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Abstract

The notion of a neutrosophic Abelian subgroup of a group is introduced. The characterizations of a neutro-
sophic Abelian subgroup are investigated. We show that the homomorphic preimage of a neutrosophic Abelian
subgroup of a group is a neutrosophic Abelian subgroup, and the onto homomorphic image of a neutrosophic
Abelian subgroup of a group is a neutrosophic Abelian subgroup.
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1 Introduction

Zadeh5 introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As a generalization
of fuzzy sets, Atanassov1 introduced the degree of nonmembership/falsehood (f) in 1986 and defined the intu-
itionistic fuzzy set. Smarandache came up with the word “neutrosophic”, which comes from the words “neu-
trosophic” (French neuter, Latin neuter, neutral, and Greek Sophia, skill or wisdom), which means “knowledge
of neutral thought”. This third/neutral part is what makes “fuzzy/intuitionistic” logic/set different from “neu-
trosophic” logic/set; it is the part that is not clear or known (besides the truth). Smarandache introduced the
degree of indeterminacy/neutrality (i) as an independent component in 1995 (published in 1998) and defined
the neutrosophic set on three components (t, i, f) = (truth, indeterminacy, falsehood). The notion of the neutro-
sophic set, which Smarandache developed,3, 4 extends the notions of the classic set and fuzzy set, intuitionistic
fuzzy set, and interval-valued intuitionistic fuzzy set. Neutrosophic set theory is applied to various parts (refer
to the site http://fs.gallup.unm.edu/neutrosophy.htm).

In this paper, we introduce the notion of a neutrosophic Abelian subgroup of a group. The characterizations
of a neutrosophic Abelian subgroup ideal are investigated. We show that the homomorphic preimage of a
neutrosophic Abelian subgroup of a group is a neutrosophic Abelian subgroup, and the onto homomorphic
image of a neutrosophic Abelian subgroup of a group is a neutrosophic Abelian subgroup.

Definition 1.1. Let X be a nonempty set. The neutrosophic set3 on X is defined to be a structure

A := {⟨x, µ(x), γ(x), ψ(x)⟩ | x ∈ X}, (1)

where µ : X → [0, 1] is a truth membership function, γ : X → [0, 1] is an indeterminate membership function,
and ψ : X → [0, 1] is a false membership function. The neutrosophic fuzzy set in (1) is simply denoted by
A = (µA, γA, ψA).
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2 Abelian subgroups based on neutrosophic set

We start this section with the neutrosophic normalizer and neutrosophic centralizer and show that the neutro-
sophic normalizer (centralizer) is a subgroup of the group. We also prove that this newly defined centralizer
is a normal subgroup of the neutrosophic normalizer and investigate some fundamental algebraic properties
of these situations. We also introduce the notion of a neutrosophic Abelian (cyclic) group, prove that every
neutrosophic subgroup is a neutrosophic Abelian group analogue to classical group theory, and also discuss
their properties.

Definition 2.1. Let G be a group and A = (µA, γA, ψA) be a neutrosophic set of G. Then A is said to be a
neutrosophic subgroup of G if the following conditions hold:

(∀m,n ∈ G)

 µA(mn) ≥ µA(m) ∧ µA(n)
γA(mn) ≥ γA(m) ∧ γA(n)
ψA(mn) ≤ ψA(m) ∨ ψA(n)

 , (2)

(∀m ∈ G)

 µA(m
−1) = µA(m)

γA(m
−1) = γA(m)

ψA(m
−1) = ψA(m)

 . (3)

Equivalently, a neutrosophic set A = (µA, γA, ψA) of a group G is said to be a neutrosophic subgroup of G if
and only if

(∀m,n ∈ G)

 µA(mn
−1) ≥ µA(m) ∧ µA(n)

γA(mn
−1) ≥ γA(m) ∧ γA(n)

ψA(mn
−1) ≤ ψA(m) ∧ γA(n)

 . (4)

Definition 2.2. Let G be a group and A = (µA, γA, ψA) a neutrosophic subgroup of G. Let N(A) = {a ∈ G |
µA(a

−1xa) = µA(x), γA(a
−1xa) = γA(x), ψA(a

−1xa) = ψA(x) for all x ∈ G}. Then N(A) is called the
neutrosophic fuzzy normalizer of A in G.

