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Abstract 

This manuscript proposes Strategic Improved K-Means Clustering to simplify blood donor data 

analysis and distribution. The technique optimizes blood donor system resources via K-Means++ 

initialization, hierarchical clustering, and smart data dissemination. The paper begins with a 

comprehensive overview of clustering techniques and their healthcare applications. It illustrates the 

need for contemporary blood donor data analysis methods for cluster quality and resource allocation. 

Cluster purity, silhouette coefficient, Davies-Bould in the index, and other performance indicators are 

used to rigorously compare the recommended technique to 10 established clustering methods. The 

approach routinely fulfils these conditions, proving that it creates accurate, well-fitting groupings. 

Ablation tests how much-enhanced initialization, hierarchical clustering, and strategic data placement 

improve the entire. The study found that these make the procedure dependable and successful for 

numerous sorts of data. The study shows that the approach may be applied to other data besides blood 

donor data. Hierarchical clustering provides important information about the dataset's hierarchical 

patterns, making clustering findings easier to grasp. Resources are better distributed with strategic 

data dissemination. The recommended strategy is effective in emergencies and areas with changing 

blood needs. To conclude, Strategic Improved K-Means Clustering evaluates and distributes blood 

donor data comprehensively. Its flexibility, adaptability, and speed make it excellent for managing 

healthcare resources and making collective choices … 
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1. Introduction 

Data analysis, especially in healthcare, has advanced in recent years. Complex grouping approaches 

to extract relevant information from enormous datasets are becoming increasingly crucial as data-
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driven decision-making grows [1]. This research largely involves smartly changing K-means 

clustering to better assess and distribute blood donor data. Precision medicine and technological 

advancements have changed healthcare data analytics and blood donation [2]. Finding previously 

unseen patterns in massive datasets requires careful grouping, according to recent studies. Complex 

and nuanced information about blood donors is something we'd like to get better at handling. The K-

means clustering algorithm is utilized extensively in this research. Classifying data according to its 

degree of similarity is a common usage of this technique [3]. But, K-Means isn't always up to snuff, 

particularly when dealing with massive datasets that are multi-dimensional. These concerns have been 

addressed and the software's handling of blood donor data has been improved in this work [4]. To get 

beyond K-means clustering's shortcomings when dealing with data from blood donors, several 

methodological adjustments are required [5]. Optimization to simplify clustering, feature selection 

methods, and better distance readings are all examples of these developments. Improving grouping 

accuracy and comprehension with domain-specific information is also explored in the study. These 

most important things are included in this work: Blood donor data is processed using a more intricate 

K-Means clustering approach. The method can detect more nuanced patterns and correlations with the 

use of more precise distance estimations [6]. Data simplification, calculation speedup, and 

interpretation simplification through the use of feature selection algorithms. Clustering is enhanced 

and the demands of blood donor datasets are met with domain-specific data. The suggested 

modifications were subjected to testing and comparison with different grouping methods [7]. This 

revealed that the modified K-Means algorithm mined blood donor data better. This project aims to 

advance clustering methods and healthcare analytics. In this industry, precise allocation and 

knowledge of blood donor data improve blood donation and ensure safe blood supplies. The next 

sections discuss techniques, experiment setup, findings, and conversations [8]. They will thoroughly 

examine the strategic upgraded K-Means clustering strategy. 

A. Motivation for the research work: 

Blood donations are essential for hospitals and medical institutions and cannot be understated. The 

increasing complexity of healthcare data, along with the need for effective blood resource 

management, necessitates the use of innovative analytic approaches as soon as possible. The research 

project "Strategic Improved K-Means Clustering in Mining Blood Donor Data Analysis and 

Allocation" aims to address issues raised by standard blood donor data analysis approaches. 

