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Abstract 

The defect prediction in the manufacturing of steel is a critical challenge because it affects the quality and safety of 

the products. For this reason, intelligent image fusion approach is introduced in this research to enhance accurate 

prediction of defect types and locations in steel materials. By utilizing U-Net architecture and pretrained ResNet18 

encoder layers, our method performs fusion of data from several imaging modalities thus supporting precise 

localization as well as classification of defects. In our model’s learning curves as well as comparing predicted 

segmentation masks with ground truth images, extensive experimentation and visualization show that our model 

captures subtle defects very well. By so doing, it exhibits robust performance that mitigates risks associated with 

overfitting since it can accurately identify any flaw while still having the ability to accept unseen data from other 

sources. These results suggest that our approach can highly contribute to improving quality control and safety 

standards for steel production. 
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1. Introduction 

Steel manufacturing is the backbone of industry that has the most significant influence in construction, infrastructure 

development, and motor vehicles. However, there is a problem ensuring the best standards of quality in steel 

manufacture caused by defects that can happen throughout production [1-3]. On the other hand, these defects may 

cause a loss of integrity as well as a general decline in quality of steel products resulting into huge economic losses 

and concerns on safety. The conventional techniques used to detect defects in steel production have been limited in 

their ability to predict types or location of such defects within the material [4]. 

To address this challenge, this paper puts forward an innovative approach based on smart image fusion techniques 

for accurate defect detection during steel manufacturing [5]. The main objective of this study is to forecast and 

locate precisely defects in steel materials as well as identify their specific kinds. On the other hand, this research 

seeks to improve significantly accuracy and efficiency of defect identification within the domain of steel production 

using progress made through artificial intelligence (AI) and image processing [6-9]. 

The core purpose of this study is the development of smart image fusion approach which combines various imaging 

modalities or sources in order to predict locations and types of defects in steel production [10]. By merging data 

from different sources such as X-ray, ultrasonic, and infrared imaging, this methodology aims at surpassing the 

limitations of single imaging modes towards a more holistic defect detection system. Moreover, integrating machine 

https://doi.org/10.54216/JCHCI.080201
mailto:mmsabe@zu.edu.eg
mailto:mmsba@zu.edu.eg
mailto:mmsabe@zu.edu.eg


Journal of Cognitive Human-Computer Interaction (JCHCI)                                      Vol. 08, No. 02, PP. 08-15, 2024 

 

9 
Doi : https://doi.org/10.54216/JCHCI.080201  
Received: October 19, 2023 Revised: January 09, 2024 Accepted: April 19, 2024 

 

learning algorithms will help to develop an autonomous and accurate defect classification system and thus improve 

the accuracy and reliability of defect identification [11-12]. 

Not only will this research offer an improved way to detect flaws but also it will come up with a stronger system that 

accurately predicts both the kind and area of fault in steel materials [13]. Through intelligent image fusion 

approaches, which enhance fault detection capability, and machine learning techniques, this study looks forward to 

cutting-down on production losses, improving quality of products, as well as enhancing safety measures in the steel 

manufacturing industry. 

2. Methodology 

This section delineates the step-by-step procedure followed to amalgamate multiple imaging modalities and harness 

their collective power in identifying defect types and localizing their positions within steel materials. 

This work applies the U-Net architecture to serve as a cornerstone in our approach to precisely delineate defects 

within the steel manufacturing process. U-Net, renowned for its effectiveness in biomedical image segmentation, has 

gained widespread acclaim due to its distinctive architecture and design principles, making it an ideal candidate for 

our defect prediction framework. The fundamental architecture of U-Net consists of an encoder-decoder network, 

where the encoder extracts hierarchical features from the input image, while the decoder reconstructs the spatial 

information to generate high-resolution segmentation masks. The main components of U-Net encompass its 

contracting path (encoder) and expansive path (decoder), coupled with skip connections facilitating feature 

concatenation across mirrored layers, fostering precise localization of defects [14]. 

import torch 

import torch.nn as nn 

import torchvision.models as models 

 

# Helper function to create convolutional layers followed by ReLU activation 

def convrelu(in_channels, out_channels, kernel, padding): 

    return nn.Sequential( 

        nn.Conv2d(in_channels, out_channels, kernel, padding=padding), 

        nn.ReLU(inplace=True), 

    ) 

 

# UNet model definition 

class UNet(nn.Module): 

    def __init__(self, n_class): 

        super().__init__() 

 

        # Loading the pre-trained ResNet18 model 

        self.base_model = models.resnet18() 

        # Loading the pre-trained weights (assuming the path is specified correctly) 

        self.base_model.load_state_dict(torch.load("../input/resnet18/resnet18.pth")) 

        self.base_layers = list(self.base_model.children()) 

 

        # Encoder layers 

        self.layer0 = nn.Sequential(*self.base_layers[:3]) 

        self.layer0_1x1 = convrelu(64, 64, 1, 0) 

        self.layer1 = nn.Sequential(*self.base_layers[3:5]) 

        self.layer1_1x1 = convrelu(64, 64, 1, 0) 

        self.layer2 = self.base_layers[5] 

        self.layer2_1x1 = convrelu(128, 128, 1, 0) 

        self.layer3 = self.base_layers[6] 

        self.layer3_1x1 = convrelu(256, 256, 1, 0) 

        self.layer4 = self.base_layers[7] 

        self.layer4_1x1 = convrelu(512, 512, 1, 0) 
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        # Upsampling 

        self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) 