Definition 2.3. A neutrosophic subgroup A = (µA, γA, ψA) of a group G is said to be a neutrosophic normal
subgroup of G if

(∀m,n ∈ G)

 µA(mn) = µA(nm)
γA(mn) = γA(nm)
ψA(mn) = ψA(nm)

 . (5)

Equivalently, a neutrosophic subgroup A = (µA, γA, ψA) of a group G is said to be neutrosophic normal if
and only if

(∀m,n ∈ G)

 µA(n
−1mn) = µA(m)

γA(n
−1mn) = γA(m)

ψA(n
−1mn) = ψA(m)

 . (6)

Theorem 2.4. Let A = (µA, γA, ψA) be a neutrosophic subgroup of a group G. Then

(1) N(A) is a subgroup of G.

(2) A is a neutrosophic normal subgroup of G if and only if N(A) = G.

(3) A is a neutrosophic normal subgroup of the group N(A).

Proof. (1) Let a, b ∈ N(A). Then we have

(∀x ∈ G)

 µA(a
−1xa) = µA(x)

γA(a
−1xa) = γA(x)

ψA(a
−1xa) = ψA(x)

 , (7)
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(∀x ∈ G)

 µA(b
−1xb) = µA(x)

γA(b
−1xb) = γA(x)

ψA(b
−1xb) = ψA(x)

 . (8)

Put y = a−1xa in (3) and using (7), we get

µA(b
−1a−1xab) = µA(a

−1xa) = µA(x),
γA(b

−1a−1xab) = γA(a
−1xa) = γA(x),

ψA(b
−1a−1xab) = ψA(a

−1xa) = ψA(x).

That is,
µA((ab)

−1x(ab)) = µA(x),
γA((ab)

−1x(ab)) = γA(x),
ψA((ab)

−1x(ab)) = ψA(x).

Thus, ab ∈ N(A). Next, change x to x−1 in (7), we get

µA(a
−1x−1a) = µA(x

−1) = µA(x),
γA(a

−1x−1a) = γA(x
−1) = γA(x),

ψA(a
−1x−1a) = ψA(x

−1) = ψA(x).

That is,
µA((axa

−1)−1) = µA(axa
−1) = µA(x),

γA((axa
−1)−1) = γA(axa

−1) = γA(x),
ψA((axa

−1)−1) = ψA(axa
−1) = ψA(x).

Thus,
µA((a

−1)−1x(a−1)) = µA(x),
γA((a

−1)−1x(a−1)) = γA(x),
ψA((a

−1)−1x(a−1)) = ψA(x).

Then a−1 ∈ N(A). Hence, N(A) is a subgroup of G.

(2) Obviously, when N(A) = G, then µA(a
−1xa) = µA(x), γA(a−1xa) = γA(x), and ψA(a

−1xa) = ψA(x)
for all x, a ∈ G. Hence, A is a neutrosophic normal subgroup of G.

Conversely, assume thatA is a neutrosophic normal subgroup of G. Then µA(a
−1xa) = µA(x), γA(a−1xa) =

γA(x), and ψA(a
−1xa) = ψA(x) for all x, a ∈ G, that is, the set {a ∈ G | µA(a

−1xa) = µA(x),
γA(a

−1xa) = γA(x), ψA(a
−1xa) = ψA(x) for all x ∈ G} = G. Hence, N(A) = G.