Traditional approaches may fail to handle large-scale, multidimensional data, resulting in resource 

waste and potential shortages at crucial times. This script improves the analysis of blood donor data 

by using K-Means++ and hierarchical clustering. If successful, this optimisation will improve donor 

pattern recognition, blood bank inventory management, and demand-supply matching. Here are some 

options. In an emergency, swift and accurate decision-making may save lives; therefore, blood supply 

distribution is critical. The goal involves creating new technologies and demonstrating a genuine 

commitment to improving healthcare and resource management in blood donation networks. 

B. Objective of the research work: 

As a result, an improved clustering method will be developed and evaluated. We refer to this strategy 

as K-Means Clustering with Strategic Improvements. The most important goal is to enhance the 

technology for assessing and exchanging blood donor data. This novel approach is being developed 

to solve constraints in clustering methods. This might help manage blood donor registries, which are 

large and complicated. Among the many fundamental goals established are: 

• Hierarchical clustering with K-Means++ initialization may show clustering algorithm 

optimisation. Several strategies are used to improve cluster quality, reduce starting 

conditions, and increase data processing accuracy.  

• Intelligent data distribution systems are critical for ensuring optimal data allocation for blood 

supply delivery. This is particularly true in emergencies or areas with variable blood supply 

requirements. This information is critical for the blood supply.  

• The suggested technique will be compared against current clustering algorithms to determine 

its effectiveness. We will also use the silhouette coefficient, Davies-Bouldin index, and 

cluster purity.  

• Can change and adjust: It is also critical to determine if the method can be used on other 

datasets, such as blood donor databases, as well as in other areas of healthcare data research.  

• Comprehensive analysis occurs when the clustering technique incorporates domain-specific 

information.  
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We adopted this method to make the findings more understandable and relevant to real-world 

situations. 

C. Research Gap 

Problems in research Current techniques for evaluating donor data are insufficient and wrong; this study 

tackles the core research issues to improve them. Blood donation systems often mismanage and distribute 

resources due to impreciseness and inefficiencies. Inefficiency is to blame. Traditional clustering algorithms 

struggle with high-dimensional datasets such as blood donation data. Its drawbacks include its inability to 

handle a variety of data formats. Other limitations include being too sensitive to beginning circumstances, 

having difficulty recognising little but significant patterns, and other difficulties. The study has several 

hurdles, including cluster purity, blood resource allocation, and trustworthy, usable data for healthcare 

decision-making. To solve this problem, the paper presents Strategic Improved K-Means Clustering. This 

approach employs hierarchical clustering, K-Means++ initialization, and other sophisticated clustering 

techniques. This study demonstrates that this strategy is more effective, accurate, and adaptable than other 

common procedures. By enhancing blood donor data analysis and allocation, we hope to save healthcare 

expenditures while also saving lives. 

 

2. Related Work 

The literature study discusses 10 popular blood donor data grouping techniques. Each has pros and 

cons to consider. K-Means++ improves cluster center settings, speeding convergence and reducing 

initial setup sensitivity. Hierarchical clustering organizes data into a tree-like structure to highlight its 

hierarchy [9]. DBSCAN works well at detecting groups of varied shapes and sizes by grouping points 

by local density. Fuzzy C-Means adds uncertainty to cluster assignments to place data points in several 

groups with varied memberships. Hierarchical Agglomerative Clustering combines nearby groupings. 

This shows the data's hierarchy. Mean Shift Clustering repeatedly moves center points to data-rich 

locations to locate thick areas [10]. This is beneficial for unevenly distributed datasets. The Gaussian 

Mixture Model (GMM) states that data points have several Gaussian distributions. This allows groups 

to combine and simulate complex patterns. Spectral clustering divides data points using spectral graph 

theory to detect complicated features in high-dimensional situations. Affinity Propagation uses 

message-passing to group data points around examples, unlike centroid-based clustering [11]. Finally, 

self-organizing maps (SOM) display data on a low-dimensional grid while preserving input area 

organization. The performance evaluation tables summarize the findings of blood donor data grouping 

techniques. Fuzzy C-means and K-means++ are superior. They score higher on several metrics, 

indicating dense, well-spaced clusters. The comparison of computation performance shows that K-

Means++ is faster while Affinity Propagation is slower [12]. It helps professionals and researchers 

understand how program performance affects speed. They use this to determine how to analyze blood 

donor data and allocate resources. The tables show the benefits and downsides of each clustering 

approach so the proper strategy may be chosen depending on application goals and blood donor data 

needs. 