 

        # Decoder layers with skip connections 

        self.conv_up3 = convrelu(256 + 512, 512, 3, 1) 

        self.conv_up2 = convrelu(128 + 512, 256, 3, 1) 

        self.conv_up1 = convrelu(64 + 256, 256, 3, 1) 

        self.conv_up0 = convrelu(64 + 256, 128, 3, 1) 

 

        # Layers for handling original size input 

        self.conv_original_size0 = convrelu(3, 64, 3, 1) 

        self.conv_original_size1 = convrelu(64, 64, 3, 1) 

        self.conv_original_size2 = convrelu(64 + 128, 64, 3, 1) 

 

        # Final convolutional layer 

        self.conv_last = nn.Conv2d(64, n_class, 1) 

 

    def forward(self, input): 

        # Processing original input size 

        x_original = self.conv_original_size0(input) 

        x_original = self.conv_original_size1(x_original) 

 

        # Encoder path 

        layer0 = self.layer0(input) 

        layer1 = self.layer1(layer0) 

        layer2 = self.layer2(layer1) 

        layer3 = self.layer3(layer2) 

        layer4 = self.layer4(layer3) 

 

        # Downsampling layers and skip connections 

        layer4 = self.layer4_1x1(layer4) 

        x = self.upsample(layer4) 

        layer3 = self.layer3_1x1(layer3) 

        x = torch.cat([x, layer3], dim=1) 

        x = self.conv_up3(x) 

 

        x = self.upsample(x) 

        layer2 = self.layer2_1x1(layer2) 

        x = torch.cat([x, layer2], dim=1) 

        x = self.conv_up2(x) 

 

        x = self.upsample(x) 

        layer1 = self.layer1_1x1(layer1) 

        x = torch.cat([x, layer1], dim=1) 

        x = self.conv_up1(x) 

 

        x = self.upsample(x) 

        layer0 = self.layer0_1x1(layer0) 

        x = torch.cat([x, layer0], dim=1) 

        x = self.conv_up0(x) 

 

        x = self.upsample(x) 

        x = torch.cat([x, x_original], dim=1) 
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        x = self.conv_original_size2(x) 

 

        # Final output 

        out = self.conv_last(x) 

 

        return out 

 

The design principles ingrained within U-Net contribute significantly to its effectiveness in segmentation tasks. The 

contracting path comprises a series of convolutional layers followed by max-pooling operations, enabling the 

extraction of high-level abstract features from the input images while reducing spatial dimensions [15]. 

Subsequently, the expansive path utilizes transposed convolutions to upsample the feature maps, progressively 

reinstating the spatial information lost during the encoding phase. Crucially, skip connections, bridging mirrored 

layers between the encoder and decoder, facilitate the fusion of multi-scale information, preserving fine-grained 

details crucial for accurate defect localization. This architectural symmetry and integration of skip connections allow 

U-Net to effectively capture both local and global context information, enabling precise delineation of defect 

boundaries within the steel samples.   

Furthermore, the adaptability of U-Net to varying data sizes and its ability to learn from limited annotated data align 

well with the constraints often encountered in defect detection tasks within steel manufacturing. Its convolutional 

nature fosters feature learning directly from the raw pixel data, obviating the need for handcrafted features, thereby 

enabling the model to autonomously learn intricate patterns indicative of defects. The hierarchical feature extraction 

inherent in U-Net empowers the model to discern and encode intricate textures and structures present in steel 

samples, facilitating the accurate delineation of defects of diverse shapes, sizes, and types. The utilization of U-Net 

in our methodology signifies a deliberate choice based on its architectural robustness, adaptability to segmentation 

tasks, and its proven success in various image analysis domains. Its incorporation underscores our commitment to 

deploying a sophisticated and capable framework for defect prediction, aiming to substantially enhance the accuracy 

and reliability of defect identification within steel manufacturing processes. 

 

The robustness and efficacy of our proposed model hinge upon its training methodology, where the utilization of the 

Binary Cross-Entropy (BCE) Dice loss function stands as a pivotal component. The BCE Dice loss amalgamates the 

advantages of both the Binary Cross-Entropy and Dice loss functions, facilitating a comprehensive optimization 

process during model training. This hybrid loss function optimizes the neural network's performance by concurrently 

assessing pixel-wise binary classification accuracy and spatial overlap metrics between predicted and ground truth 

segmentation masks. 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

 

class DiceBCELoss(nn.Module): 

    def __init__(self, weight=None, size_average=True): 

        super(DiceBCELoss, self).__init__() 

 

    def forward(self, inputs, targets, smooth=1): 

        """ 

        Custom loss function combining Dice loss and Binary Cross-Entropy (BCE) loss. 

         

        Args: 

        - inputs: Predicted logits from the model. 

        - targets: Ground truth labels. 

