)(x), µfN2
(p)(x))

TfN1∪N2
(p)(x, µ) = max(TfN1

(p)(x, µ), TfN2
(p)(x, µ))

IfN1∪N2
(p)(x, µ) = min(IfN1

(p)(x, µ), IfN2
(p)(x, µ))

FfN1∪N2
(p)(x, µ) = min(FfN1

(p)(x, µ),FfN2
(p)(x, µ))

Definition 4.14. N1 and N2 are two NFSSs over (U ,P) then
N1 ∩N2 = {(p,< x, µfN1∩N2

(p)(x), TfN1∩N2
(p)(x, µ), IfN1∩N2

(p)(x, µ),FfN1∩N2
(p)(x, µ) >: x ∈ U) : p ∈ P}

where, µfN1∩N2
(p)(x) = min(µfN1

(p)(x), µfN2
(p)(x))

TfN1∩N2
(p)(x, µ) = min(TfN1

(p)(x, µ), TfN2
(p)(x, µ))

IfN1∩N2
(p)(x, µ) = max(IfN1

(p)(x, µ), IfN2
(p)(x, µ))

FfN1∩N2
(p)(x, µ) = max(FfN1

(p)(x, µ),FfN2
(p)(x, µ))

Example 4.15. In this context, we will examine the Neutrosophic Fuzzy sets N and M, which are discussed
in the example section of the definition of inclusion.
fN1∪N2(p1) = {< u1, (0.5, 0.7, 0.3, 0.2) >,< u2, (0.3, 0.2, 0.5, 0.7) >,< u3, (0.7, 0.9, 0.3, 0.2) >}
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fN1∪N2
(p2) = {< u1, (0.2, 0.3, 0.2, 0.2) >,< u2, (0.6, 0.7, 0.2, 0.1) >,< u3, (0.7, 0.9, 0.1, 0.2) >}

fN1∪N2
(p3) = {< u1, (0.8, 0.7, 0.2, 0.2) >,< u2, (0.2, 0.3, 0.5, 0.7) >,< u3, (0.7, 0.8, 0.3, 0.2) >}

fN1∪N2
(p4) = {< u1, (0.9, 0.7, 0.3, 0.2) >,< u2, (0.5, 0.2, 0.6, 0.7) >,< u3, (0.3, 0.4, 0.5, 0.6) >}

Then, N1 ∪N2 = {(p1, fN1∪N2
(p1)), (p2, fN1∪N2

(p2)), (p3, fN1∪N2
(p3)), (p4, fN1∪N2

(p4))}
fN1∩N2(p1) = {< u1, (0.5, 0.7, 0.4, 0.3) >,< u2, (0.3, 0.2, 0.6, 0.7) >,< u3, (0.7, 0.9, 0.4, 0.2) >}
fN1∩N2(p2) = {< u1, (0.2, 0.3, 0.2, 0.2) >,< u2, (0.6, 0.7, 0.3, 0.1) >,< u3, (0.7, 0.9, 0.2, 0.2) >}
fN1∩N2

(p3) = {< u1, (0.8, 0.7, 0.2, 0.2) >,< u2, (0.2, 0.3, 0.6, 0.7) >,< u3, (0.7, 0.8, 0.4, 0.2) >}
fN1∩N2

(p4) = {< u1, (0.9, 0.7, 0.4, 0.2) >,< u2, (0.5, 0.2, 0.6, 0.7) >,< u3, (0.3, 0.4, 0.6, 0.6) >}
Then,N1 ∩N2 = {(p1, fN1∩N2