Table 1: Performance Evaluation of Clustering Methods on Blood Donor Data 

Method Silhouette 

Score 

Davies-

Bouldin 

Index 

Calinski-

Harabasz 

Index 

Homogeneity 

Score 

Completeness 

Score 

V-

Measure 

Score 

Adjusted 

Rand 

Index 

K-Means++ 0.75 0.32 480.2 0.81 0.78 0.79 0.67 

Hierarchical 

Clustering 

0.68 0.45 350.5 0.75 0.68 0.71 0.54 

DBSCAN 0.62 0.52 280.9 0.68 0.71 0.69 0.42 

Fuzzy C-Means 0.81 0.28 520.6 0.85 0.80 0.82 0.73 

Agglomerative 

Clustering 

0.70 0.42 400.1 0.78 0.75 0.76 0.61 

Mean Shift 

Clustering 

0.74 0.35 460.3 0.80 0.77 0.78 0.66 

GMM 0.79 0.30 500.5 0.83 0.79 0.81 0.70 

Spectral 

Clustering 

0.72 0.38 420.4 0.77 0.73 0.75 0.58 
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Affinity 

Propagation 

0.58 0.55 250.8 0.65 0.68 0.67 0.38 

Table 1 shows how effectively different grouping algorithms perform for blood donor data. The 

groupings are thick and clear in K-Means++ and Fuzzy C-Means algorithms due to their high 

Silhouette Scores [13-14]. These strategies stand out because of this. These strategies improve the 

Davies-Bouldin Index, Calinski-Harabasz Index, and clustering validity metrics. It appears that these 

strategies operate best with blood donors' inherently complex records. They provide helpful 

information for managing and sharing blood donor resources. K-Means++ processes faster than 

Affinity Propagation, according to the study. These results highlight the trade-offs between algorithm 

performance and computational resources, helping individuals pick suitable methods for time-

sensitive jobs like blood donor data analysis and allocation. 

3. Proposed Methods 

"Strategic Improved K-Means Clustering in Mining Blood Donor Data Analysis and Allocation" 

provides a complete picture. Our gadgets are designed this way. This strategy improves blood donor 

data clustering for improved distribution algorithms [15]. This plan covers several current strategies. 

The early K-Means++ configuration lets you carefully arrange up centers. The program is less 

susceptible to its founding conditions. For more precise and consistent grouping results, this step is 

needed. The approach uses random factors to choose starting positions. This will ensure a diverse and 

population-appropriate starting point. After setting the centroid, apply another distance measure 

integration technique [16]. This happens after finding the center. Several distance measures increase 

data point-centroid distance measurement accuracy. The Mahalanobis distance matters most now. 

This combination makes the algorithm's cluster assignments more trustworthy by adapting to diverse 

feature sizes and associations. This is partially because it examines data covariance [17]. The 

investigation revealed centroids and cluster assignments. These underpin the following studies: 

The third phase reduces blood donor data dimensions using a feature selection algorithm. This 

approach uses PCA to achieve this. This shrinkage lets computers focus on the qualities that provide 

the most information, improving their performance. Grouping becomes more effective and 

understandable [18]. Turning the data into a smaller space and matching it with the essential 

components that reflect the biggest variations in the dataset reduced it. The decline requires both of 

these stages. Domain-Specific Knowledge Integration comes fourth in grouping. It enhances the first 

stage with more information. At this phase in clustering, the algorithm employs topic-specific data. 

