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1. Introduction 

Environmental pollution has transformed the conditions of weather and climate. Furthermore, the earth's system 

has water, air, and land, is changed by pollution [1]. When compared to others, severe pollution is air pollution 

that disturbs each creature on the earth. Also, the air functions as a cover of elements that defend the globe [2]. 

Due to this cause, air pollution is perceived to be one of the foremost focuses and extreme tasks the globe has met 

so far. Air pollution is hazardous for human health and must decline fast in rural and urban areas so it is essential 

to forecast the excellence of air precisely [3]. Generally, numerous kinds of pollution are accessible such as water 
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Abstract 

An optimal solution for monitoring air pollution, the Internet of Things (IoT)-enabled system delivers real-

time data and insights on the air quality within a specific location. Air pollution poses a substantial risk to 

human health worldwide, with pollutants like nitrogen dioxide, particulate matter, ozone, and sulfur dioxide 

contributing to a range of cardiovascular and respiratory ailments. Monitoring air pollution levels is critical to 

understand the effect on public health and the environment. Air Pollution Monitoring includes the systematic 

analysis and measurement of pollutant concentration in the air, through a network of monitoring stations 

equipped with instruments and sensors. This station provides real-time data on air quality, allowing authorities 

to evaluate issue warnings, and pollution levels, and implement strategies to alleviate its negative impact. 

Machine learning (ML) approaches are becoming more integrated into air pollution monitoring systems for 

enhancing efficiency and accuracy. By analyzing vast quantities of information gathered from satellite imagery, 

monitoring stations, and other sources, ML approaches could detect patterns, forecast pollution levels, and 

pinpoint sources of pollution. This study introduces Air Pollution Monitoring and Prediction using African 

Vulture Optimization Algorithm with Machine Learning (APMP-AVOAML) model in IoT environment. The 

drive of the APMP-AVOAML methodology is to recognize and classify the air quality levels in the IoT 

environment. In the APMP-AVOAML technique, a four stage process is encompassed. Firstly, min-max 

normalization is applied for scaling the input data. Secondly, a harmony search algorithm (HSA) based feature 

selection process is executed. Thirdly, the extreme gradient boosting (XGBoost) model is utilized for air 

pollution prediction. Finally, AVOA based parameter selection process is exploited for the XGBoost model. 

To illustrate the performance of the APMP-AVOAML algorithm, a brief experimental study is made. The 

resultant outcomes inferred that the APMP-AVOAML methodology has resulted in effectual outcome. 
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pollution, soil pollution air pollution, etc. but the most significant of these is air pollution which must be measured 

instantly as humans inhale oxygen over the air. There are numerous reasons for air pollution [4]. Outdoor air 

pollution is affected by factories, industries, and vehicles and Indoor air pollution is affected if the air inside the 

house is polluted by chemicals, smoke, and smell.  

The Air Quality Index (AQI) is an evaluation parameter, which linked to public health openly [5]. A high level of 

AQI specifies unsafe contact for the human populace. So, the need to forecast the AQI in progress was inspired by 

the experts to observe and perfect the quality of airy [6]. Frequently, air quality-based research works aimed the 

emerging countries, while the attention to the most deadly chemicals such as PM2.5 is initiated in manifold folds 

in emerging countries [7]. Some researchers tried to start the research of air quality forecast. After going over the 

obtainable work, a sturdy necessity was to be handled to fill this crack by diagnosis and forecast of AQI for Indian 

cities. Numerous traditional techniques are there to extend it but outcomes are not precise and it includes a lot of 

mathematical calculations [8]. Many techniques were used in the works to forecast AQI such as deterministic, 

physical, statistical, and Machine Learning (ML) methods [9]. The standard approaches depend upon statistics and 

probability, which are highly compound and less effective. The ML-based AQI forecast techniques were more 

consistent and reliable. Expanded sensors and technologies formed data collection simple and exact. The precise 

and reliable forecasts over large environmental data need hard analysis, so only the ML technique can able to deal 

with it well [10].   

