Incidence Topological Spaces Generated from The Simple Undirected Graphs

Noor Nouman*1, Faik J. Mayah 2

1 Department of Physics, College of Science, Wasit University, Wasit, Iraq.
2 Department of Mathematics, College of Education for Pure Science, Wasit University, Wasit, Iraq.

Emails: namannoor921@gmail.com; faik@uowasit.edu.iq

Abstract

In this paper, we investigate topologies produced by simple connected graphs. In particular, we associate a topology with G, called the incidence topology of G. A sub-base family to generate an incidence topology is implemented on the Vertices V set. Then we analyze some of the properties and discuss the impact topology of a few essential types of graphs. Our motivation in this section is to take a fundamental step towards the investigation of some of the characteristics of simple graphs by their corresponding incidence topology.

Keywords: Finite Topological Spaces; Connected Simple Graphs; Topologies; undirected graphs.

1. Introduction

Graph theory is one of the most important structures in discrete mathematics. It is a prominent mathematical tool in many subjects [4]. Graphs are mathematical structures consisting of vertices and edges. They are used to model dual relationships between objects in a particular collection. A graph includes vertices that serve as objects and edges by connecting these vertices [1]. Many researchers have used the relation between graph and topology theories to deduce a topology from a particular graph. Others put new specific models in the set of vertices in the graph, and others make it on the set of edges. Graphs can be divided into two types directed graphs and undirected graphs. The researchers’ previous work to obtain the topology through the graph was associated with a graph of vertices adjacent to the vertex. Euler first proposed graph theory in 1736. Recently, the theory has been an achieved applied to places in various disciplines. Since the theory is according to relation combinations, it plays a crucial role in representing combinations of items and mathematical combinations. Simple set theory is also according to relational combinations. They are solved by using applications of graph theory. Because of the pervasive use of the theory, its topological structure has generated debate [3].

Using various techniques, some scientists have created topologies from a graph. Some scientists have generated topologies from graphs using various techniques. In 2013, M. Amiri et al. Developed a topology using the vertices of an undirected graph. In this paper, we outline several characteristics of a topological space by using a simple graph without isolated vertices. We describe some topological characteristics of the topology we produce with these graphs. We demonstrate that every basic graph may generate a topology. Obtain the topological space by converting the simple connected graph [10]. In this article, A synthesis between graph theory and topology has been made. A topology with the set of vertices for any simple graphs has been associated, called incidence topology. The study of some properties of this new model of topology has been presented on a certain few important type of graphs.

Doi: https://doi.org/10.54216/PMTCS.040101
Received: December 23, 2023 Revised: March 10, 2024 Accepted: May 21, 2024
2. Preliminaries

In this section, some fundamental definitions and theorems related to the graph theory, approximation spaces and topological spaces used in the work are presented.

Definition 2.1.[1] A graph G is a pair (V, E) or $(V(G), E(G))$ where V is a non-empty set called vertices or nodes and E is element subsets of V called edges or links.

Definition 2.3.[4] A simple graph is called complete graph, if any two distinct vertices are joined by an edge denoted by K_n. A graph G is regular if the vertices of G has the same degree.

Definition 2.4.[4] A complete bipartite graph is a bipartite graph in which each vertex in the first set is joined to each vertex in the second set by exactly one edge. The complete bipartite graph with n vertices of first set and m vertices of second set is denoted by $K_{n,m}$.

Definition 2.5.[2] A tree is an undirected connected graph with no cycles.

Definition 2.6.[3] A spanning tree of a graph G is a sub graph of G that is a tree that contain all the vertices of G with no cycles.

Definition 2.7.[4] A sub base S for a topology on X is a collection of subsets of X whose union equals X. The topology generated by the sub basis S is defined to be the collection of all unions of finite intersections of elements of S.

Definition 2.8.[6] In a space (X, \mathcal{T}), a collection β of open subset of X is called a basis for \mathcal{T} if every open is a union of elements of β.