(3) Let a, b ∈ N(A). Then µA(a
−1xa) = µA(x), γA(a−1xa) = γA(x), and ψA(a

−1xa) = ψA(x) for all
x ∈ G. Putting x = ab, we get µA(ab) = µA(a

−1aba) = µA(ba), γA(ab) = γA(a
−1aba) = γA(ba), and

ψA(ab) = ψA(a
−1aba) = ψA(ba). Hence, A is a neutrosophic normal subgroup of N(A).

Definition 2.5. Let G be a group and A = (µA, γA, ψA) a neutrosophic subgroup of G. Let

C(A) = {a ∈ G | µA([a, x]) = µA(e), γA([a, x]) = γA(e), ψA([a, x]) = ψA(e) for all x ∈ G}.

Then C(A) is called the neutrosophic centralizer ofA in G, where [x, y] is the commutator of the two elements
x and y in G, that is, [x, y] = x−1y−1xy.

Theorem 2.6. Let A = (µA, γA, ψA) be a neutrosophic subgroup of a group G. Then

(1) C(A) is a subgroup of G.

(2) C(A) is a normal subgroup of N(A).

Proof. (1) Clearly, C(A) ̸= ∅ as e ∈ C(A). Let a, b ∈ C(A). Then

µA([a, x]) = µA(e), γA([a, x]) = γA(e), ψA([a, x]) = ψA(e),
µA([b, x]) = µA(e), γA([b, x]) = γA(e), ψA([b, x]) = ψA(e)
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hold for all x, y ∈ G, that is,

µA(a
−1x−1ax) = µA(e), γA(a

−1x−1ax) = γA(e), ψA(a
−1x−1ax) = ψA(e), (9)

µA(b
−1y−1by) = µA(e), γA(b

−1y−1by) = γA(e), ψA(b
−1y−1by) = ψA(e). (10)

Putting y = a−1za in (10), we have

µA(b
−1a−1z−1aba−1za) = µA(e) ⇒ µA((ab)

−1z−1(ab)z)(z−1a−1za) = µA(e)
⇒ µA((ab)

−1z−1(ab)z) = µA(e),

γA(b
−1a−1z−1aba−1za) = γA(e) ⇒ γA((ab)

−1z−1(ab)z)(z−1a−1za)) = γA(e)
⇒ γA((ab)

−1z−1(ab)z) = γA(e),

ψA(b
−1a−1z−1aba−1za) = ψA(e) ⇒ ψA((ab)

−1z−1(ab)z)(z−1a−1za)) = ψA(e)
⇒ ψA((ab)

−1z−1(ab)z) = ψA(e).

Hence, ab ∈ C(A). Also, from (9), we have

µA(e) = µA(a
−1x−1ax) = µA((a

−1x−1ax)) = µA(x
−1a−1xa),

γA(e) = γA(a
−1x−1ax) = γA((a

−1x−1ax)) = γA(x
−1a−1xa),

ψA(e) = ψA(a
−1x−1ax) = ψA((a

−1x−1ax)) = ψA(x
−1a−1xa).

That is,
µA(x

−1a−1xa) = µA(e),
γA(x

−1a−1xa) = γA(e),
ψA(x

−1a−1xa) = ψA(e).

Putting x = ta−1, we get

µA(at
−1a−1ta−1a) = µA(at

−1a−1t) = µA(e),
γA(at

−1a−1ta−1a) = γA(at
−1a−1t) = γA(e),

ψA(at
−1a−1ta−1a) = ψA(at

−1a−1t) = ψA(e).

Thus, a−1 ∈ C(A). Hence, C(A) is a subgroup of G.