This study introduces Air Pollution Monitoring and Prediction using African Vulture Optimization Algorithm with 

Machine Learning (APMP-AVOAML) model in IoT environment. The drive of the APMP-AVOAML 

methodology is to recognize and classify the air quality levels in the IoT environment. In the APMP-AVOAML 

technique, a four stage process is encompassed. Firstly, min-max normalization is applied for scaling the input 

data. Secondly, harmony search algorithm (HSA) based feature selection process is executed. Thirdly, extreme 

gradient boosting (XGBoost) model is utilized for air pollution prediction. Finally, the AVOA based parameter 

selection process is exploited for the XGBoost model. The resultant outcomes implied that the APMP-AVOAML 

algorithm has resulted in effectual outcome.  

2. Related Works 

Ansari and Alam [11] projected a new BO-HyTS technique that unites seasonal auto-regressive integrated moving 

average (SARIMA) and LSTM and modified it by utilizing Bayesian optimizer in order to forecast levels of air 

pollution. The projected BO-HyTS system can take either linear or non-linear features of the time-series data, 

hence enlarging the accuracy of the predicting procedure. Moreover, numerous AQI predicting methods such as 

classical time-series, ML, and DL, are used in order to estimate air quality from time-series data. Hardini et al. 

[12] projected an air quality valuation model to make simpler future forecasts. The Data Preparation Module 

contains real-time data collection and organizing to certify compatibility with subsequent components. In this 

paper, the Sparse Spectrum GPR (SSGPR) model is utilized for AQI predicting, while the cloud method is 

implemented for evaluation of air quality. In [13], a new Hybrid Interpretable Predictive ML technique is projected 

for the PM 2.5 forecast, which has dual innovations. At first, a hybrid method structure is built with DNN and 

Non-linear Auto Regressive Moving Average with Exogenous Input technique. Next, automated feature generation 

and FS processes are united into this hybrid method. 

Abbas and Raina [14] projected a novel Ensemble Empirical Mode Decomposition (EEMD) multi-stage predicting 

technique. Firstly, input data were decayed by enhanced empirical wavelet transform (EEWT) to upsurge the 

dimensional of data. The 3 single forecast methods are combined into united weighted predicting system by weight 

assignment. Liao et al. [15] examined a novel AQP system that depends on Dynamic Multi-granularity Spatio-

temporal GNN (DM_STGNN) approach. DM_STGNN was dependent upon an elegant encoding-decoding 

structure. Likewise, the method constructed a multi-granularity graph framework renowned as the HYSPLIT 

method and utilized LSTM. This work also constructed an attention mechanism based LSTM for decoder and 

AQP. Moreover, an unsupervised pre-trained technique was employed in order to improve DM_STGNN. 

Ahmed et al. [16] introduced a new hybrid DL system. This method stated as CLSTM-BiGRU, integrates a CNN, 

LSTM, and a Bi-GRU system. The projected CLSTM-BiGRU system also executed 19 remotely detected predictor 

variables and attaching the GWO method. Mehrabi et al. [17] use Sentinel 5P image and a new AI technique for 

forecasting air pollution. An ML system multi-layer perceptron neural network (MLPNN), is united with 

electromagnetic field optimizer (EFO) technique in order to forecast the daily attention of PM 2.5. Firstly, a dataset 

was ready. Then, principal component analysis (PCA) was employed to determine the contributing factors and 

generate a condensed dataset. 
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3. Proposed Methodology 

In this study, we have introduced an APMP-AVOAML model. The drive of the APMP-AVOAML approach is to 

recognize and classify the air quality levels. In the APMP-AVOAML methodology, a four-stage process is 

encompassed. Fig. 1 depicts the workflow of the APMP-AVOAML model. 

A. Min-Max Normalization 

Firstly, min-max normalization was applied for scaling the input data. Min-max normalization is a data pre-

processing approach utilized to normalize mathematical characteristics to a certain range within (0,1) [18]. It 

functions by subtracting the lowest value of the feature and dividing it by the variance among the highest and 

lowest rates. This assured that all the features are proportionally mapped to the appropriate range, which makes 

them comparable and prevents specific features from dominating others because of variances in their scales. Min-

max normalization is paramount in ML and data analysis to enhance the convergence and performance of models, 

especially while handling features with differing scales. 