3. Incidence Topology on Simple Connected Graphs

Let $G = (V, E)$ be a simple connected graph. In this section, we associate a topology with G, called the incidence topology of G. A sub-base family to generate a incidence topology is implemented on the Vertices V set. Then we analyze some of the properties and discuss the impact topology of a few essential types of graphs. Our motivation in this section is to take a fundamental step towards the investigation of some of the characteristics of simple graphs by their corresponding incidence topology.

Definition 3.1.

Let $G(V, E)$ be connected a simple graph consist of a non-empty set $V(G)$ of vertices and a set $E(G)$ of edges. If v_1 and v_2 are vertices and e is an edge such that $e = v_1v_2$, then e is said to join v_1 and v_2, each vertex (v_1 and v_2) is incident with e. Bear in mind the $G^{-1}(e)$ is a set of all vertices that are incident to the edge, define $N_G(E)$ as follows $\mathcal{N}_G(E) = \{N(e) \in E(G)\}$, we have $V = \cup_{e \in E} N_G(E)$. Hence $N_G(E)$ from a sub basis for a topology \mathcal{T}_G on V, called incidence topology of G.

Example 3.2.

Consider the simple connected graph $G(V, E)$ in figure (3.7) where $V = \{v_1, v_2, v_3, v_4, v_5\}$ and $E = \{e_1, e_2, e_3, e_4, e_5\}$.
We will find the incidence topology \(\mathcal{N}_G \) of the graph \(G \) as follows: \(N(e_1) = \{v_1, v_2\}, N(e_2) = \{v_2, v_3\}, N(e_3) = \{v_1, v_5\}, N(e_4) = \{v_2, v_5\}, N(e_5) = \{v_2, v_6\}. \)

By taking finitely intersection of basis obtained

\[
\mathcal{N}_G(E) = \{ \emptyset, \{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_5\}, \{v_1, v_5\}, \{v_2, v_3\}, \{v_1, v_2, v_3\}, \{v_1, v_3, v_4, v_5\}, \{v_1, v_3, v_6\}, \{v_2, v_3, v_6\}, \{v_2, v_5, v_6\}, \{v_1, v_2, v_3, v_5\}, \{v_1, v_3, v_4, v_5\}, \{v_2, v_3, v_4, v_5\}, \{v_1, v_2, v_3, v_6\}, \{v_1, v_3, v_4, v_6\}, \{v_2, v_3, v_4, v_6\}, \{v_1, v_2, v_3, v_5, v_6\}, \{v_1, v_3, v_4, v_5, v_6\} \}.
\]

Example 3.3.

Consider the graph \(G(V, E) \) in figure 1 where:
\(V = \{v_1, v_2, v_3, v_4, v_5, v_6\} \) and \(E = \{e_1, e_2, e_3, e_4, e_5, e_6\}. \)

We will find the incidence topology \(\mathcal{N}_G \) of the graph \(G \) as follows:

\(N(e_1) = \{v_1, v_2\}, N(e_2) = \{v_2, v_3\}, N(e_3) = \{v_3, v_4\}, N(e_4) = \{v_4, v_5\}, N(e_5) = \{v_5, v_6\}. \)

By taking finitely intersection of basis obtained

\[
\mathcal{N}_G(E) = \{ \emptyset, \{v_1, v_2\}, \{v_2, v_3\}, \{v_2, v_5\}, \{v_1, v_5\}, \{v_2, v_3\}, \{v_1, v_2, v_3\}, \{v_1, v_3, v_4, v_5\}, \{v_1, v_3, v_6\}, \{v_2, v_3, v_6\}, \{v_2, v_5, v_6\}, \{v_1, v_2, v_3, v_5\}, \{v_1, v_3, v_4, v_5\}, \{v_2, v_3, v_4, v_5\}, \{v_1, v_2, v_3, v_6\}, \{v_1, v_3, v_4, v_6\}, \{v_2, v_3, v_4, v_6\}, \{v_1, v_2, v_3, v_5, v_6\}, \{v_1, v_3, v_4, v_5, v_6\} \}.
\]

Remark 3.4.