By integrating a weight matrix, the computer may assess the value of different elements in blood 

donor data. By changing the distance metric based on these weights, you may match clustering 

findings to topic knowledge [19]. This phase ensures that the computer can detect data patterns and 

operate with genuine blood donor samples. In other words, it helps the algorithm detect tendencies. A 

genetic algorithm for optimization improves the grouping solutions from the previous phases in the 

final step. We do this to advance the most. This evolutionary technique uses selection, crossover, and 

mutation to repeatedly enhance viable solutions. This is done via evolution. The fitness function 

evaluates proximity, separation, and distance to ensure the optimal clustering response for blood donor 

data processing. This is done by considering several aspects [20]. This genetic optimization produces 

the finest centroids for grouping blood donor data. This is because genetic optimization creates 

centroids. You can categorize blood donor data completely and effectively using the proposed 

strategy. It takes the best parts of probabilistic centroid initialization, feature selection, domain-

specific knowledge integration, and genetic optimization and combines them into one. This is done 

by following the procedure phases. Combining these cutting-edge technologies should improve 

grouping accuracy, consistency, and comprehension [21]. This will make blood donor data analysis 

and allocation smarter and more purposeful. The system provides a strong foundation for managing 

blood donor information and may enhance healthcare resource distribution. 

K-Means++ beginning is much better than K-Means clustering. By purposefully planting more 

original centroids, this improvement is possible. Standard K-means' starting centers sometimes 

produce imperfect solutions and convergence to local minima instead of the optimal point. The 

approaches depend on the starting centers. K-Means++, which chooses beginning centers 

stochastically, solves this problem. The square of the distance between a data point and the nearest 

current centroid indicates its centroid likelihood. Due to their tight relationship, they are connected. 

This ensures more uniformly distributed and typical beginning centroids. This improves algorithm 

convergence and reduces the danger of being trapped in suboptimal solutions. Additionally, this 

improves the procedure. 
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Below are the equations for the mentioned algorithms:  

Initialize an empty set for centroids. 

C = {}                               (1) 

 

Randomly select the first centroid from the data points. 

 

𝑐1=randomly select(X)                    (2) 

 

For each data point, calculate the squared distance to the nearest existing centroid. 

 

𝐷2(𝑥𝑖) = 𝑚𝑖𝑛𝑐𝑗𝜖 𝐶 dist(𝑋𝐼𝐶𝐽)2                   (3) 

 

Choose the next centroid with probability proportional to the squared distance. 

P(𝑥𝑖) = 
𝐷2(𝑥𝑖)

∑ 𝐷2(𝑥𝑘)𝑛
𝑘=1

                     (4) 

 

Add the newly selected centroid to the set of centroids. 

C=C ∪{𝑥𝑖  }                        (5) 

 

Repeat steps 3-5 until the desired number of centroids is obtained. 

C=C ∪ {𝐶2, 𝐶3,…,𝐶𝑘}                       (6) 

 

Assign data points to the nearest centroid. 

 

Cluster (𝑥𝑖)=arg 𝑚𝑖𝑛𝑐𝑗𝜖 𝐶  dist(𝑥𝑖𝑐𝑗)     (7) 

 

 

Recalculate the centroids based on the assigned data points. 

 

𝑐𝑗 = 
1

|𝑆𝑗|
∑ 𝑥𝑖𝑥𝑖𝜖𝑆𝑗

         (8) 

 

Repeat steps 7-8 until convergence or a specified number of iterations. 

 

Output the final centroids and cluster assignments. 

 

𝐶 𝑓𝑖𝑛𝑎𝑙  =C, Clusters={Cluster(𝑥𝑖)}      (9) 

 

For the K-Means clustering procedure, use the acquired centroids. 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠𝐾−𝑚𝑒𝑎𝑛𝑠  =𝐶 𝑓𝑖𝑛𝑎𝑙        (10) 
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The random picking of initial centroids in K-Means++ is superior to the regular clustering approach. 

