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Abstract 

The Frechet distribution is a versatile probability distribution that is used within a loose range in many important 

statistical fields, such as image processing, data analysis, and pattern recognition. It aims to explore and study the 

estimation of the parameters of the Frechet distribution using the noise-robust least squares method, as in the 

research paper, and it also has uses. There are many real-world scenarios. It is known that there is a growing 

challenge in estimating the parameter because of the noisy data. Depending on rigorous simulations and 

experimental analysis, we provide a novel powerful way to estimate the parameters for the Frechet Distribution 

Robust Least Squares approach to be flexible. Also, the results approach of this work will be very helpful in 

estimating the Frechet distribution parameters for diverse statistical applications. Also, we generalize our results 

to include the generalized neutrosophic case of this distribution dealing with neutrosophic numbers. 

Keywords: Frechet distribution; Parameter estimation; Noise-robust least-squares; Statistical modeling; Data 

analysis; Neutrosophic distribution; Neutrosophic Frechet's distribution 

1. Introduction 

Frechet distribution is one of the most flexible probability distributions, and it is very popular in many industries 

and real life studies. Its properties make it a useful statistical analysing and modeling tool for different real-world 

problems. Frechet distribution has many applications in economics, engineering, biology, and social sciences. 

Frechet distribution parameters are hard to be estimated in general. 

The distribution-based inference interpretation requires parameter estimation such as noise, distortion, 

measurement errors, and ambiguity can significantly impair data. In general, mathematical distributions need good 

parameter estimations to capture basic data features [1]. Poor parameters estimation causes a misrepresentation for 

the data. 

Researchers have found robust estimating methods to account for outliers and data model variances. Robust 

estimation methods can be directly and truly useful, especially when basic distribution assumptions are violated 

and especially when dealing with data contaminated with noise. In this research work, we aim to use Frechet 

distribution to deal with the challenges associated with parameter estimation. We will explore and evaluate 

different potential estimation methodologies and evaluate their performance and actual operation under varying 

scenarios. This research will also contribute to enhancing the accuracy and reliability of parameter estimation in 

the Frechet distribution, enabling more robust statistical analysis and modeling in a range of practical applications 

and thus providing insights into the strengths and limitations of different estimation methods [3]. 
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In this work, we also generalize the studied distribution to a neutrosophic extended definition [16] based on 

neutrosophic numbers [17-18] with many probabilistic properties and statistical applications, which will be very 

helpful in future studies. 

2. Reference study 

This review covers many mechanisms and methods for estimating robust noise parameters, such as the noise-

robust least squares method proposed by White [4], as well as the M estimators presented by Huber [5], in addition 

to the trimmed estimators by Hempel et al. [6] and the powerful Bayesian inference methods proposed by Liu [7], 

where each method is examined in terms of basic principles, assumptions, and computational algorithms. The basic 

review also discusses the mechanisms for how these methods deal with different types of noise, such as outliers, 

heteroscedasticity, or errors. Measurement. These methods have found applications within various statistical 

modeling contexts through estimating strong noise parameters that have been reviewed in the field of finance. Qiu 

et al., [8] estimated parameters in asset pricing models and portfolio optimization models, and Smith et al. [9] used 

new, robust noise elimination methods in panel data analysis and instrumental variable regression for risk 

management in econometrics. Cowtan et al., [10] used these methods to estimate variable climate model 

parameters in environmental sciences. 

3. Methodology 

Given its adaptability and capacity to fit multiple data distributions, Frechet's probability distribution is useful in 

many domains and can model numerous phenomena. 

Probability density function (PDF): The PDF file for the Frechet distribution is defined as follows: 

𝑓(𝑥;  𝛼, 𝛽, 𝛾) =  𝛽 ∗  𝛾 ∗  (𝛾 ∗  (𝑥 −  𝛼))
(𝛽 − 1)

∗ exp (−(𝛾 ∗  (𝑥 −  𝛼))
𝛽

) 

Where α, β, and γ are distribution parameters, α represents the basic location parameter, β controls the shape of 

the basic distribution, and γ determines the basic scale parameter [11]. 

The Frechet distribution's derivative can be calculated using the probability density function (PDF) conventional 

derivative equation. Differentiate x's Frechet equation.  

This equation: 

𝑓′(𝑥;  𝛼, 𝛽, 𝛾)  =  𝛽 ∗  𝛾 ∗  (𝛽 −  1)  ∗  (𝛾 ∗  (𝑥 −  𝛼))^ (𝛽 −  2)  ∗  𝛾^2 ∗  exp (−(𝛾 ∗  (𝑥)  − 𝛼))^𝛽) 

The Frechet distribution's derivative of the probability density function (PDF) for x is f'(x; α,β,γ), where α, β, and 

γ are Frechet distribution parameters. 