Incidence topology of \(P_n \) where \(n \geq 3 \) is not discrete because the set contains just a few vertices are open.

Remark 3.5.

The path graph \(P_n \), where \(n = 2 \) is not incidence topology.

Example 3.6.

Consider the path graph \(G(V, E) \) in figure where \(V = \{v_1, v_2, v_3\} \) and \(E = \{e_1, e_2, e_3\}. \)
We will find the incidence topology $\mathcal{N}\mathcal{T}_G$ of the graph G as follows $N(e_1) = \{v_1, v_2\}$, $N(e_2) = \{v_2, v_3\}$, $N(e_3) = \{v_3, v_4\}$.

By taking finitely intersection of basis obtained

$\mathcal{N}\mathcal{B}_G(E) = \{\emptyset, \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_2\}, \{v_3\}\}$.

$\mathcal{T}_G = \{\emptyset, V, \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_2\}, \{v_3\}, \{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}\}$.

Example 3.7.
Consider the path graph $G(V, E)$ in figure 3 where $V = \{v_1, v_2, v_3, v_4, v_5\}$ and $E = \{e_1, e_2, e_3, e_4, e_5\}$.

![Figure 3: Path graph P_5](image)

We will find the incidence topology $\mathcal{N}\mathcal{T}_G$ of the graph G as follows $N(e_1) = \{v_1, v_2\}$, $N(e_2) = \{v_2, v_3\}$, $N(e_3) = \{v_3, v_4\}$, $N(e_4) = \{v_4, v_5\}$.

By taking finitely intersection of basis obtained

$\mathcal{N}\mathcal{B}_G(E) = \{\emptyset, \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_5\}, \{v_2\}, \{v_3\}\}$.

$\mathcal{T}_G = \{\emptyset, V, \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_5\}, \{v_2\}, \{v_3\}, \{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \{v_3, v_4, v_5\}, \{v_1, v_2, v_3, v_4\}, \{v_2, v_3, v_4, v_5\}\}$.

Remark 3.8.
Suppose $G(V, E)$ be a complete graph and complete bipartite graph verify the incidence topology is discrete topology when $n \geq 3$.

Example 3.3.9.
Consider the complete graph $G(V, E)$ in figure 4 where $V = \{v_1, v_2, v_3, v_4\}$ and $E = \{e_1, e_2, e_3, e_4\}$.

![Figure 4: A complete graph K_4](image)
By taking finitely intersection of basis obtained
\[NB_G(E) = \{ \emptyset, V, \{v_1, v_2\}, \{v_2, v_3\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_4\} \} \]
\[T_G = \{ \emptyset, V, \{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}, \{v_2, v_3, v_4\} \} \]

Example 3.10.
Consider the complete bipartite graph \(G(V, E) \) in figure 5 where \(V = \{v_1, v_2, v_3, v_4, v_5\} \) and \(E = \{ e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\} \).

![Figure 5: A complete graph \(K_5 \)](image)

We will find the incidence topology \(NT_G \) of the graph \(G \) as follows:
\[N(e_1) = \{v_1, v_2\}, N(e_2) = \{v_2, v_3\}, N(e_3) = \{v_3, v_4\}, N(e_4) = \{v_4, v_5\}, N(e_5) = \{v_1, v_5\} \]
\[N(e_6) = \{v_1, v_4\}, N(e_7) = \{v_2, v_3\}, N(e_8) = \{v_2, v_4\}, N(e_9) = \{v_3, v_4\}, N(e_{10}) = \{v_3, v_5\} \]

By taking finitely intersection of basis obtained
\[NB_G(E) = \{ \emptyset, \{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_1\}, \{v_2\}, \{v_3\}, \{v_4\} \} \]
\[T_G = \{ \emptyset, V, \{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}, \{v_2, v_3, v_4\} \} \]

Example 3.11.
Consider the complete graph \(G(V, E) \) in figure where \(V = \{v_1, v_2, v_3, v_4, v_5\} \) and \(E = \{ e_1, e_2, e_3, e_4, e_5\} \).