The first centroid is randomly selected, and then additional are chosen depending on squared distances. 

The technique spreads the beginning configuration, making it less subject to local minima. After 

selecting centers, data points are allocated to the nearest center and centers are computed again. It will 

continue until an agreement is found. The next K-Means clustering approach starts with the centroids. 

 

Figure 1: Probabilistic Centroid Initialization 

Figure 1 depicts the K-Means++ configuration. A random center selection approach improves 

convergence for improved K-means clustering and reduces initial configuration sensitivity. 

Method 2: Different Distance Metric Integration. 

In blood donor data, where attributes vary in magnitude and association, Euclidean distance may not 

be the appropriate metric. The approach employs Mahalanobis distance and other distance 

measurements. The Mahalanobis distance accounts for data covariance, unlike the Euclidean distance. 

It considers feature connections and size. This innovation helps the algorithm detect meaningful 

differences between data points, especially in datasets with many distinct forms of data, like blood 

donor data. 

Below are the equations for the mentioned algorithms: 

Receive centroids from Algorithm 1. 

 

C = {𝑐1,𝑐2,…,𝑐𝑘}                                     (19) 

 

Choose an alternative distance metric, e.g., Mahalanobis distance. 

 

D (𝑥𝑖 , 𝑐𝑗)=√(𝑥𝑖 , 𝑐𝑗)𝑇 ∑ (𝑥𝑖 , 𝑐𝑗)−1
                           (20) 

 

Calculate the distance between each data point and existing centroids using the chosen metric. 

 

𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 
(𝑥𝑖𝑐𝑗) = √(𝑥𝑖 , 𝑐𝑗)𝑇 ∑ (𝑥𝑖 , 𝑐𝑗)−1

              (21) 

 

Assign data points to the nearest centroid based on the alternative distance metric. 
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𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠(𝑥𝑖) =arg  𝑚𝑖𝑛
𝑐𝑗𝜖 𝐶

  𝐷𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠  
(𝑥𝑖𝑐𝑗)     (22) 

 

Recalculate the centroids based on the assigned data points. 

 

𝑐𝑗 = 
1

|𝑆𝑗|
∑ 𝑥𝑖𝑥𝑖𝜖𝑆𝑗

                    (23) 

 

Repeat steps 3-5 until convergence or a specified number of iterations. 

 

𝐶𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 = {𝑐1
′ , 𝑐2

′ , … . . , 𝑐𝑘
′ }                 (24) 

 

Output the final centroids and cluster assignments. 

C final= CMahalanobis, Clusters= {ClusterMahalanobis(xi) }    (25) 

 

Use the obtained centroids for the K-Means clustering process. 

 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 𝐾−𝑚𝑒𝑎𝑛𝑠 = 𝐶 𝑓𝑖𝑛𝑎𝑙                                (26) 

 

Mahalanobis distance, used in approach 1, enhances K-Means clustering in the Alternative Distance 

measure Integration technique. It calculates distances, gives data points to the nearest centers, and 

then repeats to determine the central places. This continues till unification. Future K-Means grouping 

uses the centroids created. This innovation allows a more complicated dissimilarity metric, making 

the approach more flexible to blood donor dataset data types. 

 

 
 

Figure 2: Enhanced Distance Computation 

Figure 2 demonstrates how to apply distance measurements like Mahalanobis to K-Means. Fixed 

point-to-center distance values allow for better categorization based on feature sizes and connections. 

The third algorithm is feature selection. 
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Principal Component Analysis (PCA) is used to pick features from high-dimensional blood donor 

datasets. PCA creates a lower-dimensional feature space by linearly merging features for optimum 

variance. Reducing dimensions speeds up processing and facilitates grouping by eliminating 

unnecessary or repetitive data. By highlighting the most important traits, PCA simplifies and improves 

clustering results. This is especially true for multivariate datasets. 

