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Abstract 

This study presents a novel distribution derived from the exponential distribution, referred to as the 

neutrosophic size-biased exponential distribution (NSBED). Various characteristics of the proposed 

model, including moments, skewness, and kurtosis, are investigated. Plots depicting the cumulative 

distribution function, density function, and other relevant functions associated with the survival 

analysis hazard function under indeterminacy are provided. Parameter estimates for the proposed 

model within the neutrosophic framework are computed. To illustrate the statistical applications of 

the results in handling imprecise data, a motivation is provided. A simulation analysis is conducted to 

validate the theoretical aspects of the proposed NSBED. Results indicate that the new distribution 

exhibits right skewness and shares many properties with skewed distributions. Our novel distribution 

outperforms the size-biased exponential distribution. Finally, a real application of the proposed model 

is provided to illustrate the practical implications. 
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1. Introduction 

Researchers explore new distributions of data with statistical methods that are presented in different 

ways, as it these types of distributions play a major role in various academic fields. Weighted 

distributions find their application when one constructs statistics based on data coming from a 

stochastic process which is not evenly recorded; instead, such statistics are based upon weighted 

function. Length-biased distribution is found if the weight function gets impacted by the lengths of 

the units under consideration [3]. It has been widely reported that many continuous distributions are 

size-biased or length- or size-biased subjects for developing singular and desirable properties [4], [5]. 

In practical scenarios like probability proportional to sizes (PPS) designs, we can see that there are 

different chances of selecting distinct samples. Use of method conversed about in reference [6] lead 

to noticeable development in dealing with above mentioned problematic issue particularly among size 

biased distributions. A lot of study disciplines as econometrics, chemometrics, ecology, agriculture, 

linguistics, and medicinal science depend on those distributions. [7]. The length-biased approach was 

instrumental around sampling theory and greatly enhanced precision of data analysis in many fields. 

Researchers may make more dependable inferences and reach more accurate conclusions by 

considering the unequal chance of sample observations, as per this range [8-13].  
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To formulate size-biased distributions, let's assume we have a random variable 𝑍 with a probability 

density function (PDF) denoted as 𝑓(𝑧, 𝛼), where 𝛼 represents a precise value of the parameter. The 

corresponding weighted distribution function, denoted as 𝑔(𝑧, 𝛼), is given by [14]:  

𝑔(𝑧, 𝛼) =
𝑤(𝑧)𝑓(𝑧,𝛼)

𝐸(𝑤(𝑧))
          (1) 

Where 𝑤(𝑧) is weight function and the integral in the denominator ensures normalization, making 

𝑔(𝑧, 𝛼) a valid probability distribution. 

If we assume the weight function 𝑤(𝑧) = 𝑧𝜗, the (1) is called size biased distribution of order 𝜗. If 

the value of 𝜗 = 1 then it is called length biased distribution, denoted as follow [15]: 

𝑔(𝑧, 𝛼) =
𝑧𝑓(𝑧,𝛼)

𝐸(𝑧)
          (2) 

Length-biased models are typically used in numerous domain names such as public health, 

dependability design as well as demography to research study populaces with various prices of 

advancement. In the world of public health, these circulations play a crucial part in assessing health 

issues that advance at differing prices [16-18] Integrity design scientists use the failure times of system 

elements to evaluate larger parts that have longer life expectancies. This strategy is vital for 

understanding the probability of discovering failings. In demography length-biased circulations are 

used to research study human populaces especially in the context of examining fertility plus death. 

Scientist can acquire valuable understandings right into populace characteristics as well as projections 

by picking people with longer life expectancies or reproductive durations for example [19] 

Neutrosophic collections offer a much more comprehensive method in contrast with standard 

collection concept when taking care of uncertain, vague, as well as irregular information [20] These 

subscription features particularly truth-membership, indeterminacy-membership, plus falsity-

membership supply a clear understanding of the way in which to which a component comes from the 

collection is not sure or does not come from the collection. This structure additionally integrates 

appropriate data and chance circulations to additional boost its performance in dealing with complex 

details [21-24] Neutrosophic stats as well as possibility circulations supply valuable techniques for 

examining information or unpredictability that is described by neutrosophic collections [25-27]. 