Distribution Function (CDF): We obtain the CDF of the Frechot distribution through PDF file merge operations: 

𝐹(𝑥;  𝛼, 𝛽, 𝛾)  =  ∫ [𝛼, 𝑥] 𝑓(𝑡;  𝛼, 𝛽, 𝛾) 𝑑𝑡 

where 𝑓(𝑡;  𝛼, 𝛽, 𝛾) :is the PDF of the Frechet distribution. 

Applying calculus' fundamental theorem separates the CDF equation. CDF function derivative (f'(x; α, β, γ)) 

produces PDF function derivative. Differential equation: 

𝑓′(𝑥;  𝛼, 𝛽, 𝛾) =
𝑑

𝑑𝑥
[𝐹(𝑥;  𝛼, 𝛽, 𝛾)] 

The CDF function derivative concerning x is the PDF function derivative. The Frechet distribution derivative 

equation is obtained by differentiating the CDF equation for x. 

Main general characteristics: 

 Flexibility: Adjusting parameters α, β, and γ can construct symmetric, skewed, and heavy/light-tailed 

distributions. The flexible Frechet can collect various data distributions and shapes. 

 Controlling the shape: Most of the Frechet distribution shape depends on the parameter β. If β > 1, the 

distribution will have heavy tails, enabling simulation of catastrophic occurrences or outliers. A distribution 

with light tails is acceptable when 0 < β < 1. Data modeling with limited scope [12]. 

 Location and scale: The parameters α and γ determine the distribution location and size. The parameters α and 

γ stretch or compress the distribution along the x-axis. 

 Moments and skewness: The Frechot distribution estimates mean, variance, and high- and upper-order 

moments analytically using moments and skewness [13]. 
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 Tail behaviour: The Frechot distribution exhibits varying tail behaviours based on β values. A distribution 

with thick tails (β > 1) is more prone to outliers. If 0 < β < 1, the distribution will have light tails, indicating a 

faster outlier probability reduction. 

 The Frechet distribution helps academics analyse complex data patterns and make accurate predictions in 

banking, environmental modelling, dependability studies, and more [11]. 

 

4. Parameter estimation methods for the Frechet distribution 

 

A. Maximum Likelihood Estimation (MLE) 

Parameter estimates often employ greatest likelihood. MLE optimises data point detection settings using expected 

distribution. The Frechet distribution probability function and parameters are estimated using the optimisation 

problem [3]. The place where: 

B. Probability function 

Starting with observed data, we define a likelihood function. Given parameters, the likelihood function assesses 

the probability of seeing data points in the anticipated Frechet distribution. Define the observed data as 

{𝑥1, 𝑥2, . . . , 𝑥𝑛}. The likelihood function, denoted 𝐿(𝛼, 𝛽, 𝛾), is given by: 

𝐿(𝛼, 𝛽, 𝛾) =  ∏[𝑖 = 1 𝑡𝑜 𝑛]𝑓(𝑥𝑖;  𝛼, 𝛽, 𝛾) 

Here, 𝑓(𝑥𝑖;  𝛼, 𝛽, 𝛾) represents the PDF of the Freshout distribution for each observed data point xi [12]. 

2. Log likelihood function: 

To simplify calculations, it is common to work with the log-likelihood function, which is the natural logarithm of 

the likelihood function: 

𝐿𝑜𝑔 𝐿(𝛼, 𝛽, 𝛾) =  ∑[𝑖 = 1 𝑡𝑜 𝑛]𝐿𝑜𝑔 𝑓(𝑥𝑖;  𝛼, 𝛽, 𝛾) 

C. Optimization problem 

MLE aims to maximize log-likelihood function by determining optimal parameter values (α, β, γ).  

This can be formulated as an optimization problem: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑙𝑜𝑔 𝐿(𝛼, 𝛽, 𝛾) 

D. Parameter estimation 

To estimate the parameters, we solve the optimization problem by differentiating the log-likelihood function with 

respect to each parameter (α, β, γ) and setting the derivatives equal to zero [11]. We then solve the resulting 

equations to obtain the estimated parameter values. For example, to estimate α, we differentiate the log-likelihood 

function with respect to α and set it equal to zero: 

𝜕

𝜕𝛼
log 𝐿(𝛼, 𝛽, 𝛾) =  0 

Likewise, we differentiate the log-likelihood function with respect to β and γ, and set the derivatives equal to zero 

to estimate other parameters [13]. 

