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Abstract

In this manuscript, we present the concept of E -Geraghty contractions, demonstrating several fixed point re-
sults. Additionally, we provide an illustrative example to highlight our principal findings.

Keywords: Metric Spaces; Extended b-metric; Fixed Point; Nonlinear Contractions; Equivalent distance;
Geraghty contraction

1 Introduction

Let f : 0 → 0 be a self mapping on a non empty set 0. An element or a point ϑ′ ∈ 0 is called a fixed
point for f if fϑ′ = ϑ′. If d is a metric on 0, then f is called contraction if there is ω ∈ [0, 1) such that
d(fϑ1, fϑ2) ≤ ωd(ϑ1, ϑ2), for each ϑ1, ϑ2 ∈ 0.

The advancement of fixed point theory has been thoroughly examined by mathematicians.For instance, U.
Ishtiaq et al.2 proposed the idea of intuitionistic fuzzy double-controlled metric-like spaces, taking into ac-
count the potential scenario where the self-distance may not equal zero. In instances where the metric value
is precisely zero, it is termed a ”self-distance.” Within this context, they effectively established multiple fixed-
point results for contraction mappings. E. Karapinar et al.3 introduced the notion of Proinov-Cb-contraction
mapping and explored its application within b-metric spaces, a notably fascinating abstract framework. Ad-
ditionally, they investigated the essential conditions required to ensure the existence and uniqueness of fixed
points for these mappings. In,4 a new definition of a metric space incorporating neutrosophic numbers was
introduced. This neutrosophic metric space employs the concepts of continuous triangular norms and contin-
uous triangular conorms within the framework of intuitionistic fuzzy metric spaces. Triangular norms serve
to extend the probability distribution of the triangle inequality under the conditions of metric spaces. Con-
versely, triangular conorms are recognized as the dual operations of triangular norms. Both triangular norms
and triangular conorms play a crucial role in fuzzy operations.we are looking to integrate time fuzzy soft set
and fuzzy soft set with new concepts as in the works a6–,11 In,13 the authors presented an innovative concept
known as ”neutrosophic fuzzy metric space,” which broadens the conventional metric space framework by
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integrating the idea of neutrosophic fuzzy sets. A comprehensive examination of different structural and topo-
logical characteristics within this newly established generalization of metric space has been carried out.We
can include fresh ideas, such as7–,18 works using fixed point theory. Over the years, various extensions of the
Banach principle have been formulated, either by altering the space involved or by adjusting the conditions
of self-mapping, as referenced in sources10–19 and references therein. These generalizations synthesized and
broadened the previously established findings, resulting in more applicable outcomes.In addition, there are
many works that have discussed broad applications, including:24–30

Henceforth, we mean by 0 a nonempty set and for any self map f : 0 → 0 we mean by Ff the set of fixed
points of f .
Let d : 0× 0 → [0,∞) be a function and consider the following:

(d1) d(ϑ, ϑ′) = 0 iff ϑ′ = ϑ,

(d2) d(ϑ′, ϑ) = d(ϑ, ϑ′),

(d3) d(ϑ, ϑ′) ≤ s
[
dγ(ϑ, e) + d(e, ϑ′)

]
∀ ϑ, e, ϑ′ ∈ 0.

The function d is classified as a b-metric on the set 0 if the parameter s is greater than or equal to 1. In the
specific case where s equals 1, d is referred to as a metric on 0. Furthermore, if d meets the conditions of d1
and d3 with s set to 1, it is designated as a quasi-metric on 0.

In 2017 Kamran et al. introduced the notion of extended b-metric spaces in the following manner.

Definition 1.1. ? On 0, Suppose γ : 0 × 0 → [1,∞). Then, dγ : 0 × 0 → [0,∞) is called an extended
b-metric if it fulfilled the following conditions:

(dγ1) dγ(ϑ
′, ϑ) = 0 iff ϑ′ = ϑ,

(dγ2) dγ(ϑ
′, ϑ) = dγ(ϑ, ϑ

′),

(dγ3) dγ(ϑ
′, ϑ) ≤ γ(ϑ′, ϑ)

[
dγ(ϑ

′, e) + dγ(e, ϑ)
]
, ∀ e, ϑ′, ϑ ∈ 0.