Neutrosophic probability distributions calculate likelihood of occurrences or outcomes in uncertainty 

situations, focusing on central tendency, dispersion, and other neutrosophic data characteristics [28]. 

Such an approach is adapted for making decisions, recognizing patterns, and developing artificial 

intelligence, especially in situations where normal approaches fail to cope with ambiguity and 

vagueness. However, there are few papers on the neutrosophic size-biased exponential distribution 

that could be used to analyze imprecise data values meaningfully calling for further study.  

The paper’s structure is as follows: Section 2 gives a size-biased form of the exponential distribution. 

Section 3: Statistic properties of this modified distribution with simulations in section 4. Besides, in 

section 4 information on how to find mode and harmonic mean can be found. Showing real-life 

application of NSBED under consideration. Section 5 uses random numbers generation method. 

Section 6 demonstrates implementation of the suggested approach in practice. Section 7 finalizes the 

research report by giving concluding remarks about it. 

 

2. Proposed Model 

In this section, we propose the NSBED distribution. We provide graphical representations of the 

proposed model in the form of its probability density function (PDF) and cumulative distribution 

function (CDF). 

The PDF of the neutrosophic exponential distribution and its CDF function are defined in (3) and (4) 

respectively: 

𝑓(𝓏) = bNe−bN𝓏 , 𝓏 > 0, bN > 0       (3) 

ℱ(𝓏) = 1 − e−bN𝓏 , 𝓏 > 0, bN > 0        (4) 

The exponential distribution has been widely used in different fields due to its versatility and 

practicality, as shown in previous studies [1]. For example, it has been utilized in modeling the 

lifetimes of electronic components and radioactive particles, as well as in queuing theory and 
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reliability analysis. Additionally, its simple mathematical properties make it a convenient choice for 

many statistical analyses.  

Using (3) and (4) in (2) provides the density function of the proposed model. 

ℊ(𝓏) = b2
Nze−bN𝓏 , bN > 0, 𝓏 > 0.       (5) 

The CDF of NSBED has the form 

𝒢(𝓏) = 1 − (1 + bN𝑧)e−bN𝓏         (6) 

Figure 1 shows probability density function (PDF) and figure 2 displays cumulative distribution 

function (CDF) of the proposed model. Probability Density Function is an important concept in 

probability theory and statistics, it characterizes the distribution of continuous random variables. It 

states how probable it is for various outcomes to happen within a given range. In this case, probability 

density function (PDF) cannot be negative and its integral over all possible values of variable amounts 

to one. Summing up the entire area covered by PDF leaves a total of 1 after integrating the PDF over 

all possible values of variable. Alternatively, a CDF integrates the associated PDF to establish 

probabilities for random variables less than or equal to a given value. The CDF begins at zero and 

goes up to one as the variable approaches’ infinity. In the sphere of probability theory and statistics, 

this basic mathematical tool is used to calculate probabilities and make statistical inferences for 

random variables. When employed alongside the PDF though, the CDF provides a clear understanding 

of the characteristics and distributions of continuous random variables. 

 

 

Figure 1: Pdf plot of the proposed distribution with different values of neutrosophic parameter 
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Figure 2: CDF plot of the proposed distribution with indeterminate parameter values 

With neutrosophic probability theory, the range of uncertainty can be well modelled by use of PDF 

and CDF when the parameters of uncertainty remain to be indeterminate, as seen in Figure 1 and 

Figure 2. The possibilistic solution using the falsehood-membership enables the physical meaning of 

uncertainty to be comprehended more perfectly, especially when dealing with the vague and 

ambiguous data. The neutrosophic CDF is a mathematical tool for estimating the probability that the 

neutrosophic random variable would be no more than or equal to some constant in the light of the 

uncertain factors. Neutrosophic probability theory offers the sound and flexible methodology to 

process the uncertain data with different fields by putting the uncertain factors into both PDF and 

CDF. The survival function denoted briefly by 𝒮(𝓏) is an important piece of any probabilistic model. 