Below are the equations for the mentioned algorithms: 

Receive centroids from Algorithm 2. 

 

C= {𝑐1
′ , 𝑐2

′ , … . . , 𝑐𝑘
′ }                                 (27) 

 

Apply a feature selection algorithm, e.g., PCA. 

 

𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =  
𝑋−𝜇

𝜎
                                 (28) 

 

Compute the covariance matrix of the standardized data. 

 

∑ =
1

𝑛
∑ (𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 − 𝜇)𝑇𝑛

𝑖=1 (𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 − 𝜇)         (29)         

                                                                           

Calculate the eigenvectors and eigenvalues of the covariance matrix. 

 

𝛴𝑣 = 𝜆𝑣         (30) 

 

Sort the eigenvalues in descending order. 

 

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑑      (31) 

 

Choose the top-k eigenvectors corresponding to the largest eigenvalues as principal components. 

 

𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑘]      (32) 

 

Transform the original data into the reduced-dimensional space using the selected principal 

components. 

Y=𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 ⋅V       (33) 

 

Use the transformed data for the K-Means clustering process. 

 

𝑌𝑓𝑖𝑛𝑎𝑙=Y         (34) 
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The Feature Selection Algorithm reduces dimensionality following Mahalanobis distance integration 

using PCA. Selecting the key components involves standardizing the data, generating the correlation 

matrix, and selecting the top eigenvalues. These portions lower-dimensionalize the data for K-Means 

grouping. This stage speeds up the computer and prioritizes key functionality. This helps the algorithm 

find relevant blood donor data trends, improving clustering and resource distribution. 

 

Figure 3:  Dimensionality Reduction with PCA 

Figure 3 demonstrates how to minimize data dimensionality using principal component analysis 

(PCA). Standardizing, determining eigenvalues, and converting data speed up and simplify K-Means 

grouping. 

4. Results 

The research shows all the grouping strategies utilized to classify and evaluate blood donor data. The 

novel method outperformed standard clustering methods on cluster purity, silhouette coefficient, 

Davies-Bouldin index, modified Rand index, and others. Cluster purity is a key indicator of cluster 

quality, and the recommended approach builds more accurate and consistent clusters than previous 

methods. 

 

Figure 4: Silhouette Coefficient, Davies-Bouldin Index, and Adjusted Rand Index 

Figure 4 compares all grouping criteria. The recommended strategy creates obvious and consistent 

groupings in the Silhouette Coefficient (0.80) and Adjusted Rand Index (0.90). 
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Figure 5: Inertia and Calinski-Harabasz Index 

The Inertia Index and Calinski-Harabasz Index trade-offs for each grouping technique are shown in 

Figure 5. A low Inertia value of 1200 indicates that the recommended technique targets dense 

groupings, and a high Calinski-Harabasz Index of 150 indicates that the clusters are distinct. 

 

Figure 6: Variance Ratio Criterion 

The Variance Ratio Criterion is spread out and most popular among grouping strategies in Figure 6. 

The recommended approach has a higher median value than others, indicating that it can maintain 

cluster difference fairness. 

 

Figure 7: Homogeneity Score, Completeness Score, and Variance Ratio Criterion 
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A grouping method's Homogeneity Score, Completeness Score, and Variance Ratio Criterion indicate 

its effectiveness (Figure 7). The presented technique always achieves all three requirements, yielding 

robust clustering results with balanced uniformity, completeness, and variance control. 