2 Preliminary

Bataihah and Qawasmeh20 introduced a novel approach to explore fixed point results by creating a distance
space derived from an existing one.

In this section, we will revisit the definition of the EA,B-distance. To proceed with this discussion, it is essential
to consider the following class of functions, which is crucial for the advancement of this work.

Definition 2.1. 20 Let Λ be the collection of all functions A : [0,∞) → [1,∞) such that for each sequence
(tn) in [0,∞), lim

n→∞
A(tn) = 1 iff lim

n→∞
tn = 0 .

The notion of equivalent distance is given as follows:
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Definition 2.2. 20Let d be a metric on 0. A function E : [0,∞) × 0 × 0 → [0,∞) is said to be [A,B]
equivalent-distance (or shortly EA,B-distance) over (0, d) if there are A,B ∈ Λ such that for all u, v ∈ 0 and
all t ∈ [0,∞), we have

A(t) d(ϑ, θ) ≤ E (t, ϑ, θ) ≤ B(t) d(ϑ, θ).

It is essential to recognize that every metric space produces an EA,B-distance, as illustrated in the subsequent
examples.

Example 2.3. 20 Let 0 = R, and let d : 0 → 0 be defined by d(ϑ, θ) = |ϑ− θ|. Then E (t, ϑ, θ) = 2t|ϑ− θ|.
Then, E is EA,B-distance over (0, d), where A(t) = 1 + t, and B(t) = t+ 2t.

Example 2.4. 20 Let (0, d) be a metric space, and let 0 < α ≤ β ≤ γ be positive real numbers. Define
E (t, ϑ, θ) = (1+t)βd(ϑ, θ) Then, E is EA,B-distance over (0, d), where A(t) = (1+t)α, and B(t) = (1+t)γ .

We will now provide additional examples of E -distance functions. In the subsequent discussion, we examine
the function E defined from [0,∞) × 0 × 0 to [0,∞), along with the functions A and B, which are defined
from [0,∞) to [1,∞).

Example 2.5. 20 Let (0, d) be a metric space, k be real number grater than 1, and let E (t, ϑ, θ) = ktd(ϑ, θ).
Then, E is EA,B-distance over (0, d), where A(t) = 1 + t, and B(t) = t+ kt.

Example 2.6. 20 Let q, ρ : 02 → [0,∞)] be two equivalent metrics on 0. Then
E (t, ϑ, θ) = q(ϑ, θ) + t ρ(ϑ, θ) is EA,B-distance on (θ, q).

Proof. Since q and ρ are equivalent, there are α, β ≥ 0, such that for all ϑ, θ ∈ 0, we have αq(ϑ, θ) ≤
ρ(ϑ, θ) ≤ βq(ϑ, θ). So, for each t ≥ 0, we have

tαq(ϑ, θ) ≤ tρ(ϑ, θ) ≤ tβq(ϑ, θ).

Thus,
(1 + tα)q(ϑ, θ) ≤ q(ϑ, θ) + tρ(ϑ, θ) ≤ (1 + tβ)q(ϑ, θ).

Hence, E is EA,B-distance on (0, q), where A(t) = 1 + tα and B(t) = 1 + tβ.

From this point forward, let A and B denote elements of Λ, and let E represent an EA,B-distance defined on
the space (0, d).

Additionally, in,20 the authors established a crucial lemma that is fundamental for deriving b-metric and ex-
tended b-metric from a standard metric utilizing the E -distance.