The word ‘probability’ refers to the chance that the random variable would be more than or equal to 

some value, i.e. the probability that the event would not occur. The survival function in this 

mathematical model represents the probability of surviving beyond a specific point in time.  

𝒮(𝓏) = 1 − 𝒢(𝓏) = 1 − (1 − 𝑏𝑁)e−bN𝓏 , 𝓏 > 0     (7) 

The survival function is a fundamental concept employed in survival analysis and reliability 

engineering to ascertain the chance of an event not occurring within a given timeframe or threshold. 

Comprehending this function is crucial for forecasting the timing of occurrences or anticipating 

potential breakdowns. Figure 3 depicts the procedure for generating the survival function. 
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Figure 3: Survival function of the proposed model 

Figure 3 represents a survival function for the proposed model. Neutrosophic theory introduces a new 

perspective on survival function, departing from the usual standard of probability theory and statistics. 

In this sense, the survival function measures the likelihood or ability of indefinite or uncertain 

occurrences or claims to survive beyond a threshold, the inherent uncertainty and indeterminacy that 

plays a role in it. In neutrosophic theory, the survival function is of great importance, with it being 

possible to study and represent systems and phenomena that surpass conventional probability. It 

represents a rigorous way measure uncertain occurrences and claims by considering the notions of 

indeterminacy, ambiguity, and missing knowledge. Given the complexity of real-world situations, in 

which uncertainty prevails, it was important to have this powerful tool to portray the complexity of 

the situations. The hazard function is another linked function of the probability distribution, commonly 

employed in reliability theory. 

𝒽(𝓏) =
ℊ(𝓏)

𝒮(𝓏)
= 𝑏𝑁𝓏          (8) 

The hazard function is a crucial tool in analyzing complex systems prone to failure, enabling 

researchers to predict failure patterns, evaluate interventions, and make informed decisions across 

fields like epidemiology, medicine, engineering, and finance. 

3. Basic Characteristics 

This section explores several statistical properties associated with the proposed model. We have 

established the basic characteristics of the proposed model in terms of following theorems: 

Theorem 1. If 𝓏 ∽ NSBED (bN) then the 𝓇𝑡ℎ moment is given by as: 

𝐸(𝒵 𝓇) = (
1

bN
)

𝓇

Γ(2 + 𝓇)         (9) 
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Proof. The 𝓇𝑡ℎ moments of LBPHRD can be attained by 

𝐸(𝒵 𝓇) = ∫ 𝓏 𝓇∞

0
ℊ(𝓏) 𝒹 𝓏, 

From (5), then 

𝐸(𝒵 𝓇) = ∫
𝑏𝑁𝓏𝓇+𝑎𝑁+1𝑒

−
𝑏𝑁

𝑎𝑁+1𝓏𝑎𝑁+1

(
aN+1

bN
)

1
aN+1

Γ(
aN+2

aN+1
)

∞

0
       (10) 

Let 𝓊 =
bN

aN+1
𝓏aN+1, 𝒹𝓊 = bN𝓏aN . Upon simplification, (10) leads to 

𝐸(𝒵 𝓇) = (
1

bN
)

𝓇

Γ(2 + 𝓇)          (11) 

The mean and variance for NSBED can be calculated from (11) as follows. 

Theorem 2. Derive mean and variance of the NSBED 

 Setting 𝓇 = 1, in (11), 

E(𝒵) = (
1

bN
) Γ(2 + 1).         (12) 

Putting 𝓇 = 2, in (11), 

𝐸(𝒵2) = (
1

bN
)

2

Γ(2 + 2)        (13) 

Therefore, variance of NSBED is  

Var(𝒵) = (
1

bN
)

2
[Γ4 − (Γ3)2].        (14) 

Theorem 3. Derive the shape coefficients of the NSBED 

The shape characteristics of the probability distribution, skewness and kurtosis play an important role. 

These can be derived from theorem 1, using the following relations. 