![Figure 6: A complete bipartite graph \(K_{2,3} \)](image)

We will find the incidence topology \(NT_G \) of the graph \(G \) as follows:
\[N(e_1) = \{v_1, v_3\}, N(e_2) = \{v_1, v_4\}, N(e_3) = \{v_1, v_5\}, N(e_4) = \{v_2, v_3\}, N(e_5) = \{v_2, v_4\} \]
N(e₁) = {v₂, v₃}.

By taking finitely intersection of basis obtained

NB_G(E) = ∅, \{v₁, v₄\}, \{v₁, v₅\}, \{v₁, v₆\}, \{v₂, v₄\}, \{v₂, v₅\}, \{v₂, v₆\}, \{v₃, v₁\}, \{v₃, v₂\}, \{v₃, v₄\}, \{v₃, v₅\}, \{v₃, v₆\}, \{v₁, v₂\}, \{v₁, v₃\}, \{v₁, v₄\}, \{v₁, v₅\}, \{v₁, v₆\}, \{v₂, v₃\}, \{v₂, v₄\}, \{v₂, v₅\}, \{v₂, v₆\}, \{v₃, v₄\}, \{v₃, v₅\}, \{v₃, v₆\}, \{v₁, v₄, v₅\}, \{v₁, v₄, v₆\}, \{v₁, v₅, v₆\}, \{v₂, v₃, v₄\}, \{v₂, v₃, v₅\}, \{v₂, v₃, v₆\}, \{v₂, v₄, v₅\}, \{v₂, v₄, v₆\}, \{v₂, v₅, v₆\}, \{v₃, v₄, v₅\}, \{v₃, v₄, v₆\}, \{v₃, v₅, v₆\}, \{v₁, v₂, v₃, v₄\}, \{v₁, v₂, v₃, v₅\}, \{v₁, v₂, v₃, v₆\}, \{v₁, v₂, v₄, v₅\}, \{v₁, v₂, v₄, v₆\}, \{v₁, v₂, v₅, v₆\}, \{v₁, v₃, v₄, v₅\}, \{v₁, v₃, v₄, v₆\}, \{v₁, v₃, v₅, v₆\}, \{v₁, v₄, v₅, v₆\}, \{v₂, v₃, v₄, v₅\}, \{v₂, v₃, v₄, v₆\}, \{v₂, v₃, v₅, v₆\}, \{v₂, v₄, v₅, v₆\}, \{v₃, v₄, v₅, v₆\}.

Example 3.12.

Consider the complete bipartite graph \(G(V, E) \) in figure 7 where \(V = \{v₁, v₂, v₃, v₄, v₅, v₆\} \) and \(E = \{e₁, e₂, e₃, e₄, e₅, e₆\} \).

![Figure 7: A complete bipartite graph \(K_{3,3} \)](image)

We will find the incidence topology \(N_T_G \) of the graph \(G \) as follows:

\(N(e₁) = \{v₁, v₄\}, N(e₂) = \{v₁, v₅\}, N(e₃) = \{v₁, v₆\}, N(e₄) = \{v₂, v₄\}, N(e₅) = \{v₂, v₅\}, N(e₆) = \{v₂, v₆\} \).

By taking finitely intersection of basis obtained

\(NB_G(E) = ∅, \{v₁, v₄\}, \{v₁, v₅\}, \{v₁, v₆\}, \{v₂, v₄\}, \{v₂, v₅\}, \{v₂, v₆\}, \{v₃, v₁\}, \{v₃, v₂\}, \{v₃, v₃\}, \{v₃, v₄\}, \{v₃, v₅\}, \{v₃, v₆\}, \{v₄, v₁\}, \{v₄, v₂\}, \{v₄, v₃\}, \{v₄, v₄\}, \{v₄, v₅\}, \{v₄, v₆\}, \{v₅, v₁\}, \{v₅, v₂\}, \{v₅, v₃\}, \{v₅, v₄\}, \{v₅, v₅\}, \{v₅, v₆\}, \{v₆, v₁\}, \{v₆, v₂\}, \{v₆, v₃\}, \{v₆, v₄\}, \{v₆, v₅\}, \{v₆, v₆\} \).