B. HSA-based Feature Selection  

Secondly, the HSA-based feature selection process is executed. At this phase, an optimizer algorithm dependent 

upon the HS development (AHHS) has been utilized for FS [19]. By vigorously altering the hyperparameters PAR 

and HMCR in the iteration process, the arbitrarily produced solution vector is permitted to consume an opportunity 

to differ even if it is similar to the present optimum result, thus enhancing the variety of solutions and skipping out 

of the local optimal as possible.  

 

Figure 1: Workflow of APMP-AVOAML model 

Exactly, we develop a cosine resemblance feature to define the track of hyperparameter alteration by equating the 

resemblance among the presently produced harmonic vector and the optimum vector, and once the resemblance is 

greater, the search probability has properly decreased. The definite stages of the process are: 

1. Initialize parameters: Dimensionality harmony vector (N), Harmony Memory Space Size (HMS), i.e., amount 

of original features, Pitch Adjustment Rate (PAR), HM Consideration Rate (HMCR), the highest amount of 

iterations (T), and amount of base learners (M). 

2. Set the harmonic memory space, and produce HMS harmony vector randomly. The formula is as below: 
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𝐻𝑀 = [
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𝐻𝑀𝑆 |𝑑(𝑋𝐻𝑀𝑆)]
 
 
 
                      (1) 

Where 𝐻𝑀𝑆 denotes the dimension of harmony space, 𝑁 refers to the dimension of the harmony vector, and 𝑑(𝑋) 

signifies the fitness function rate. 

The merged determining performance indicator 𝑑 is determined as below: 

𝑑(𝑋) = 𝜆 ×
∑ (𝑀

𝑖=1 1 − 𝐴𝑐𝑐𝑖)

𝑀
+ (1 − 𝜆) ×

∑ 𝑋𝑖
𝑁
𝑖=1

𝑁
                                (2) 

Whereas 𝐴𝑐𝑐𝑖 denotes the accuracy of 𝑖𝑡ℎ base learner, 𝑀 refers the amount of base learners, 𝑋𝑖 is the acoustic 

vector module range from (0 or 1), N signifies the harmony vector length, and 𝜆 refers the multiple‐objective 

coefficient. 

3. Produce a novel harmony vector. If the random number (r1) is lesser than or equivalent to HMCR, then hunt for 

the present module of optimum performance vector and alter HMCR affording to Eq. (3). If r2 is lesser than or 

equivalent to PAR; then reverse the present module variation and regulate PAR utilizing Eq. (4). When r1 is larger 

than HMCR, then produce the present module at random. 

ℎ𝑚𝑐𝑟𝑗 = 𝐻𝑀𝐶𝑅 − 𝜃 × 𝑐𝑜𝑠𝑖𝑛𝑒−𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖                          (3) 

where 𝑐𝑜𝑠𝑖𝑛𝑒−𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖  denotes the cosine resemblance of the 𝑖 modules of the freshly produced harmony 

vector to the initial 𝑖 modules of the optimum solution vector from the existing HM space. 

𝑝𝑎𝑟𝑖 = 𝑃𝐴𝑅 + 𝜃 × ||𝑥𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑤𝑜𝑟𝑠𝑡| − 1|                         (4) 

where 𝑥𝑖
𝑏𝑒𝑠𝑡 signifies the 𝑖𝑡ℎ module of the best solution vector and 𝑥𝑖

𝑤𝑜𝑟𝑠𝑡  denotes the 𝑖𝑡ℎ module of the worse 

solution vector.  

4. Upgrade the harmony vector. If the fitness function value of produced harmony vector is lesser than the worse 

vector, it will be substituted. 

5. Repeat 3‐4 constantly till the greatest amount of iteration 𝑇 has been attained and the optimum feature subset is 

result. 