𝑆𝑘 =
𝜇3

′ −3𝜇1
′ 𝜇2

′ +2𝜇1
′3

(𝜇2
′ −𝜇1

′ )
3

2⁄
,    𝐾𝑢 =

𝜇4
′ −4𝜇1

′ 𝜇3
′ +6𝜇1

′2𝜇2
′ −3𝜇1

′4

(𝜇2
′ −𝜇1

′ )
2 ,       

  

where 𝜇𝓇
′ = 𝐸(𝒵 𝓇). 

Theorem 4. Derive the expression for mode of the proposed distribution. 

Taking the logarithm of (5), we have 

lnℊ(𝓏) = ln(bN) + ln(𝓏) − bN𝒵 − ln [
1

bN
].       (15) 

Differentiate (15) w.r.t. 𝓏 and equating it zero, 

𝑑

𝑑𝓏
𝑙𝑛ℊ(𝓏) =

1

bN
− 𝑏𝑁𝓏 = 0,         (16) 

Therefore 

𝓏 =
1

bN

 

Again differentiate (16), 

𝑑2

𝑑𝓏2 𝑙𝑛ℊ(𝓏) = −
1

𝓏2 − 𝑏𝑁𝓏−1 = −
1+𝑏𝑁𝓏

𝓏2 , 

At  𝓏 =
1

bN
, 
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𝑑2

𝑑𝓏2
𝑙𝑛ℊ(𝓏) = −

1

𝓏2
< 0. 

Therefore, the mode is 𝓏 =
1

bN
. 

Theorem 5. Derive the expression for percentile of the proposed model. 

Using the following relation, 𝑝𝑡ℎ percentile can be obtained. 

1 − (1 − bN)e−bN𝓏 = p.         (17) 

Substituting from (6) into (17), 𝓏𝑝 satisfies the equation 

𝓏 = −
1

bN

(1−𝑝)

(1−bN)
, 𝑝 ∈ [0,1]        (18) 

Likewise other statistical properties of the proposed model can be derived in neutrosophic framework. 

4. Sample Estimation 

In this section, the probability density function and its related important statistical properties of the 

proposed model are discussed in neutrosophic framework. To derive the MLE of bN for the PDF, we 

first need to construct the likelihood function and then maximize it with respect to bN. 

The likelihood function 𝐿(bN) is given by the product of the PDF evaluated at each observed data 

point. Let 𝑧1, 𝑧2, … 𝑧𝑛 are n independent and identically distributed observations: 

𝐿(bN) = ∏ 𝑔(𝑧𝑖)

𝑛

𝑖

 

Taking the logrithem of the likelihood function, we obtain the log likelihood function 𝑙(bN): 

𝑙(bN) = ∑ 𝑙𝑛(𝑔(𝑧𝑖))𝑛
𝑖          (19) 

Subtituting the given PDF in (19), we have 

𝑙(bN) = 2𝑛𝑙𝑛(bN) + ∑ 𝑙𝑛(𝑧𝑖)
𝑛
𝑖 − bN ∑ 𝑧𝑖

𝑛
𝑖        (20) 

To find the MLE of bN we differentiate (2) by bN and equating the expression to zero, we get 

bN =
2𝑛

∑ 𝑧𝑖
𝑛
𝑖

 

where n is the number of observations and 𝑧𝑖 is the time until failure for each transistor. This is 

required neutrosophic statistic for the unknown value of bN.  

To understand this MLE procedure, let us consider the following example. In the field of reliability 

engineering, engineers are studying the time to failure of a specific electronic component that is 

assumed to follow NSBED. For example, a manufacturer produces transistors for electronic devices 

and engineers are collecting data on the time until failure for a sample of these transistors under 

constant stress. This data will help them analyze and predict the reliability of these transistors in real-

world applications. To simplify the process, data was gathered on the time until failure for 10 

transistors. The recorded times were imprecisely defined as: 100-120 hours, 150-170 hours, 200-205 

hours, 220-230 hours, 250-255 hours, 280-290 hours, 300-315 hours, 320-330 hours, 350-380 hours, 

and 380-400 hours. Now, to estimate the parameter 𝑏𝑁 governing the failure rate of these transistors, 

they can use Maximum Likelihood Estimation (MLE). The MLE of 𝑏𝑁 provides an estimate of the 

rate at which these transistors are failing. 