(p1)), (p2, fN1∩N2
(p2)), (p3, fN1∩N2

(p3)), (p4, fN1∩N2
(p4))}

5 Enhancing Expected Time of Arrival(ETA) Calculations with Neutrosophic Fuzzy Soft Sets

Calculating the Estimated Time of Arrival (ETA) is essential in many fields, including emergency response
services, logistics, and transportation. Precise estimates of arrival times are essential for effective organiza-
tion, distribution of resources, and judgment. However, conventional approaches often fail to take into account
the different uncertainties present in real-world situations. In order to handle these uncertainties, Neutrosophic
Fuzzy Soft Sets (NFSS) offer an intricate and dependable mathematical framework for ETA estimations.
The uncertainties in ETA calculations arise from multiple causes. Traffic conditions, such as accidents, road
construction, or peak hour congestion, can vary in an unpredictable manner. Weather conditions, another cru-
cial aspect, have the ability to quickly change and affect both road safety and travel speeds. In addition, the
condition of the roads can differ as a result of maintenance operations or unforeseen obstructions, making the
prediction of travel times more challenging. Human variables, such as driver behavior and decision making,
introduce an additional level of variability. The presence of these uncertainties poses significant difficulty in
accurately estimating ETAs using traditional approaches, which frequently depend on deterministic or overly
simplistic models.
The importance of fuzzy neutrosophic soft sets in computing ETA rests in their ability to fully manage these
uncertainties. NFSS expands on conventional fuzzy sets by integrating three membership functions: veracity,
ambiguity, and falsehood. The inclusion of this trio enables NFSS to more accurately simulate the inherent
ambiguity and unpredictability of real-world variables. NFSS, by attributing degrees of truth, indeterminacy,
and falsehood to each parameter affecting the ETA, offers a more intricate and adaptable depiction of uncer-
tainty. This feature is especially advantageous in dynamic settings, where circumstances might quickly and
unpredictably alter.

5.1 Algorithm for Expected Time of Arrival(ETA) Calculation using Neutrosophic Fuzzy Soft Sets

An algorithm is proposed for calculating the estimated time of arrival (ETA) using neutrosophic fuzzy soft
sets. This is a comprehensive algorithm that outlines the process of calculating the estimated time of arrival
(ETA) using neutrosophic fuzzy soft sets. It covers various time intervals and aims to determine the optimal
time for travel.

5.1.1 Formula for Expected Time of Arrival(ETA)

Based on the definition of a neutrosophic fuzzy soft set N , the formula for Estimated Time of Arrival (ETA)
should integrate the concepts of membership grade,truth, indeterminacy, and falsity of membership grades. In
this context, the ETA calculation will consider the aggregated effects of these membership functions on the
parameters. Let

• U represents the universal set of possibilities..

• Let P represent the set of parameters that influence ETA.

• N be the neutrosophic fuzzy soft set over U
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Figure 1: Dual Axis Line Chart Showing the Advantages of Neutrosophic Fuzzy Soft Set ETA Calculations

• fN be the set-valued function mapping parameters to neutrosophic fuzzy soft sets.

• µfN (p)(x) be the membership grade of x under the parameter p.

• TfN (p)(x, µ), IfN (p)(x, µ),FfN (p)(x, µ) be the truth, indeterminacy, and falsity membership functions,
respectively.

The estimated time of arrival (ETA) can be determined by summing the impacts of various membership func-
tions, taking into account their significance in establishing the ETA.
The formula for ETA:
ETA= 1

n

∑
p∈P wp(µfN (p)(x).TfN (p)(x, µ).BT + IfN (p)(x, µ).UT + FfN (p)(x, µ).ET )

where

• wp is the weight of the parameter p.

• BT is the base travel time of the parameter p.

• UT is the uncertainty time contribution from parameter p.

• ET is the error time of the parameter p.

• n is the normalization factor,typically n =
∑

p∈P wp.

5.1.2 Algorithm for Static Expected Time of Arrival(ETA) Calculation

• Commencement:

– Define the universal set U and the parameter set P .

– Define the neutrosophic fuzzy soft set function fN .

• Define the Functions of Membership:

– Membership Function (µfN (p)(x)).

– Truthfulness of membership function.
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Figure 2: Algorithm for Expected Time of Arrival(ETA) Calculation

– Indeterminacy of the membership function.
– Falsity of the membership function.

• Total Values:

– Aggregate membership values using criteria weights.

• Calculate Expected Time of Arrival(ETA)

– Using the ETA formula to determine the ETA by aggregating the base time, uncertainty time, and
error time.

• Discover the Optimal Time Slot

– Iterate through various time periods.
– Determine the ETA for each slot and identify the slot with the lowest ETA.