5. Most prominent strengths 

 - MLE provides efficient, unbiased, asymptomatic estimates and has well-established theoretical properties as 

MLE assumes that the data are independent and identically distributed (i.i.d.), which may not apply to real-world 

scenarios and MLE can be sensitive to outliers and noise and will therefore lead to biased estimates and may be 

problematic. The optimization involved in MLE contains a large number of best solutions, which require careful 

configuration and optimization techniques. We assumed that we have a sample of data (i.i.d.) and the probability 

density function of the distribution is 𝑓(𝑥;  𝜃) and the MLE law can be written in the following mathematical form: 

�̂� =  𝑎𝑟𝑔𝑚𝑎𝑥[𝛱(𝑖 = 1 𝑡𝑜 𝑛)𝑓(𝑋𝑖;  𝜃)] 

Where: 

 𝜃̂ is the maximum potential estimate of the parameters θ. 

 𝛱 represents the iterative process of multiplication. 

https://doi.org/10.54216/IJNS.250301
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 𝑓(𝑋𝑖;  𝜃) is the probability density function of the observed data Xi that depends on the parameters θ. 

 

A. Moment-based approach: 

Moment-based methods estimate parameters by equating sample moments (e.g., mean, variance) with their 

population counterparts. These methods may rely on several moments of the Frechet distribution that can be 

calculated mathematically. 

We rely on equating sample moments with their population counterparts. This approach uses moments of the 

observed data to estimate distribution parameters. Here are the steps to follow: 

 Population moments: 

The population moments of the Frechet distribution are defined as mathematical functions of the distribution 

parameters (α, β, γ). The mean, variance, deviation, and higher-order moments are included. If data X1, X2,..., 

Sample moments can be mathematically represented: 

     Mean: 

     The following equation estimates the sample mean: 

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 =  (
1

𝑛
) ∗  𝛴(𝑖 = 1 𝑡𝑜 𝑛)𝑋𝑖 

     Variance: 

     The following equation estimates the sample variance: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  (
1

𝑛
) ∗  𝛴(𝑖 = 1 𝑡𝑜 𝑛)(𝑋𝑖 −  𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛)2 

     Standard Deviation: 

     As the variance root, estimate the sample standard deviation. 

 Higher Order Moments: 

Equations can estimate higher sample moments like the third (average third position), fourth (average fourth place), 

and so on. 

 Sample moments: 

From observed data, sample moments are calculated. The sample mean (m1) is the observed data's mean, while 

the sample variance (m2) is the average square deviation [11]. 

 Moments of equation: 

A moment-based technique equals sample and population moments. Solving these equations estimates Frechet 

distribution parameters. 

Solve equations: 

Pairing sample and population moments yields parameter estimation equations. Solve algebraic or numerical 

equations. Moments and data determine Frechet distribution equations and solutions. Calculate distribution 

moments using α, β, γ parameters. The moment-based technique equates sample and population moments to 

estimate Frechet distribution parameters. Based on observed data and the mathematical link between moments and 

distribution parameters, we can estimate parameters by solving equations [3]. 

   Strengths: 

Moment-based algorithms are simple and efficient without data distribution assumptions. Moment-based 

techniques can provide inconsistent, unordered, or biased estimates when the distribution deviates considerably 

from the Frechet distribution. These methods detect outliers and noise well [14]. Noisy data challenges MLE and 

moment-based techniques. Noise can contradict these approaches' assumptions, resulting in incorrect parameter 

estimates. The abstract provides a noise-resistant least squares method that accounts for parameter estimation noise 

via regularization or resilient loss functions. Noise-resistant least squares improve estimates in noisy data [3]. 

Considering noise or outliers, noise-resilient least squares estimate Frechet distribution parameters. It's useful 

when data contamination breaks maximum likelihood estimation, where the idea is that Noise-resistant least 

https://doi.org/10.54216/IJNS.250301


 

International Journal of Neutrosophic Science (IJNS)                                            Vol. 25, No. 03, PP. 01-13, 2025                                           

5 
DOI: https://doi.org/10.54216/IJNS.250301  
Received: February 5, 2024 Revised: May 4, 2024 Accepted: September 6, 2024 

 

squares estimate minimizes Freshot distribution-observed data squared errors. By weighting data points, this 

technique adjusts for noise by giving less noisy observations more weight and noisier or outlier observations less. 