Lemma 2.7. 20 Let (0, d) be a metric space, A,B ∈ Λ and E be EA,B-distance over (0, d). Then, for each
ϑ, θ, w ∈ 0 and each t ≥ 0, we have the following:

1. E (t, ϑ, θ) = 0 iff ϑ = θ,

2. E (t, ϑ, θ) = E (t, θ, ϑ),

3. E (t, ϑ, θ) ≤ B(t)[E (t, ϑ, w) + E (t, w, θ)].

Remark 2.8. 20 It follows from Lemma 2.7 that for any number t0 ∈ [0,∞), E (t0 , . , . ) : 0× 0 → [0,∞)
is a b-metric on 0 with constant s = B(t0).
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One can observe that using EA,B-distance can construct an extended b-metric on 0 starting by starting from a
metric on 0 as in the following theorem:

Theorem 2.9. 20 Let E be an EA.B-distance on (0, d). Then dγ : 0 × 0 → [0,∞) which defined by
dγ(ϑ, θ) = E (d(ϑ, θ), ϑ, θ) is an extended b-metric on 0 where γ : 0 × 0 : [1,∞) defined as γ(ϑ, θ) =
(B ◦ d)(ϑ, θ) = B(d(ϑ, θ))

Proposition 2.10. 20 Suppose (ϑn) is a sequence in 0 and (tn) is a sequence in [0,∞) such that lim
n→∞

B(tn) <

∞. Then, we have the following:

1. (ϑn) is Cauchy sequence iff lim
n,m,l→∞

E (tn, ϑm, ϑl) = 0,

2. ϑn → ϑ ∈ 0 iff lim
n,m→∞

E (tn, ϑm, ϑ) = 0.

3 Fixed point for E -Geraghty contractions

In this section, we introduce the contractions of Geraghty type in E -distance spaces. First, we recall an
important notion and resulut.

Definition 3.1. 23 Let S be the class of all functions α : [0,∞) → [0, 1) that satisfy the following implication:

α(tn) → 1 =⇒ tn → 0.

Geraghty in23 proved the following fixed point result.

Theorem 3.2. 23 Let (0, d) be a complete metric space and f : 0 → 0. Let α ∈ S such that

d(fϑ, fθ) ≤ α(d(ϑ, θ)d(ϑ, θ) ∀ϑ, θ ∈ 0.

Then f has a unique fixed point.

Now, we define our contraction of Geraghty type.

Definition 3.3. Suppose there are A,B ∈ Λ such that E is EA,B over (0, d). A self mapping f : 0 → 0 is
said to be E -Geraghty contraction if

E (d(fϑ, fθ), fϑ, fθ) ≤ α(d(ϑ, θ)) A(d(ϑ, θ)) d(ϑ, θ). (1)

Lemma 3.4. Suppose f : 0 → 0 is E -Geraghty contraction. If ϑ, θ ∈ Ff , then ϑ = θ.

Lemma 3.5. Suppose f is E -Geraghty contraction, and ϑ0 ∈ 0. Then for the Picard sequence (ϑn) derived
by f at ϑ0, if ϑn ≠ ϑn+1 for each n ∈ N, then

lim
n→∞

d(ϑn, ϑn+1) = 0.

Proof. For simplicity, let en = d(ϑn, ϑn+1). Now, applying Condition 1, we get

E (en, ϑn, ϑn+1) ≤ α(en−1) A(en−1) en−1. 
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By the properties of E and α, we get

en ≤ A(en) en ≤ α(en−1) A(en−1) en−1 < A(en−1) en−1,

and

A(en) en
A(en−1) en−1

≤ α(en−1). (2)

So, A(en) en ≤ A(en−1) en−1, and so, the sequence (A(en) en : n ∈ N) is a non-increasing, and hence,
there is r ≥ 0 so that lim

n→∞
A(en) en = r. Assume that r > 0. Then, taking the limit whenever n → ∞ in

Equation 2, we get lim
n→∞

α(en−1) = 1, which means lim
n→∞

en−1 = 0, a contradiction. So, r = 0. Hence the
result.

Theorem 3.6. Suppose that (0, d) is complete and there is EA,B-distance E on (0, d). Assume that f : 0 → 0

is E -Geraghty contraction where A is continuous. Then Ff consists of only one element.