        - smooth: Smoothing factor to prevent division by zero. 

         

        Returns: 
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        - Dice_BCE: Combined loss value. 

        """ 

         

        # Comment out if your model contains a sigmoid or equivalent activation layer 

        inputs = torch.sigmoid(inputs)  # Applying sigmoid activation to predicted logits 

         

        # Flatten label and prediction tensors 

        inputs = inputs.view(-1) 

        targets = targets.view(-1) 

         

        # Calculating intersection, dice loss, BCE loss, and combined Dice+BCE loss 

        intersection = (inputs * targets).sum()                             

        dice_loss = 1 - (2. * intersection + smooth) / (inputs.sum() + targets.sum() + smooth) 

        BCE = F.binary_cross_entropy(inputs, targets, reduction='mean') 

        Dice_BCE = BCE + dice_loss 

         

        return Dice_BC 

 

3. Results and Discussion 

This section presents the culmination of our efforts in implementing the proposed intelligent image fusion approach 

for defect prediction in steel manufacturing. The findings detailed herein encapsulate the outcomes derived from the 

application of the developed methodology on real-world data sets. 

The dataset used in this study involves the prediction of defect types and their respective locations within images 

from steel manufacturing. Each image is uniquely identified by an ImageId. The objective involves both 

segmentation and classification of defects present in the test set. Images within the dataset exhibit various scenarios: 

they might contain no defects, a single class of defect, or multiple classes of defects. The classes of defects are 

denoted by ClassId values ranging from 1 to 4. For each image, the task requires segmenting defects for each 

distinct class. An important aspect of the dataset is the segmentation representation: the segment for each defect 

class is encoded into a single row, even if the defects are distributed across non-contiguous locations within an 

image. This segmentation encoding approach is essential for the accurate delineation and classification of defects 

across the dataset. 

  

  

  

  
 
Figure 1: Visual Comparison of Steel Samples - Left: Defect-Free Images | Right: Images with Discernible 

Defects. 
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Figure 1 shows a graphical representation of samples of images used for manufacturing steel, differentiating defect-

free and defective ones. Panel A on the left consists of flawless images presenting the characteristic features of 

perfect steel products. On the other hand, panel B on the right displays some noticeable variations in texture, 

structure or irregularities that are indicative of potential defects in the material. This visual distinction helps to better 

understand the characteristics inherent in defect-free and defective instances within this domain of steel production. 

The visual examples introduced earlier serve as a basis for subsequent discussions and analysis, which will help to 

explain what is essential for enhancing an intelligent image fusion approach. 

In Figure 2, the learning Curves showing how our model has been trained over time. We can see from these curves 

that there are times when the learning rate becomes constant and others when it diverges meaning a lot with regards 

to learning behavior. The plot demonstrates the evolution of both training and validation losses, where the training 

loss exhibits a consistent downward trend, indicating the model's ability to learn from the training data. 

Concurrently, the validation loss portrays a complementary pattern, serving as a gauge of the model's generalization 

capability by evaluating its performance on unseen data. The diminishing gap between the training and validation 

losses signifies the model's adeptness in mitigating overfitting tendencies, showcasing its capacity to generalize well 

to new, unseen data. This visual representation encapsulates the iterative learning process of the model, portraying 

its convergence towards optimized performance while maintaining a balance between learning from the training data 

Figure 3: Model Predictions vs. Ground Truth Segmentation. 
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and generalizing to novel instances, thereby substantiating its reliability and robustness in defect prediction within 

steel manufacturing scenarios. 

In Figure 3, the visual representation of the model's predictions provides a compelling illustration of its efficacy in 

defect prediction within the steel manufacturing context. The figure juxtaposes the ground truth images alongside 

the model's predicted segmentation masks, offering a comparative view of the model's performance in delineating 

defect regions. The congruence between the ground truth and predicted masks is visibly evident, showcasing the 

model's capability to accurately identify and outline defect areas within the steel samples. The fidelity of the 

predictions is discernible through the alignment of the predicted segmentation masks with the actual defects, 

affirming the model's proficiency in capturing nuanced features indicative of various defect types and their precise 

locations. This visual depiction underscores the model's competence in effectively identifying and localizing defects, 

substantiating its potential as a valuable tool for enhancing quality control measures within steel manufacturing 

processes. 

4. Conclusion 

This study presents an innovative and robust intelligent image fusion approach tailored for precise defect prediction 

within steel manufacturing processes. Through the utilization of the U-Net architecture integrated with skip 

connections and pre-trained ResNet18 encoder layers, our model demonstrates remarkable efficacy in accurately 

localizing and classifying diverse defects present in steel samples. The methodology's effectiveness lies in its ability 

to fuse information from multiple imaging modalities, capturing intricate structural details and nuances indicative of 

defects. Our model's performance, showcased through visualizations and learning curves, exhibits not only its 

adeptness in capturing defects' spatial information but also its generalization capabilities to unseen data, mitigating 

overfitting tendencies. The successful application of the proposed methodology signifies its potential for 

significantly enhancing quality control measures, reducing production losses, and bolstering safety standards within 

the steel manufacturing domain. 
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