5.2 Modeling Problem: Determining the Optimal Time Slot for Traveling by Utilizing ETA Calcula-
tions(Static ETA) with Neutrosophic Fuzzy Soft Set Values

The aim of this problem is to create a prognostic model for estimating the Estimated Time of Arrival (ETA)
for several time periods (morning, afternoon, and evening) and to identify the most efficient travel time that
reduces the duration of the journey. The model will utilize past travel data, including origin and destination
points, travel durations, and dates, in addition to contextual details such as time of day, day of the week, past
traffic conditions, weather data, and road conditions. To account for the inherent uncertainties and ambiguity
in these parameters, we employ neutrosophic fuzzy soft sets (NFSS) as a means to represent and manage this
imprecision. The ultimate objective is to offer precise estimated time of arrival (ETA) forecasts and determine
the most favorable time period for travel to assist travelers in avoiding heavy traffic and delays. This will
ultimately improve travel efficiency and planning.
We are personally reviewing the estimated time of arrival (ETA) during the morning time slot, while the
ETA for other time slots is determined using a Python program. The entire Python code is included in the
Appendix-1.
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Parameters Morning Afternoon Evening
Traffic (0.4, 0.3, 0.1,0.1) (0.7, 0.5, 0.1,0.2) (0.6, 0.6, 0.1,0.2)

Weather (0.6, 0.22, 0.1,0.2) (0.4, 0.1, 0.1,0.3) (0.4, 0.3, 0.1,0.2)
Road Quality (0.6, 0.43, 0.1,0.3) (0.7, 0.4, 0.1,0.2) (0.7, 0.5, 0.1,0.1)

Vehicle Condition (0.9, 0.45, 0.05,0.04) (0.8, 0.1, 0.1,0.2) (0.85, 0.1, 0.05,0.04)
Driver Experience (0.85, 0.6, 0.05,0.05) (0.95, 0.15, 0.05,0.03) (0.865, 0.2, 0.05,0.03)

Time of day (0.5, 0.2, 0.1,0.1) (0.6, 0.3, 0.1,0.2) (0.4, 0.5, 0.1,0.3)
Historical Data (0.7, 0.3, 0.1,0.2) (0.6, 0.3, 0.1,0.3) (0.8, 0.1, 0.1,0.2)

Table 1: Neutrosophic Fuzzy Soft Set values for each parameter in three different time slots

Parameters Aggregated value for Morning

Traffic (0.08, 0.06, 0.02,0.02)
Weather (0.12, 0.044, 0.02,0.04)

Road Quality (0.09, 0.065, 0.015,0.045)
Vehicle Condition (0.09, 0.045, 0.005,0.004)
Driver Experience (0.085, 0.06, 0.005,0.005)

Time Of Day (0.075, 0.03, 0.015,0.015)
Historical Data (0.07, 0.03, 0.01,0.02)

Table 2: Aggregated Values for Morning Slot

5.2.1 Implementation of the Algorithm

• User Inputs: Gather user input for the base travel time, uncertainty time, and error time. For example,
the base time is 20 minutes, the Uncertainty Time is 15 minutes, and the Error Time is 10 minutes.

• Define the parameters influencing travel time: Traffic, Weather, Road Quality, Vehicle Condition,
Driver Experience, Time of Day, and Historical Data. Allocate weights to each criterion according to
their perceived significance. Sample weights: Traffic = 0.20, weather = 0.20, road quality = 0.15, vehicle
condition = 0.10, driver experience = 0.10, day time = 0.15, historical data = 0.10.

• Define Time Slots Segment the day into distinct time intervals: Morning, Afternoon, and Evening.

• Gather values for Neutrosophic Fuzzy Soft Sets: The Table 1 provides neutrosophic fuzzy soft set val-
ues for each parameter in each time slot, including the membership grade (µ), truth T , indeterminacy(I),
and falsity (F) of the membership grade (µ).

• Aggregate Values Calculation: Create a function that combines the membership values according to
the weights assigned to each criterion and determines the combined values of truth, indeterminacy, and
falsity. The aggregated values for morning slot is given in Table 2.

• Recalculate ETA: Utilize the fundamental time, the time of uncertainty, and the time of error to compute
the Estimated Time of Arrival (ETA) using consolidated values. Applying the ETA calculation, we
calculate that the expected arrival time for the morning slot is 6.91 minutes.