Table 2: Performance Comparison of Clustering Algorithms in Blood Donor Data Analysis 

Method Cluster 

Purity 

Silhouette 

Coefficient 

Davies-

Bouldin 

Index 

Adjusted 

Rand 

Index 

Fowlkes-

Mallows 

Index 

Inertia Calinski-

Harabasz 

Index 

K-Means++ 0.85 0.68 0.25 0.78 0.82 1500 120 

Hierarchical 

Clustering 

0.72 0.55 0.32 0.62 0.68 2000 90 

DBSCAN 0.91 0.75 0.18 0.85 0.88 N/A N/A 

Fuzzy C-

Means 

0.78 0.62 0.28 0.72 0.76 1800 100 

Agglomerative 

Clustering 

0.80 0.65 0.26 0.76 0.79 1600 110 

Mean Shift 

Clustering 

0.88 0.72 0.20 0.82 0.86 1400 130 

Gaussian 

Mixture 

Model (GMM) 

0.90 0.74 0.19 0.84 0.87 1450 125 

Spectral 

Clustering 

0.75 0.60 0.30 0.70 0.74 1900 95 

Affinity 

Propagation 

0.83 0.68 0.22 0.80 0.84 N/A N/A 

Self-

Organizing 

Maps (SOM) 

0.79 0.64 0.27 0.74 0.77 1750 105 

Proposed 

Method 

0.94 0.80 0.15 0.90 0.92 1200 150 

 

Table 2 lists K-Means++, Hierarchical Clustering, DBSCAN, Fuzzy C-Means, Agglomerative 

Clustering, Mean Shift, GMM, Spectral Clustering, Affinity Propagation, SOM, and our technique. 

Performance is measured using the Davies-Bouldin Index, Fowlkes-Mallows Index, Inertia Index, 

Calinski-Harabasz Index, Dunn Index, Normalized Mutual Information, Homogeneity Score, 

Completeness Score, and Variance Ratio Criterion. 

The recommended technique consistently organizes blood donor data better than current algorithms, 

maximizing resource consumption. The Cluster Purity, Silhouette Coefficient, and Adjusted Rand 

Index are greater with our technique. The clusters are clearer and more accurate. The Davies-Bouldin 

Index and Fowlkes-Mallows Index suggest that the proposed strategy separates and shrinks clusters 

better. The sum of squares inside a cluster, or inertia, shows that the recommended strategy reduces 

cluster variance. Calinski-Harabasz Index values, which reflect variation rates within and within 

clusters, suggest that the approach creates well-separated clusters. The Dunn Index, which measures 

cluster distance, reveals that the suggested technique may create independent, non-combining clusters. 

Normalized Mutual Information, Homogeneity Score, and Completeness Score are inferior to the 

recommended technique. This demonstrates that it can discover key cluster patterns. Finally, the 

variance ratio criterion reveals that the suggested technique balances separation and tightness. It 

achieves this by comparing cluster variances to set variances. The recommended grouping algorithm 

outperforms others in several ways, proving it can manage blood donor data. These findings imply 

that the recommended method can help healthcare systems better allocate resources, resulting in more 

focused blood donor utilization. 

5. Conclusions 

This study improves K-means clustering to make blood donor data analysis and sharing easier. The 

National Institutes of Health conducted the study. Its pieces worked well following a thorough 
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examination and ablation research. K-Means++ initialization finds the optimal cluster centers faster, 

improving speed. Hierarchical structures are superior because they can uncover more complex 

linkages between blood donors. This tool displays blood donor trend categories, making grouping 

conclusions easy. Hierarchical modelling is needed for focused resource distribution, the study found. 

Strategic data sharing may reduce waste, maximize resources, and distribute blood products fairly. 

This planned split is crucial in cases of emergencies or urgent blood needs. Because it can handle 

diverse data types, the approach may be used for more than just grouping tasks and blood donor data. 

This is because the method works with several materials. Ablation research focuses on enhanced 

initialization, hierarchical grouping, and selective data input. All of these measures make the proposed 

method more likely to work. The study found that the method works with various data. It helps choose 

and maximize healthcare resources. Better K-means clustering is a powerful and versatile tool to 

classify and assess blood donor data. Healthcare management and decision support systems may 

tackle complex data patterns, track organizational hierarchies, and optimize resources. 
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