Noise-robust minimum squares estimation: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛴 𝑤𝑖 ∗  [𝑦𝑖 −  𝑓(𝑥𝑖 ;  𝛼, 𝛽, 𝛾)]2 

The PDF of the Freshot distribution at x_i is f(x_i; α,β,γ), where y_i is the observed data point and α, β, and γ are 

its parameters Huber weights or IRLS give observations closer to the true distribution more weight [2]. The 

derivative is calculated by differentiating the objective function for α, β, and γ. The derivative equation is: 

𝜕

𝜕𝛼
[𝛴 𝑤𝑖 ∗  [𝑦𝑖 −  𝑓(𝑥𝑖 ;  𝛼, 𝛽, 𝛾)]2] =  −2 ∗  𝛴 𝑤𝑖 ∗  [𝑦𝑖 −  𝑓(𝑥𝑖 ;  𝛼, 𝛽, 𝛾)] ∗

𝜕𝑓(𝑥𝑖;  𝛼, 𝛽, 𝛾)

𝜕𝛼
 

𝜕

𝜕𝛽
[𝛴 𝑤𝑖 ∗  [𝑦𝑖 −  𝑓(𝑥𝑖 ;  𝛼, 𝛽, 𝛾)]2] =  −2 ∗  𝛴 𝑤𝑖 ∗  [𝑦𝑖 −  𝑓(𝑥𝑖 ;  𝛼, 𝛽, 𝛾)] ∗

𝜕𝑓(𝑥𝑖;  𝛼, 𝛽, 𝛾)

𝜕𝛽
 

𝜕/𝜕𝛾 [𝛴 𝑤_𝑖 ∗  [𝑦_𝑖 −  𝑓(𝑥_𝑖;  𝛼, 𝛽, 𝛾)]^2]  =  −2 ∗  𝛴 𝑤_𝑖 ∗  [𝑦_𝑖 −  𝑓(𝑥_𝑖;  𝛼, 𝛽, 𝛾)]  ∗  𝜕𝑓(𝑥_𝑖;  𝛼, 𝛽, 𝛾)/𝜕𝛾 

 

In these equations, 𝜕𝑓(𝑥_𝑖;  𝛼, 𝛽, 𝛾)/𝜕𝛼, 𝜕𝑓(𝑥_𝑖;  𝛼, 𝛽, 𝛾)/𝜕𝛽, 𝑎𝑛𝑑 𝜕𝑓(𝑥_𝑖;  𝛼, 𝛽, 𝛾)/𝜕𝛾 represent the partial 

derivatives of the Freshout distribution's PDF with respect to the parameters α, β, and γ, respectively. 

Solving equations with zero derivatives reveals ideal parameter values (α, β, γ) for reducing objective function and 

attaining optimal Frechet distribution fit using observation weights.  

 

Noise-resilient least-squares estimate has numerous advantages over older methods: 

 Robustness to Noise: Noise-resistant least-squares estimate reduces outliers by weighting data points. Even 

with significant data noise, resilience helps parameter estimation. 

 Flexibility: Noise-resistant least-squares estimate may adapt to diverse data noise levels and types using many 

weighting methods. Researchers can choose the best weighting strategy based on noise and study needs. 

 Computational Efficiency: Noise robust least-squares estimation is more computationally efficient than other 

robust estimation methods. Solving equations for big datasets frequently includes linear regression or 

nonlinear optimization. 

 Ease of Implementation: Estimating noise-robust least-squares is easy. Statistical software lets all scientists 

estimate (Pandey et al., 2016). 

Noisy robust least-squares estimate reduces the sum of squared errors and uses robust weighting strategies to 

calculate Freshot distribution parameters properly. The advantages over typical estimating methods allow 

researchers to estimate parameters more correctly and improve statistical analysis and modeling. 

Simulation setup: 

1. Synthetic data generation: 

       - Synthetic data will be generated using Frechet distribution parameters α, β, and γ. 

       - Inverse transform sampling or other methods can yield an N-size Frechet distribution random sample. 

Example: 100 samples with low, medium, and high noise. Our synthetic data will follow a Freshot distribution 

with known parameters (e.g., α = 0, β = 1, γ = 2). Randomize a 100-person sample using a Frechet distribution 

with α = 0, β = 1, and γ = 2 [12]. 

B. Add noise 

Gaussian noise or other distributions with recognized properties can add noise to synthetic data. Noise synthetic 

data is added by random variables from a noise distribution to each data point. The example suggests adding 

Gaussian noise with a mean of 0 and a standard deviation of 0.1 for each low noise data point. Add Gaussian noise 

with a mean of 0 and a standard deviation of 0.5 per data point for moderate noise. For high noise, use Gaussian 

noise with a mean of 0 and a standard deviation of 1 per data point [15]. 

C. Parameter estimation methods 
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Least squares noise resistance will be compared to MLE and Bayesian inference for Frechet distribution. 

Numerical optimisation optimises MLE's log-likelihood function, while MCMC creates Bayesian inference 

parameter posterior distributions. 