The fitness function (FF) employed in the HSA has been planned to take a balance among the elected feature 

counts from every result (lower) and classifier accuracy (superior) realized with utilizing these elected features. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾𝑅(𝐷) + 𝛽
|𝑅|

|𝐶|
                                                              (5) 

whereas 𝛾𝑅(𝐷) illustrates the classifier error values of offered classifier. |𝑅| represents the cardinality of elected 

subset and |𝐶| demonstrates the entire feature counts within data, 𝛼 and 𝛽 imply the 2 parameters equal to the 

effect of classifier quality and subset length. ∈ [1,0] and 𝛽 = 1 − 𝛼. 

C. Air Pollution Prediction using XGBoost 

Thirdly, the XGBoost model is utilized for air pollution prediction. XGboost: Gradient‐boosted-DT is used in 

XGboost [20]. The method continuously produces DT, and weights must be important in this architecture. The 

values of independent variable have been provided as weights and then transferred to the DT for outcome 

prediction. When the weight of variables is estimated inaccurately by a tree improvement, such variables have 

been provided to the following DT. Finally, numerous predictors or classifiers should be integrated to make an 

accurate and robust model. This can overcome the problems like modified predictions, regression, classification, 

and rankings. XGBoost has a supervised ML technique dependent upon ensemble trees. Fig. 2 depicts the 

infrastructure of XGBoost model. It targets enhancing a cost objective function comprising a regularization term 

(𝛽) and loss function (𝑑): 

𝛺(𝜃) = ∑ 𝑏

𝑛

𝑚=1

(𝑥𝑖 , �̂�𝑖) + ∑𝛽

𝐽𝑆𝑆

𝑗=1

(𝑝𝑗),                                             (6) 



50 
 

Now, 𝑛 describes the instances values at the training set, �̂�𝑚 refers to the prediction values, 𝐽 means the number 

of trees that will be generated and 𝑓𝑘 refers to a tree in the ensemble trees. The normalization formula will be 

represented as: 

𝛽(𝑓𝑢) = 𝛾𝐿 +
1

2
[𝛼 ∑ |𝐿

𝑖=1 𝑐𝑖|+𝜆 ∑ 𝑐𝑖
2𝐿

𝑖=1 ],                                   (7) 

Here 𝑐 denotes the weight comprised in every leaf, 𝜆 means a regularization value provided at weights, and. 

Assume 𝑓𝑢(𝑥𝑖) = 𝑐𝑞(𝑥𝑖)
, and 𝛾 defines the minimum loss split decreased value 𝐿 is the number of leaf values and 

𝑞 exists in [1, 𝐿]. A greedy technique will be implemented for choosing the separated values for increasing the 

gain values. 

Algorithm 1: XGboost Pseudocode 

Initialize the ensemble system 𝐸𝑖 

for 𝐾 = 1 to 𝑁 trees do 

Pseudo residuals must be computed for every training model: Set the pseudo‐residuals for all the samples 

utilized for training as the negative gradients of loss function about the evaluations (Negative-Gradients) 

end for 

Set the pseudo‐residuals in a regression tree: By utilizing (X_train, Negative_Gradients), maximum_features, 

maximum_depth. 

Upgrade the 𝐸𝑖 

Upgrade the training predictions: all the training Samples: Compute tree.predict() algorithm, upgrade the 

training forecastes by multiplying the rate of learning through the existing prediction tree. 

To make predictions under the testing dataset employing tree predict, test_predictions. 

 

Figure 2: Structure of XGBoost model 

D. Parameter Selection  

Finally, the AVOA-based parameter selection process is exploited for the XGBoost model. The AVOA gets 

stimulated by the performances of predatory animals such as leopards, lions, and wolves, and their prey namely 

stags and gazelles [21]. The following are the steps of novel AVOA. 

Determining the best vulture in any group 

The chance of choosing the chosen vultures to guide the other vultures nearby most top performances in every 

group is defined utilizing the equation: 

𝑅(𝑖) = {
𝐵1 𝑖𝑓 𝑝𝑖 = 𝐿1

𝐵2 𝑖𝑓 𝑝𝑖 = 𝐿2
,                                                   (8) 
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𝑝𝑖 =
𝐹𝑖

∑ 𝐹𝑖
𝑛
𝑖=1

,                                                            (9) 

whereas 𝐵1 and 𝐵2 signifies the 1st-best and 2nd-best solutions, correspondingly, 𝐿1 and & are the parameters that 

evaluted before the searching function. 𝑝𝑖  defines the probability of electing the optimum performance. 