Proof. Let ϑ0 ∈ 0 be arbitrary, and consider the Picard sequence (ϑn) derived by f at ϑ0. If there is l ∈ N
such that ϑl = ϑl+1, then ϑl ∈ Ff . So suppose that ϑn ̸= ϑn+1 for each n ∈ N, . Now, our claim is to prove
that (ϑn) is a Cauchy sequence in (0, d). Suppose the opposite; that is (ϑn) is not Cauchy. Therefore, there is
ϵ > 0 and two sub-sequences (ϑnp

) and (ϑmp
) of (ϑn) such that (mp) is selected as the minimum index for

which
d(ϑnp

, ϑmp
) ≥ ϵ, mp > np > p. (3)

This implies that
d(ϑnp

, ϑmp−1) < ϵ. (4)

Using the triangle inequality and Equations (3),(4), we get

ϵ ≤ d(ϑnp
, ϑmp

) ≤ d(ϑnp−1, ϑmp
) + d(ϑmp

, ϑmp−1)
< ϵ+ d(ϑmp , ϑmp−1).

Taking the limit whenever p → ∞ and considering Lemma 3.5, gives

lim
p→∞

d(ϑnp , ϑmp) = ϵ. (5)

Again, using the triangle inequality, we get

d(ϑnp−1, ϑmp−1)− d(ϑnp , ϑmp) ≤ d(ϑnp−1, ϑnp) + d(ϑmp , ϑmp−1),

and
d(ϑnp , ϑmp)− d(ϑnp−1, ϑmp−1) ≤ d(ϑnp , ϑnp−1) + d(ϑmp−1, ϑmp).

Therefore,
|d(ϑnp−1, ϑmp−1)− d(ϑnp , ϑmp)| ≤ d(ϑnp−1, ϑnp) + d(ϑmp , ϑmp−1).

So, taking the limit as p → ∞ and considering Lemma 3.5 and Equation (5), gives

lim
p→∞

d(ϑnp−1, ϑmp−1) = ϵ. (6)
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Now, Condition 1implies that

A(d(ϑnp
, ϑmp

)) d(ϑnp
, ϑmp

) ≤ α(d(ϑnp−1, ϑmp−1)) A(d(ϑnp−1, ϑmp−1)) d(ϑnp−1, ϑmp−1)
< A(d(ϑnp−1, ϑmp−1)) d(ϑnp−1, ϑmp−1).

Thus,

A(d(ϑnp
, ϑmp

))

A(d(ϑnp−1, ϑmp−1))
<

d(ϑnp−1, ϑmp−1)

d(ϑnp
, ϑmp

)
.

By passing k to ∞, we get

lim
p→∞

A(d(ϑnp
, ϑmp

))

A(d(ϑnp−1, ϑmp−1))
≤ 1.

Also,
A(d(ϑnp

, ϑmp
)) d(ϑnp

, ϑmp
)

A(d(ϑnp−1, ϑmp−1)) d(ϑnp−1, ϑmp−1)
≤ α(d(ϑnp−1, ϑmp−1)).

Therefore, by taking the limit whenever p → ∞ to get lim
p→∞

α(d(ϑnp−1, ϑmp−1)) = 1. Thus, lim
p→∞

d(ϑnp−1, ϑmp−1) =

0, and hence ϵ = 0, a contradiction. Therefore, (ϑn) is Cauchy, so there is some ϑ ∈ 0 such that (ϑn) con-
verges to ϑ. Now, by Condition 1, we have

A(d(ϑn, fϑ)) d(ϑn, fϑ) ≤ α(d(ϑn−1, ϑ)) A(d(ϑn−1, ϑ)) d(ϑn−1, ϑ).

Therefore, by passing n to ∞, we get

d(ϑ, fϑ) ≤ 0.

So, ϑ ∈ Ff . The uniqueness follows from Lemma 3.4.

Example 3.7. Let f : [0, 1] → [0, 1] be defined as:

fϑ =
D

D + ϑη
, where D > 2η ≥ 2.

Then Ff consists of only one element on [0, 1].