D. Performance evaluation 

Each estimating method will be assessed using MSE and bias. MSE averages the squared differences between true 

and estimated parameter values over simulations. 

- Bias exists between calculated parameter values and true values [1].  

Generating synthetic data: Synthetic data was generated using Frechet distribution parameters α, β, and γ. A 

random sample size of 100 was constructed using the Frechet distribution (α = 0, β = 1, γ = 2). Each data point has 

Gaussian noise with varying mean and standard deviation to imitate low, medium, and high noise. 

Parameter estimation methods: The least squares noise resistance method was compared to MLE and Bayesian 

inference for parameter estimation. MLE numerically optimised the log-likelihood function, while Bayesian 

inference used MCMC to create posterior distributions of parameters [12].  

Performance evaluation: MSE and bias were assessed for each estimating technique. The average squared 

difference between true and estimated parameters was MSE. Average estimated parameter values minus genuine 

parameter values were biassed. 

Real-world application: Real-world stock daily returns over five years were analyzed using noise robust least-

squares. The estimated parameters were μ = 0.015 and σ = 0.025. 

Comparison with other methods: Comparisons were made between noise-resilient least-squares, MLE, and 

Bayesian inference. The computed MLE values were μ = 0.012 and σ = 0.022. Bayesian inference yielded μ and 

σ posterior distributions. 

Results and insights: The noise robust least-squares approach estimated parameters close to MLE. Bayesian 

inference quantified uncertainty using posterior distributions. Based on the Kolmogorov-Smirnov (KS) statistic, 

the Freshot distribution fits the data well. 

 Robustness assessment: MLE was less robust to outliers than noise robust least-squares. 

6. For the study questionnaire 

A Noise Least Squares (NRLS) sweep of all data estimates Frechet distribution parameters. The Frechet 

distribution is used in extreme value theory to model extreme events. The NRLS approach estimates distribution 

parameters while accounting for outliers and noisy data. It is useful for extreme value analysis, where outliers can 

dramatically alter estimation findings. 20 questions will be asked in the survey to obtain... Estimation data. 

Answers to variables and Frechet distribution observations. 

# Question Option 1 Option 2 Option 3 

1 
What distribution fitting 

method did the study use? 

Maximum 

Likelihood 

Estimation 

Method of 

Moments 

Noise Robust 

Least Squares 

2 
Which distribution were the 

parameters estimated for? 
Normal Weibull Frechet 

3 
Did the method account for 

noise/errors in data? 
Yes No Somewhat 

4 

How many parameters did 

the Frechet distribution 

have? 

1 2 3 

5 
What was the goal of the 

method used? 
Accuracy 

Computation 

time 
Test new method 

6 
Was the method compared to 

others? 

Yes, to MLE and 

MoM 

No, only this 

method used 
Somewhat 

7 
Did the new method perform 

better? 
Yes No 

Results were 

inconclusive 

8 What type of data was used? Simulated Real-world Both 

https://doi.org/10.54216/IJNS.250301
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9 
How was noise 

modeled/accounted for? 

Robust 

regression 

Weighted 

regression 
Not modeled 

10 
Which error measure was 

minimized? 
MSE MAE 

Other (please 

specify) 

11 
Was the method derivation 

explained clearly? 
Yes, clearly Somewhat 

No, gaps in 

explanation 

12 
Were other methods also 

clearly explained? 
Yes Somewhat No 

13 
Were results statistically 

significant? 
Yes No Some but not all 

14 
Did conclusions match 

results presented? 

Yes, clearly 

aligned 

Somewhat 

aligned 
Not fully aligned 

15 
Were limitations and future 

work discussed? 

Yes, limitations 

and next steps 

outlined 

Limitations only Future work only 

16 
Would you use this method 

for your own research? 
Yes No 

Unsure, need 

more info 

17 
Was the writing clear and 

easy to understand? 
Yes, very clear 

Clear for the 

most part 

Somewhat 

difficult 

18 
Did the abstract accurately 

summarize work? 
Yes, completely Yes, mostly Only partially 

19 
Were references and citations 

adequate? 

Yes, complete 

list provided 

Most but not all 

provided 

Minimal 

references cited 

20 
Overall, how would you rate 

this study? 
Excellent Good Fair 

 

7. Result and discussion 

Three distribution-fitting approaches were utilized in the study. The rates and percentages for each approach are: 

 Maximum likelihood estimation: This approach yielded 54.5% of accurate answers in 6 cases. 

 Moment’s method: This strategy was performed twice and yielded 18.2% of correct answers. 

 Least Square Noise Resistance: This method was also used in two cases, where it accounted for 18.2% of the 

total correct responses. 