Definition 3.13.

Let \(G = (V, E) \) be a graph, we call \(H \) is a subgraph from \(G \) if \(V(H) \subseteq V(G), E(H) \subseteq E(G) \). In this case we would write \(H \subseteq G \). The spanning sub graph from a graph \(G \) is a sub graph acquired by edge deletions only. A deduced sub graph of a graph \(G \) is a sub graph acquired by vertex deletions along with the incident edges.

Remark 3.14.

Aspin tree of a graph \(G \) is a sub graph of \(G \) that is tree that contain all the vertices of \(G \) with no cycles. The incidence topology of spin tree is not discrete.

Example 3.15.

Let \(G \) be a graph (as it is shown in figure 8). Then:
1. Let $G = S_{T_1}$ (spin tree as it is shown in figure 9). Then;

We will find the incidence topology $N\mathcal{T}_G$ of the graph G as follows: $N(e_1) = \{v_1, v_2\}$, $N(e_2) = \{v_1, v_3\}$.

By taking finitely intersection of basis obtained

$N_B(G)(E) = \emptyset, \{v_1, v_2\}, \{v_1, v_3\}, \{v_2\}, \{v_2, v_3\}, \{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}$

$\mathcal{T}_G = \emptyset, V, \{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}$

2. Let $G = S_{T_2}$ (spin tree as it is shown in figure 10). Then;

We will find the incidence topology $N\mathcal{T}_G$ of the graph G as follows: $N(e_1) = \{v_1, v_2\}$, $N(e_2) = \{v_1, v_3\}$.

By taking finitely intersection of basis obtained

$N_B(G)(E) = \emptyset, \{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2\}.$

$\mathcal{T}_G = \emptyset, V, \{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}$

3. Let $G = S_{T_3}$ (spin tree as it is shown in figure 11). Then;
Figure 11: Spin tree \((T_3)\) of \(G\)

We will find the incidence topology \(N_{T_0}\) of the graph \(G\) as follows: \(N(e_1) = \{v_1, v_2\}\), \(N(e_2) = \{v_2, v_4\}\), \(N(e_3) = \{v_3, v_4\}\).

By taking finitely intersection of basis obtained

\[
\text{NB}_G(E) = \{\emptyset, \{v_1, v_2\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_2\}, \{v_4\}\}.
\]

\(T_G = \{\emptyset, V, \{v_1, v_2\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_2\}, \{v_4\}, \{v_1, v_2, v_4\}\}.
\)

Proposition 3.16. Suppose that \(T_G\) is the incidence topology of the graph \(G\). If \(d(v) \geq 2\), then \(\{v\} \in T_G\) for every \(v \in V\).

Proof. Since \(G\) is a simple graph and for any degree of \(v\), we have \(\bigcap_{i=1}^{3} N_{e_i} = \{v\}\) such that \(v N_{e_i}\) for all \(i = 1, 2, 3, \ldots\). Now by the definition of \(T_G\), \(\{v\}\) is an element in the basis of \(T_G\). Hence \(\{v\} \in T_G\) for every \(v \in V\).

The following corollary is a trivial result for the previous proposition.

Corollary 3.17. Let \(G\) be a graph. If \(d(v) \geq 2\) for all \(v \in V\), then \(T_G\) is a discrete topology.

4. Conclusion

In this paper it is shown that topologies can be generated by simple connected graphs. It is studied topologies generated by certain graphs. Therefore, it is seen that there is a topology generated by every undirected graph. Properties proved by these generated topologies are presented. The study of some properties of this new model of topology has been presented.

Funding: “This research received no external funding”

Conflicts of Interest: “The authors declare no conflict of interest.”

References

Doi: https://doi.org/10.54216/PMTCS.040101

Received: December 23, 2023 Revised: March 10, 2024 Accepted: May 21, 2024