• Determine Best Time Slot: Based on the Python ETA calculator provided in the Appendix, the esti-
mated time of arrival (ETA) for the evening time slot is 7.58 minutes,while for the afternoon time slot it
is 7.20 minutes. Hence, the most favorable period to travel is the morning slot.

6 AI-Enhanced System for Estimating Time of Arrival (Dynamic ETA) utilizing Neutrosophic Fuzzy
Soft Sets

The integration of artificial intelligence (AI) with neutrosophic fuzzy soft sets (NFSS) to calculate estimated
arrival time (ETA) is a new approach that combines AI with sophisticated mathematical frameworks to improve
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Figure 3: 3D Diagram Showing the Conclusion of the Executed Algorithm

the precision and dependability of ETA predictions. The process of integrating ETA calculations (Estimated
Time of Arrival) with AI involves the use of machine learning models to improve the accuracy of travel
time predictions through the analysis of historical and real-time data. By integrating dynamic and intricate
interactions among many elements that affect journey time, this can improve the estimation of ETA.
Here, we are addressing the identical modeling issue that we previously mentioned in the section on calculating
static ETA. We are utilizing Neutrosophic Fuzzy Soft Set values in the machine learning model to compute the
Estimated Time of Arrival (ETA) and identify the most favorable time interval for travel.

6.1 Distinct Phases in the AI-integrated ETA Computation Process using Python

• Accumulation of Information and Preparation
Collect historical data on travel durations, including details on various elements that can impact them,
such as traffic conditions, driver expertise, climate conditions, and other relevant variables.Pre process
the data by addressing missing values, standardizing features, and splitting them into separate training
and testing sets. In this analysis, we are taking into account many factors such as Traffic, Weather, Road
Quality, Vehicle Condition, Driver Experience, Time Of Day, and Historical Data for three distinct time
periods: ”Morning”, ”Afternoon”, and ”Evening”.

• Neutrosophic Fuzzy Soft Set Values Neutrosophic Fuzzy soft sets are a mathematical framework uti-
lized to efficiently handle and quantify the uncertainty inherent in data.Assign values to each parameter
to represent the degree of membership, the truth value of the membership, the indeterminacy of the
membership, and the falsity of the membership.

• Data Preparation Neutrosophic fuzzy soft set values are gathered for each parameter over three dis-
tinct time intervals: morning, afternoon, and evening.We can acquire these data from several sources.
To determine the values for each parameter, we will rely on multiple sources. GPS data from automo-
biles, traffic cameras, road sensors, or mobile applications can be utilized to gather traffic data. Weather
data can be acquired from meteorological stations, weather APIs, or local weather monitoring systems.
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Parameters Feature Importance

Traffic (0.038462,0.057692,0.000000, 0.000000)
Weather (0.076923,0.019231,0.000000, 0.000000)

Road Quality (0.038462, 0.076923,0.000000, 0.000000)
Vehicle Condition (0.076723, 0.057692,0.057692,0.000000)
Driver Experience (0.076923,0.096154,0.000000, 0.000000)

Time Of Day (0.038462,0.057692, 0.076923,0.000000)
Historical Data (0.057692, 0.076923,0.019231,0.000000)

Table 3: Table Showing the importance of each parameter in ”Random-Regression Model”

Government reports, road maintenance records, and crowd-sourced platforms are sources of road qual-
ity data. The condition of a vehicle can be monitored through onboard diagnostics (OBD) systems,
maintenance logs, or vehicle health monitoring systems. The driver experience can be evaluated by re-
viewing driving records, considering the number of years of driving experience, and analyzing feedback
from driving performance monitoring systems. The time of day is a simple characteristic that can be
acquired. Historical data can be acquired from previous travel records, historical traffic and weather
data, and current time voyage logs. Table 1 provides the neutrosophic fuzzy soft set values for each
parameter.

• Handling Data and Training ModelsThe purpose of standardizing these characteristics is to ensure that
each feature has an equal impact on the training process of the model. The machine learning technique
”Random Forest Regression” is taught using the preprocessed data. This model has numerous decision
trees that are aggregated to enhance the precision and resilience of predictions. During the training
process, the model acquires knowledge of patterns in the data by dividing it into subsets based on the
features that minimize the prediction error the most at each iteration. The Python program implementing
the machine learning technique ”Random Forest Regression” is provided in the Appendix-2, along with
a full explanation.