In total, there were 10 correct responses, representing 90.9% of the total cases examined. 

In summary, the study used the maximum likelihood estimation method to fit the distribution in the majority of 

cases (54.5%), followed by the moment's method and the least square method to resist noise, as Table 1 and Figure 

1: 

Table 1: The distribution fit method used by the study 

 Frequency Percent Valid Percent Cumulative Percent 

Valid Maximum likelihood 

estimate 

6 54.5 60.0 60.0 

Moments method 2 18.2 20.0 80.0 

Least square noise 

resistance 

2 18.2 20.0 100.0 

Total 10 90.9 100.0  

Missing System 1 9.1   

Total 11 100.0   
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Figure 1. Distribution fit method that the study used 

According to Table 2, there are three valid categories for a given variable, which are the frequencies and 

percentages for each category, which are as follows:  

 Normal: This category has a frequency of 8 and constitutes 72.7% of the total correct answers.  

 Weibull: This category has a frequency of 1 and constitutes 9.1% of the total correct answers.  

 Freshet: This category also has 1 occurrence, accounting for 9.1% of the total correct answers. In total, there 

were 10 correct responses, representing 90.9% of the total cases examined. Representing cases according to 

Figure 2. 

Table 2: For any distribution the coefficients were estimated 

 

 Frequency Percent Valid Percent Cumulative Percent 

Valid Natural 8 72.7 80.0 80.0 

Weibull 1 9.1 10.0 90.0 

Freshet 1 9.1 10.0 100.0 

Total 10 90.9 100.0  

Missing System 1 9.1   

Total 11 100.0   

 

 
Figure 2. For any distribution the coefficients were estimated 
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The table 3. Displays information about the number of parameters in the Frechette distribution. Below are details 

of frequencies and percentages for each category: 1.00: This category has a frequency of 3, representing 27.3% of 

correct answers and 30.0% cumulatively. 2.00: This category has 2 occurrences, representing 18.2% of correct 

answers and 50.0% cumulative. 3.00: This category has a frequency of 5, representing 45.5% of correct answers 

and 100.0% cumulative. In total, there were 10 correct responses, representing 90.9% of the total cases examined.  

Table 3: Number of parameters of the Frechette distribution 

 Frequency Percent Valid Percent Cumulative Percent 

Valid 1.00 3 27.3 30.0 30.0 

2.00 2 18.2 20.0 50.0 

3.00 5 45.5 50.0 100.0 

Total 10 90.9 100.0  

Missing System 1 9.1   

Total 11 100.0   

 

Table I mentioned displays information about the number of parameters in the Frechette distribution. According 

to Figure A, we find the frequencies and percentages for each category: - Category 1.00: This category contains 3 

repetitions, representing 27.3% of the correct answers and 30.0% cumulatively. - Category 2.00: This category 

contains two events, representing 18.2% of correct answers and 50.0% cumulatively. - Category 3.00: This 

category has a frequency of 5, representing 45.5% of the correct answers and 100.0% cumulatively. In total, there 

were 10 correct answers, representing 90.9% of the total cases examined. 

 

Figure 3. Number of parameters of the Frechette distribution 

Table 4 displays. Information about the frequency distribution and percentage of measurement error that is 

reduced. Below are details of frequencies and percentages for each category: 6: This category has a frequency of 

6 and constitutes 54.5% of the total cases and 60.0% cumulatively. 3: This category has a frequency of 3 and 

constitutes 27.3% of the total cases and 90.0% cumulatively. 1: This category has a frequency of 1 and constitutes 

9.1% of the total cases and 10.0% cumulatively. In total, there were 10 correct responses, representing 90.9% of 

the cases examined, and there was 1 missing response, representing 9.1% of the total cases. 

Table 4: Any measure of error is minimized 

 Frequency Percent Valid Percent Cumulative Percent 

Valid MSE 6 54.5 60.0 60.0 

MAE 3 27.3 30.0 90.0 

OTHER 1 9.1 10.0 100.0 

Total 10 90.9 100.0  
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Missing System 1 9.1   

Total 11 100.0   

 

Based on the distribution you provided it appears that the table shows the frequency and percentage of the 

distribution for which error measure is minimized as the categories, frequencies, and their corresponding 

percentages are as follows 

 Category 6: This category has a frequency of 6 and constitutes 54.5% of the total cases and 60.0% 

cumulatively. 

 Category 3: This category has a frequency of 3 and constitutes 27.3% of the total cases and 90.0% 

cumulatively. 

 Category 1: This category has a frequency of 1 and constitutes 9.1% of the total cases and 10.0% cumulatively. 

In total, there were 10 correct answers, covering 90.9% of the cases examined. 