Using the MLE formula given in (20) 

𝑏𝑁 =
10

[2550, 2695]
= [0.0037, 0.0039] 

This implies that, typically, a transistor is anticipated to malfunction around every with failing rate 

[0.0037, 0.0039] hours when subjected to the specified stress factors. Such data is essential for 
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evaluating reliability, planning maintenance tasks, and enhancing product development tactics. It 

enables engineers to make educated choices about designing products, setting usage 

recommendations, and providing customer assistance. 

5. Quantile Function  

The pth quantile of the NSBED can be derived as: 

𝑧 = −
1

𝑏𝑁

𝑙𝑛 (
1 − 𝑢

1 + 𝜃𝑧
) 

The (a) does not follow the closed form, we can use an iterative method like the inverse transform 

sampling to generate the random sample. A code written has been utilized to find the random numbers 

of data. 

The procedure involves the following steps in the iterative procedure: 

1: start with initial guess for z, say 𝑧0 

2: Use the (a) to compute a new estimate of z as:𝑧1 = −
1

𝑏𝑁
𝑙𝑛 (

1−𝑢

1+𝜃𝑧0
) 

Use 𝑧1 as the new estimate and repeat step 2 until convergence or for a certain number of iterations. 

The iterative number eventually converge to a value of z that satisfies the equation. We have simulated 

random numbers from the proposed model with bN = [1,4] and 𝜃𝑁 = [0.5, 0.5], results are shown in 

Table 1 

Table 1: Random number generation from the proposed model 

 

 

 

 

 

 

Table 2: Some uncertainty measures of the proposed model 

 

 

 

 

 

 

 

 

 

The proposed model incorporates neutrosophic random numbers, a mathematical concept that extends 

traditional probabilistic frameworks. These random numbers represent uncertainty in three values: 

true, indeterminate, or false, and are useful in fields like artificial intelligence, economics, engineering, 

and social sciences. They offer a sophisticated tool for problem-solving under uncertainty and partial 

truth. The model's key characteristics can be studied using these random numbers, as shown in Table 

2. Table 2 presents the proposed model's characteristics, based on analytical calculations. The variance 

ranges from 0.016 to 1.795, indicating significant uncertainty in the data's spread. The mode ranges 

from 0.091 to 0.947, indicating uncertainty caused by indeterminate data points. The wide range of 

values suggests multiple peaks or unclear data points in the distribution, making it difficult to pinpoint 

the most frequent value. The parameter range, which plays a key role in shaping the distribution, falls 

between 1.055 and 10.873. The wide range of values indicates a significant level of uncertainty in 

Random Numbers 

[1.161, 2.383] [0.710, 3.018]] [0.381,2.893] [0.211, 2.369] [0.904, 1.306] 

[0.634, 1.690] [1.332, 8.583] [0.215, 1.563] [0.402, 1.733] [0.262, 1.733] 

[0.202, 1.625] [0.636, 2.856] [0.239, 5.710] [0.368, 2.804] [0.125, 1.463] 

[0.320, 3.11] 

 

[0.822, 1.321] [0.982, 1.799] 

 

[0.001,1.723] 

 

[1.360, 1.620] 

 

Statistical measures Computed values 

Mean [3.099, 31.141] 

Variance [0.016, 1.795] 

Mode [0.091, 0.947] 

Estimated parameter 𝑏𝑁 [1.055, 10.873] 
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identifying this parameter, impacting statistical measures like mean, variance, and mode. A broad 

interval indicates high uncertainty in the data's distribution, affecting subsequent calculations. 