The rate of starvation of vultures 

The mathematical process of the rate of being replete takes a declining trend, and to model. 

𝑡 = ℎ × (sin𝑤 (
𝜋

2
×

𝑖𝑡

 Max𝑖𝑡
) + cos (

𝜋

2
×

𝑖𝑡

 Max𝑖𝑡
) − 1),           (10) 

𝐹 = (2 × 𝑟1 + 1) × 𝑧 × (1 −
𝑖𝑡

 Max 𝑖𝑡
) + 𝑡,                        (11) 

whereas 𝐹 implies the vultures are satiated. 𝑖𝑡 and 𝑀𝑎𝑥𝑖𝑡 demonstrate the existing iteration number and maximal 

iterations, correspondingly. 𝑍 illustrates the random number from the range of −1 to 1. ℎ stands for the random 

number among −2 and 2. 𝑟1 represents the random number among zero and one. 

Searching prey (exploration) 

During the exploration phase, the vultures search for food in distinct regions. This procedure is illustrated as: 

𝑃(𝑖 + 1) = 𝑅(𝑖) − 𝐷(𝑖) × 𝐹,                                                     (12) 

𝐷(𝑖) = |𝑋 × 𝑅(𝑖) − 𝑃(𝑖)| ,                                              (13) 

𝑃(𝑖 + 1) = 𝑅(𝑖) − 𝐹 + 𝑟2 × ((𝑢𝑏 − 𝑙𝑏) × 𝑟3 + 𝑙𝑏),                  (14) 

Whereas, 𝑃(𝑖 + 1) and 𝑃(𝑖) imply the vulture position vector under the next and existing iteration, 

correspondingly. 𝑋 is utilized as a co-efficient vector that enhances the random. 

Exploitation phase 

During the exploitation stage, there are 2 stages with 2 various approaches: 

1) Exploitation (first phase) 

𝑃(𝑖 + 1) = 𝐷(𝑖) × (𝐹 + 𝑟4) − 𝑑(𝑡),                                      (15) 

𝑑(𝑡) = 𝑅(𝑖) − 𝑃(𝑖),                                                      (16) 

𝑃(𝑖 + 1) = 𝑅(𝑖) − (𝑆1 + 𝑆2),                                             (17) 

𝑆1 = 𝑅(𝑖) × (
𝑟5 × 𝑃(𝑖)

2𝜋
) × cos (𝑃(𝑖)),                                (18) 

𝑆2 = 𝑅(𝑖) × (
𝑟6 × 𝑃(𝑖)

2𝜋
) ×  sin (𝑝(𝑖)).                              (19) 

2) Exploitation (second phase) 

𝑃(𝑖 + 1) =
𝐴1 + 𝐴2

2
,                                                         (20) 

𝐴1 = 𝐵1(𝑖) −
𝐵1(𝑖) × 𝑃(𝑖)

𝐵1(𝑖) − 𝑃(𝑖)2
× 𝐹,                                      (21) 

𝐴2 = 𝐵2(𝑖) −
𝐵2(𝑖) × 𝑃(𝑖)

𝐵2(𝑖) − 𝑃(𝑖)2
× 𝐹,                                    (22) 

𝑃(𝑖 + 1) = 𝑅(𝑖) − |𝑑(𝑡)| × 𝐹 × 𝐿𝑒𝑣𝑦(𝑑).                   (23) 

The AVOA grows an FF to reach a superior classier solution. It explains a positive integer to imply a good solution 

of candidate results. In this case, the decreasing classifier error rate can be supposed that FF.    
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                  (24) 

4. Performance Validation 

The performance evaluation of the APMP-AVOAML methodology was examined deploying the AQI dataset 

containing 2000 instances with 4 classes as portrayed in Table 1. 