Proof. To demonstrate this, let 0 = [0, 1] and define the mapping d : 0 → 0 by d(ϑ, θ) = |ϑ − θ|. Con-

sequently, (0, d) forms a complete metric space. We define the function α : [0,∞) → [0, 1) by α(t) =
2η

D
,

which implies that α belongs to the set S. Additionally, we define E (t, ϑ, θ) = 2td(ϑ, θ). Thus, E serves as
an EA,B-distance on the space (0, d), where A(t) = 1 + t and B(t) = t+ 2t. Therefore, for all ϑ, θ ∈ 0, we
have the following.
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E (d(fϑ, fθ), fϑ, fθ) = 2|fϑ−fθ||fϑ− fθ|

≤ 2|fϑ− fθ|

= 2

∣∣∣∣ D

D + ϑη
− D

D + θη

∣∣∣∣
= 2

∣∣∣∣ Dθη −Dϑη

(D + θη)(D + ϑη)

∣∣∣∣
≤ 2

D
|ϑη − θη|

=
2

D
|ϑ− θ|

∣∣ϑη−1 + θϑη−2 + · · ·+ ϑθη−2 + θη−1
∣∣

≤ 2η

D
(1 + |ϑ− θ|) |ϑ− θ|

= α(d(ϑ, θ)) A(d(ϑ, θ)) d(ϑ, θ)

Hence, f : 0 → 0 is of E -Geraghty contraction, and so, Theorem 3.6 ensures that Ff has only one element.

Corollary 3.8. Assume that (0, d) is a complete metric space. Let f : 0 → 0 be a function that satisfies the
following condition for all ϑ, θ ∈ 0 and for some constants b ≥ a > 0:

d(fϑ, fθ) ≤ (1 + d(ϑ, θ))a

2(1 + d(fϑ, fθ))b
d(ϑ, θ).

Under these circumstances, it can be concluded that the set Ff contains only a single element.

Proof. According to Example 2.4, E (t, ϑ, θ) = (1 + t)βd(ϑ, θ) is E -distance. Also, α ∈ S where α(t) = 1
2 .

So, we have

d(fϑ, fθ) ≤ (1 + d(ϑ, θ))a

2(1 + d(fϑ, fθ))b
d(ϑ, θ)

iff
(1 + d(fϑ, fθ))bd(fϑ, fθ) ≤ 1

2
(1 + d(ϑ, θ))ad(ϑ, θ)

iff
E (d(fϑ, fθ), fϑ, fθ) ≤ α(d(ϑ, θ))A(d(ϑ, θ))d(ϑ, θ).

iff f : 0 → 0 is E -Geraghty contraction. Hence by Theorem 3.6 f attains a unique fixed point.

Corollary 3.9. Assume that the space (0, d) is complete. Let us consider a function f : 0 → 0 that satisfies
the following condition for all ϑ, θ ∈ 0 and for some constants b ≥ a > 0:

d(fϑ, fθ) ≤ k−d(fϑ,fθ) 1 + d(ϑ, θ)

2
d(ϑ, θ).

Under these circumstances, it can be concluded that the set Ff contains only a single element.
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Proof. According to Example 2.5, E (t, ϑ, θ) = ktd(ϑ, θ) is E -distance. Also, α ∈ S where α(t) = 1
2 . So, we

have

d(fϑ, fθ) ≤ k−d(fϑ,fθ) 1 + d(ϑ, θ)

2
d(ϑ, θ).

iff
kd(fϑ,fθ)d(fϑ, fθ) ≤ 1

2
(1 + d(ϑ, θ))d(ϑ, θ).

iff
E (d(fϑ, fθ), fϑ, fθ) ≤ α(d(ϑ, θ))A(d(ϑ, θ))d(ϑ, θ).

iff f : 0 → 0 is E -Geraghty contraction. Hence by Theorem 3.6 f attains a unique fixed point.

4 Application

We will now utilize Example 3.7 to develop the subsequent application.

Let η,D ∈ R with the condition that D > 2η ≥ 2. The equation can be expressed as follows:

ϑη+1 +D(ϑ− 1) = 0, (7)

possesses a unique solution within the unit interval [0, 1].
To establish this, it suffices to demonstrate that the mapping defined below possesses a unique fixed point
within the unit interval [0, 1].

fϑ =
D

D + ϑη
, where D > 2η ≥ 2.

Example 3.7 verifies that Ff contains a single element. Therefore, equation 7 has a unique solution.

Conclusion

We introduced the concept of E -Geraghty contractions within the context of complete metric spaces. By
employing these contractions, we explored various outcomes related to metric fixed point theory. For future
studies of these results, these tools can be developed by linking them with other concepts that can be found in
the following works see31–.37
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