6. Application to Real Data 

In this section, we have utilized the proposed model on the global see level to analyze the uncertainty 

data. The see level is the average height of the entire ocean surface. The global mean sea level rise is 

primarily driven by land-based ice sheets and glaciers melting, along with the expansion of saltwater 

due to warming temperatures. An important indicator of climate change effects, the global mean sea 

level has been steadily increasing for decades. From 1993 onwards, the rate of this rise has doubled 

to 0.17 inches (0.44 centimeters) per year from 0.08 inches (0.20 centimeters) per year. Understanding 

and predicting future sea level trends is crucial for planners, making this data indispensable. The 

global see level data is shown in Figure 4 which is taken from the online source for understanding 

purpose [30]. 

 

 

Figure 4: Mean see level change globally [30] 

Current measurement technologies have limitations due to the natural variability of oceanic and 

atmospheric conditions. Integrating data from tide gauges and satellite altimetry can be complex. 

Regional differences and short-term fluctuations can obscure long-term trends, making it challenging 

to obtain a consistent global picture. Therefore, while sea level data offers valuable insights, it should 

be interpreted cautiously, recognizing the inherent limitations and potential for error in current 

measurement techniques. Some see mean see level measurements with uncertainties are shown in 

Table 3. Uncertainties in measurements are introduced according to random strategy adopted by [30]. 

 

Table 3 Global see level measurements recorded with uncertainty.  

See level measurements 

[3.38,3.99] [3.33, 3.84] [2.63, 3.74] [4.25, 4.36] [3.32,4.25] [1.08,2.05] 

[2.47, 4.10] [3.91, 4.66] [2.62,3.71] [4.13,4.48] [1.77, 3.02] [2.30, 4.07] 

[2.54,3.11] [2.72,3.51] [2.46, 3.99 [2.22, 3.55] [4.10, 4.51] [2.78, 3.49] 

[1.65, 2.36] [3.06, 4.45] [2.68, 3.75] [2.33, 3.82] [2.53, 3.60] [2.00, 3.49] 

 

Table 3 displays that conventional models for probability distributions cannot be utilized due to 

uncertainties present in recorded measurements. We proceed to analyze the data using the proposed 

model, and the results are presented in Table 4. 
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Table 4: Some uncertainty measures of the proposed model 

 

 

 

 

The findings presented in Table 4 offer valuable information regarding the statistical properties of the 

data when examined with the suggested model, considering measurement uncertainties. The mean 

values calculated fall between 2.768 and 3.750, highlighting the central tendency of the data as per 

the proposed model. This range implies that, on average, the dataset values are situated within this 

spectrum, showcasing how uncertainty impacts the central location of the data. The range of variance 

values, ranging from 3.831 to 7.034, shows how spread out the data is. Larger variance values indicate 

more variability in the dataset, likely due to uncertainties in the measurements. The mode values, 

ranging from 1.384 to 1.875, highlight the most common data points in the dataset. This interval 

signifies the peak regions of the data, showcasing where values occur most frequently amidst 

uncertainty. The outcomes demonstrate the success of the suggested model in addressing the inherent 

uncertainties within the data, leading to a more thorough statistical analysis compared to traditional 

models. The wide range of computed values emphasizes the fluctuation and average tendencies 

influenced by the uncertainties within the measurements. 

7.  Conclusions 

This research presents the introduction of the neutrosophic size-biased exponential distribution 

(NSBED) as a unique method for managing data with uncertainties. Through the derivation of this 

distribution from the exponential distribution, we have analyzed different features of the NSBED such 

as moments, skewness, and kurtosis. The study is further enhanced with visual representations of the 

cumulative distribution function, density function, and other important functions in relation to survival 

analysis under uncertainty. The practical utility of the NSBED in handling imprecise data has been 

demonstrated through the computation of parameter estimates within the neutrosophic framework. 

Our simulation analysis further confirmed the right-skewed nature and advantageous properties of the 

NSBED, highlighting its superiority over the traditional size-biased exponential distribution. An 

analysis of uncertainty in global sea level data was performed using the proposed model. The 

continuous increase in global mean sea level, primarily caused by ice melting and seawater expansion, 

highlights the need for accurate predictions of future trends. Results indicate that the NSBED model 

is an effective tool for evaluating uncertain data, providing valuable information for climate 

researchers and planners. 
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