Table 1: Details of the dataset 

Classes No. of Instances 

Good 500 

Satisfactory 500 

Moderate 500 

Poor 500 

Total Instances 2000 

Fig. 3 establishes the confusion matrices formed by the APMP-AVOAML system under 80:20 and 70:30 of 

TRAS/TESS. The results state that the APMP-AVOAML approach has effective detection under all classes. 

 

Figure 3: Confusion matrices of (a-b) 80% and 20% of TRAS/TESS and (c-d) 70% and 30% of TRAS/TESS 

In Table 2 and Fig. 4, the detection output of the APMP-AVOAML system is clearly demonstrated. The results 

ensured the ability of the APMP-AVOAML technique to detect the classes. With 80%TRAS, the APMP-

AVOAML technique offers average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 97.16%, 94.30%, 94.31%, 

94.30%, and 96.21%, respectively. Additionally, With 20%TESS, the APMP-AVOAML system provides average 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 98.12%, 96.31%, 96.23%, 96.24%, and 97.49%, respectively. 

Besides, With 70%TRAS, the APMP-AVOAML method delivers average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 97.39%, 94.79%, 94.77%, 94.77%, and 96.52%, correspondingly. Moreover, With 30%TESS, the 

APMP-AVOAML approach offers average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 97.67%, 95.33%, 

95.40%, 95.32%, and 96.92%, respectively.  
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Table 2: Detection outcome of APMP-AVOAML technique under 80% and 70% of TRAS and 20% and 30% of 

TESS 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

TRAS (80%) 

Good 95.94 93.08 90.52 91.78 94.14 

Satisfactory 97.69 94.81 96.00 95.40 97.12 

Moderate 97.88 94.65 97.01 95.81 97.59 

Poor 97.12 94.67 93.72 94.19 95.99 

Average 97.16 94.30 94.31 94.30 96.21 

TESS (20%) 

Good 97.50 97.85 91.92 94.79 95.63 

Satisfactory 97.75 94.17 97.00 95.57 97.50 

Moderate 99.00 97.98 97.98 97.98 98.66 

Poor 98.25 95.24 98.04 96.62 98.18 

Average 98.12 96.31 96.23 96.24 97.49 

TRAS (70%) 

Good 96.86 95.24 91.95 93.57 95.22 

Satisfactory 98.07 95.48 96.85 96.16 97.66 

Moderate 97.50 94.26 96.10 95.17 97.04 

Poor 97.14 94.19 94.19 94.19 96.15 

Average 97.39 94.79 94.77 94.77 96.52 

TESS (30%) 

Good 97.33 95.33 94.08 94.70 96.26 

Satisfactory 98.50 95.51 98.68 97.07 98.56 

Moderate 97.67 93.20 97.16 95.14 97.49 

Poor 97.17 97.28 91.67 94.39 95.38 

Average 97.67 95.33 95.40 95.32 96.92 

The performance of the APMP-AVOAML technique is offered in Fig. 5 in the form of validation accuracy 

(VALAC) and training accuracy (TRAAC) curves under 80:20 of TRAS/TESS. The figure shows valuable 

clarification into the behavior of the APMP-AVOAML technique over abundant count of epochs, demonstrating 

its learning model and generalized proficiencies. Mainly, the outcome determines a stable development in the 

VALAC and TRAAC with a growth in epochs. It safeguards the adaptive nature of the APMP-AVOAML system 

from the pattern detection procedure on both the data. The rising trend in VALAC summarizes the ability of the 

APMP-AVOAML system to regulate to the TRA data and is also best in providing precise classification of hidden 

data, indicating robust generalization skills. 
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Figure 4: Average outcome of APMP-AVOAML technique 

 

Figure 5: 𝐴𝑐𝑐𝑢𝑦 curve of APMP-AVOAML technique under 80:20 of TRAS/TESS 

Fig. 6 exhibits an overall representation of the validation loss (VALLS) and training loss (TRALS) outcomes of 

the APMP-AVOAML system over separate epochs under 80:20 of TRAS/TESS. The advanced decrease in 