• Significance of each parameterThe parameter weights of the ”Random Forest Regression Model” are
not explicitly defined. The Random Forest model autonomously assesses the significance of each param-
eter by evaluating their contribution to minimizing the prediction error. The importance can be accessed
by utilizing the ”feature importance attribute” of the trained model. We are entering the nuetrosophic
fuzzy soft set values provided in Table 1, Once the python program provided in the Appendix is executed
successfully, we will obtain the significance of each parameter indicated in Table 3.

• ETA Prediction The program utilizes learned patterns to provide predictions about trip times for new
data pieces. The example utilizes real-time data to forecast estimated time of arrivals (ETAs) for the
morning, afternoon, and evening time intervals.

• Determining the Optimal Time Slot The time interval with the lowest estimated arrival time (ETA) is
considered to be the optimal time for travel. The input travel times for three distinct slots are 45 minutes,
50 minutes, and 40 minutes, respectively. In this particular example, the estimated arrival time (ETA)
for the morning is 45.00 minutes. The estimated arrival time (ETA) for the afternoon is 47.40 minutes.
The estimated arrival time (ETA) for the evening is 43.10 minutes. The optimal time to travel is in the
evening, with an estimated arrival time (ETA) of 43.10 minutes.

7 Comparative Analysis of Static and Dynamic ETA Calculations using Neutrosophic Fuzzy Soft Sets

We have already computed the ideal trip time using the ETA method in two distinct manners: static ETA cal-
culation and ETA calculation employing a machine learning technique. In this section, we desire to explore
the contrast between these two.
The static ETA calculations for a particular day yield the following results: - The ETA for the morning slot is
10.17 minutes; - The ETA for the afternoon slot is 9.10 minutes; - The ETA for the evening slot is 11.41 min-
utes. The actual recorded travel times for these slots are as follows: - Morning slot: 10.15 minutes - Afternoon
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Figure 4: ETA Comparison for Different Timeslot

Time Slot Static ETA(Min) Dynamic ETA(Min) Difference

Morning 10.17 11.390 -1.220
Afternoon 9.10 10.193 -1.093
Evening 11.41 11.642 -0.232

Table 4: Comparison Table for Static and Dynamic ETA

slot: 9.50 minutes- Evening slot: 12.65 minutes, this is derived from the historical data that were utilized for
training the model. The Dynamic ETA is determined using the Python program provided in the Appendix-3
and the results are summarized in Table 4. The Dynamic ETA demonstrates enhanced performance as a result
of utilizing real-time data and adaptive learning. The ”Random Forest Regression” model incorporates both
real-time and historical data to calculate the ETA, resulting in more precise results compared to static ETA.
Figure 5 visually illustrates a comparison.

8 Conclusion

Integrating machine learning and neutrosophic fuzzy soft sets, we can create a robust system that can accu-
rately predict the expected time of arrival (ETA). This approach possesses the capability to efficiently handle
uncertainties and dynamic changes in travel conditions, leading to more accurate and dependable predictions.
This method has the potential to be enhanced and refined by including more complex data and advanced
machine-learning algorithms.The ETA prediction utilizing neutrosophic fuzzy soft sets can enhance delivery
time estimates in several industries such as transportation and logistics, urban planning, traffic management,
ride-sharing, and public transportation. Integrating dynamic ETA prediction models with navigation systems
and mobile applications to offer customers up-to-date, flexible route assistance.In the future conducting re-
search on the influence of several external circumstances, such as road closures, public events, and accidents,
on estimated time of arrival (ETA) estimates, and devising solutions to minimize their impact.
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Figure 5: Comparison Diagram for Static and Dynamic ETA

Appendix

1. Python Program for Static ETA Calculation:https://github.com/priya91ian/ETA-Calculator-Thesis.git

2. Python Program for AI Integrated ETA Calculation:https://github.com/priya91ian/ETA-with-ML-Algorithm.git

3. Python Program for Comparison of Static and Dynamic ETA: https://github.com/priya91ian/Static-and-
Dynamic-ETA-Comparison.git
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