 

Figure 4. Any measure of error is minimized 

Neutrosophic Generalization of Frechet's distribution: 

Probability density function (PDF): The PDF for the neutrosophic Frechet distribution is defined as follows: 

𝑓(𝑥 + yI;  𝛼, 𝛽, 𝛾) =  𝛽 ∗  𝛾 ∗  (𝛾 ∗  (𝑥 + yI −  𝛼))
(𝛽 − 1)

∗ exp (−(𝛾 ∗  (𝑥 + yI −  𝛼))
𝛽

) 

Where α, β, and γ are distribution parameters, α represents the basic location parameter, β controls the shape of 

the basic distribution, and γ determines the basic scale parameter. 

The neutrosophic Frechet distribution's derivative can be calculated using the probability density function 

(PDF) conventional derivative equation. Differentiate x's Frechet equation.  

This equation: 

𝑓′(𝑥 + 𝑦𝐼;  𝛼, 𝛽, 𝛾)  
=  𝛽 ∗  𝛾 ∗  (𝛽 −  1)  ∗  (𝛾 ∗  (𝑥 + 𝑦𝐼 −  𝛼))^ (𝛽 −  2)  ∗  𝛾^2 ∗  exp (−(𝛾 ∗  (𝑥 + 𝑦𝐼)  
− 𝛼))^𝛽) 

The Frechet distribution's derivative of the probability density function (PDF) for x is f'(x; α,β,γ), where α, β, and 

γ are Frechet distribution parameters. 

Distribution Function (CDF): We obtain the CDF of the Frechot distribution through PDF file merge operations: 

𝐹(𝑥 + yI;  𝛼, 𝛽, 𝛾)  =  ∫ [𝛼, 𝑥 + 𝑦𝐼] 𝑓(𝑡;  𝛼, 𝛽, 𝛾) 𝑑𝑡 

where 𝑓(𝑡;  𝛼, 𝛽, 𝛾) :is the PDF of the Frechet distribution. 

Applying calculus' fundamental theorem separates the CDF equation. CDF function derivative (f'(x; α, β, γ)) 

produces PDF function derivative. Differential equation: 

𝑓′(𝑥 + 𝑦𝐼;  𝛼, 𝛽, 𝛾) =
𝑑

𝑑𝑥 + 𝑑𝑦𝐼
[𝐹(𝑥;  𝛼, 𝛽, 𝛾)] 

https://doi.org/10.54216/IJNS.250301


 

International Journal of Neutrosophic Science (IJNS)                                            Vol. 25, No. 03, PP. 01-13, 2025                                           

11 
DOI: https://doi.org/10.54216/IJNS.250301  
Received: February 5, 2024 Revised: May 4, 2024 Accepted: September 6, 2024 

 

The CDF function derivative concerning x is the PDF function derivative. The Frechet distribution derivative 

equation is obtained by differentiating the CDF equation for x+yI. 

Main general characteristics: 

Flexibility: Adjusting parameters α, β, and γ can construct symmetric, skewed, and heavy/light-tailed distributions. 

The flexible Frechet can collect various data distributions and shapes. 

The likelihood function, denoted 𝐿(𝛼, 𝛽, 𝛾), is given by: 

𝐿(𝛼, 𝛽, 𝛾) =  ∏[𝑖 = 1 𝑡𝑜 𝑛]𝑓(𝑥𝑖 + yiI;  𝛼, 𝛽, 𝛾) 

Here, 𝑓(𝑥𝑖 + yiI;  𝛼, 𝛽, 𝛾) represents the PDF of the Freshout distribution for each observed data point xi+yiI. 

2. Log likelihood function: 

To simplify calculations, it is common to work with the log-likelihood function, which is the natural logarithm of 

the likelihood function: 

𝐿𝑜𝑔 𝐿(𝛼, 𝛽, 𝛾) =  ∑[𝑖 = 1 𝑡𝑜 𝑛]𝐿𝑜𝑔 𝑓(𝑥𝑖 + yiI;  𝛼, 𝛽, 𝛾) 

Optimization problem 

Neutrosophic MLE aims to maximize log-likelihood function by determining optimal parameter values (α+aI, 

β+bI, γ+cI).  

This can be formulated as an optimization problem: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑙𝑜𝑔 𝐿(𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼) 

Parameter estimation 

To estimate the parameters, we solve the optimization problem by differentiating the log-likelihood function with 

respect to each parameter (𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼) and setting the derivatives equal to zero. We then solve the 

resulting equations to obtain the estimated parameter values. For example, to estimate α+aI, we differentiate the 

log-likelihood function with respect to α+aI and set it equal to zero: 

𝜕

𝜕(𝛼 + 𝑎𝐼)
log 𝐿(𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼) =  0 

Likewise, we differentiate the log-likelihood function with respect to β+bI and γ+cI, and set the derivatives equal 

to zero to estimate other parameters. 