TRALS emphasises the APMP-AVOAML approach improving the weights and minimizing the classification error 

on the TRA and TES data. The outcome states a clear data of the APMP-AVOAML model's linked with the TRA 

data, emphasizing its ability to take patterns within both datasets. Remarkably, the APMP-AVOAML system 

recurrently improves its parameters in declining the differences among the prediction and actual TRA class labels. 
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Figure 6: Loss curve of APMP-AVOAML technique under 80:20 of TRAS/TESS 

Inspecting the PR outcome, as shown in Fig. 7, the results assured that the APMP-AVOAML system increasingly 

attains enhanced PR values over each under 80:20 of TRAS/TESS classes. It confirms the improved skills of the 

APMP-AVOAML technique in the classification of different classes, representing proficiency in the recognition 

of classes.  

Moreover, in Fig. 8, ROC curves molded by the APMP-AVOAML technique outperformed the identification of 

different labels under 80:20 of TRAS/TESS. It delivers a complete understanding of the trade-off amongst TPR 

and FRP over dissimilar detect threshold rates and count of epochs. The outcome emphasized the improved 

classifier outcomes of the APMP-AVOAML system at 2 classes, demonstrating the performance in dealing with 

many classification problems. 

 

Figure 7: PR curve of the APMP-AVOAML technique under 80:20 of TRAS/TESS 
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Figure 8: ROC curve of the APMP-AVOAML technique under 80%TRAS:20%TESS 

Table 3: Comparative outcome of APMP-AVOAML technique with other approaches 

Methods 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 

RNN Algorithm 95.55 91.33 94.54 90.97 

SVR+wavelet Ensemble 96.66 94.00 90.44 93.97 

Logistic Regression 93.71 92.15 91.64 94.43 

Random forest 86.70 91.70 92.18 94.37 

BOSDL-AQIP 97.45 94.78 90.50 93.67 

APMP-AVOAML 98.12 96.31 96.23 96.24 

 

Figure 9: Comparative analysis of APMP-AVOAML technique with other models 

In Table 3 and Fig. 9, the overall results of the APMP-AVOAML technique undergo comparison with other models 

[22]. Based on 𝑎𝑐𝑐𝑢𝑦, the APMP-AVOAML technique reaches an increased 𝑎𝑐𝑐𝑢𝑦 of 98.12% while the RNN, 
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SVR+WE, LR, RF, and BOSDL-AQIP techniques obtain decreased 𝑎𝑐𝑐𝑢𝑦 of 95.55%, 96.66%, 93.71%, 86.70%, 

and 97.45%, correspondingly. At the same time, Based on 𝑝𝑟𝑒𝑐𝑛 , the APMP-AVOAML technique reaches 

increased 𝑝𝑟𝑒𝑐𝑛  of 96.31% while the RNN, SVR+WE, LR, RF, and BOSDL-AQIP approaches get decreased 

𝑝𝑟𝑒𝑐𝑛  of 91.33%, 94.00%, 92.15%, 91.70%, and 94.78%, correspondingly.  

Finally, Based on 𝑟𝑒𝑐𝑎𝑙  the APMP-AVOAML technique reaches an increased 𝑟𝑒𝑐𝑎𝑙of 96.23% while the RNN, 

SVR+WE, LR, RF, and BOSDL-AQIP techniques obtain decreased 𝑟𝑒𝑐𝑎𝑙  of 94.54%, 90.44%, 91.64%, 92.18%, 

and 90.50%, respectively. Therefore, the APMP-AVOAML technique can be used for an automated detection 

method. 

5. Conclusion 

In this study, we have introduced an APMP-AVOAML model. The drive of the APMP-AVOAML approach is to 

recognize and classify the air quality levels. In the APMP-AVOAML system, a four-stage process is encompassed. 

Firstly, min-max normalization is applied for scaling the input data. Secondly, the HSA-based feature selection 

process is executed. Thirdly, the XGBoost model is utilized for air pollution prediction. Finally, the AVOA based 

parameter selection process is exploited for the XGBoost model. To illustrate the performance of the APMP-

AVOAML methodology, a brief experimental study is made. The resultant outcomes inferred that the APMP-

AVOAML methodology has resulted in effectual solution 
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