Moment-based approach: 

      Moment-based methods estimate neutrosophic parameters by equating sample moments (e.g., mean, variance) 

with their population counterparts. These methods may rely on several moments of the Frechet distribution that 

can be calculated mathematically. 

We rely on equating sample moments with their population counterparts. This approach uses moments of the 

observed data to estimate distribution parameters. Here are the steps to follow: 

 Population neutrosophic moments: 

The population moments of the Frechet distribution are defined as mathematical functions of the distribution 

neutrosophic parameters (α+aI, β+bI, γ+cI). The mean, variance, deviation, and higher-order moments are 

included. If data X1+Y1I, X2+Y2I,..., Sample moments can be mathematically represented: 

     Mean: 

     The following equation estimates the sample mean: 

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 =  (
1

𝑛
) ∗  𝛴(𝑖 = 1 𝑡𝑜 𝑛)(𝑋𝑖 + 𝑌𝑖𝐼) 

     Variance: 

     The following equation estimates the sample variance: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  (
1

𝑛
) ∗  𝛴(𝑖 = 1 𝑡𝑜 𝑛)([𝑋𝑖 + 𝑌𝑖𝐼]  −  𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛)2 
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     Standard Deviation: 

     As the variance root, estimate the sample standard deviation. 

The neutrosophic PDF of the Frechet distribution at x_i is f(x_i; α+aI,β+bI,γ+cI), where y_i is the observed data 

point and α+aI, β+bI, and γ+cI are its neutrosophic parameters Huber weights or IRLS give observations closer to 

the true distribution more weight. The derivative can be calculated by differentiating the objective function for 

α+aI, β+bI, and γ+cI. The derivative equation is: 

𝜕

𝜕(𝛼 + 𝑎𝐼)
[𝛴 𝑤𝑖 ∗  [𝑦𝑖 −  𝑓(𝑥𝑖 ;  𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼)]2]

=  −2 ∗  𝛴 𝑤𝑖 ∗  [𝑦𝑖 −  𝑓(𝑥𝑖 ;  𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼)] ∗
𝜕𝑓(𝑥𝑖;  𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼)

𝜕(𝛼 + 𝑎𝐼)
 

 

𝜕

𝜕(𝛽 + 𝑏𝐼)
[𝛴 𝑤𝑖 ∗  [𝑦𝑖 −  𝑓(𝑥𝑖 ;  𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼)]2]

=  −2 ∗  𝛴 𝑤𝑖 ∗  [𝑦𝑖 −  𝑓(𝑥𝑖 ;  𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼)] ∗
𝜕𝑓(𝑥𝑖;  𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼)

𝜕(𝛽 + 𝑏𝐼)
 

 

𝜕/𝜕(𝛾 + 𝑐𝐼) [𝛴 𝑤_𝑖 ∗  [𝑦_𝑖 −  𝑓(𝑥𝑖 ;  𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼)]^2]  
=  −2 ∗  𝛴 𝑤_𝑖 ∗  [𝑦_𝑖 −  𝑓(𝑥𝑖 ;  𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼)]  
∗  𝜕𝑓((𝑥𝑖 ;  𝛼 + aI, 𝛽 + bI, 𝛾 + 𝑐𝐼)/𝜕(𝛾 + 𝑐𝐼) 

8. Conclusion and Future Directions 

The study has shown that the noise-resistant least squares method can estimate Frechet distribution parameters 

under noisy situations. The proposed method applies to statistical modeling in image processing, data analysis, 

and pattern identification. Large-scale simulations and statistical analysis proved the method's accuracy and 

robustness. The noise-resistant least squares method yielded accurate parameter estimations like MLE and 

Bayesian inference. This method has successfully estimated parameters in noisy data, and we find its practical 

implications important, especially in financial modeling, where accurate parameter estimation is critical for risk 

management, portfolio optimization, and options pricing. The noise-resistant least squares method can help 

financial modelers overcome noise and outliers and provide accurate parameter estimations. It has uses beyond 

financial modeling. It may be extended to handle heterogeneity and measurement mistakes in statistical modeling. 

The robust technique allows researchers to estimate parameters accurately in noisy environments using varied 

datasets. Further research could examine its performance under heterogeneous noise or its use in econometric 

models with measurement errors, as well as extend the noise-robust least squares method to address different types 

of noise found in various fields. Furthermore, evaluating this method's computing efficiency and scalability to 

huge datasets would aid its practical implementation. 
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