(2) Let a ∈ C(A) and b ∈ N(A). We shall show that b−1ab ∈ C(A). Now,

(∀x ∈ G)

 µA(a
−1x−1ax) = µA(e)

γA(a
−1x−1ax) = γA(e)

ψA(a
−1x−1ax) = ψA(e)

 , (11)

(∀y ∈ G)

 µA(b
−1y−1by) = µA(e)

γA(b
−1y−1by) = γA(e)

ψA(b
−1y−1by) = ψA(e)

 . (12)

Put y = a−1x−1ax in (12) and using (11), we have

µA(b
−1a−1x−1axb) = µA(a

−1x−1ax) = µA(e),
γA(b

−1a−1x−1axb) = γA(a
−1x−1ax) = γA(e),

ψA(b
−1a−1x−1axb) = ψA(a

−1x−1ax) = ψA(e).

Again, putting x = bzb−1 above, we have

µA(b
−1a−1bz−1b−1abzb−1b) = µA(e),

γA(b
−1a−1bz−1b−1abzb−1b) = γA(e),

ψA(b
−1a−1bz−1b−1abzb−1b) = ψA(e).

That is,
µA(b

−1a−1bz−1b−1abz) = µA(e),
γA(b

−1a−1bz−1b−1abz) = γA(e),
ψA(b

−1a−1bz−1b−1abz) = ψA(e).

Thus
µA((b

−1ab)−1z−1(b−1ab)z) = µA(e),
γA((b

−1ab)−1z−1(b−1ab)z) = γA(e),
ψA((b

−1ab)−1z−1(b−1ab)z) = ψA(e).

So, b−1ab ∈ C(A). Hence, C(A) is a normal subgroup of N(A).
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Proposition 2.7. Let A = (µA, γA, ψA) be a neutrosophic normal subgroup of a group G. Let N = {a ∈ G |
µA(a) = µA(e), γA(a) = γA(e), ψA(a) = ψA(e)}. Then N ⊆ C(A).

Proof. Let A = (µA, γA, ψA) be a neutrosophic normal subgroup of group G. Therefore, µA(y
−1xy) =

µA(x), γA(y−1xy) = γA(x), and ψA(y
−1xy) = ψA(x) for all x, y ∈ G. Let a ∈ N . Then µA(a) = µA(e),

γA(a) = γA(e), and ψA(a) = ψA(e). Now,

µA([a, x]) = µA(a
−1x−1ax)

≥ µA(a
−1) ∧ µA(x

−1ax)
= µA(a) ∧ µA(a)
= µA(e) ∧ µA(e)
= µA(e).

Thus, µA([a, x]) = µA(e); similarly, we can show that γA([a, x]) = γA(e) and ψA([a, x]) = ψA(e). Thus,
a ∈ C(A). Hence, N ⊆ C(A).

Definition 2.8. Let A = (µA, γA, ψA) be a neutrosophic subgroup of a group G. Then A = (µA, γA, ψA) is
called a neutrosophic Abelian subgroup of G if Cα,β,δ(A) = {x ∈ X | µA(x) ≥ α, γA(x) ≥ β, ψA(x) ≤ δ}
is an Abelian subgroup of G for all α, β, δ ∈ (0, 1] with 0 < α+ β + δ ≤ 1.

Theorem 2.9. Let A be a neutrosophic subgroup of a group G. Then A is a neutrosophic subgroup of G if and
only if Cα,β,δ(A) is a subgroup of G for all α, β, δ ∈ (0, 1] with α+ β + δ ≤ 1.

Proof. Clearly, Cα,β,δ is nonempty as e ∈ Cα,β,δ . For Cα,β,δ to be a subgroup of G, we shall show that for
x, y ∈ Cα,β,δ , xy−1 ∈ Cα,β,δ . Let x, y ∈ Cα,β,δ . Then µA(x) ≥ α, γA(x) ≥ β, ψA(x) ≤ δ and µA(y) ≥ α,
γA(y) ≥ β, ψA(y) ≤ δ. Since A = (µA, γA, ψA) is a neutrosophic subgroup of G, we have

µA(xy
−1) ≥ min{µA(x), µA(y

−1)} = min{µA(x), µA(y)} ≥ min{α, α} = α,
γA(xy

−1) ≥ min{γA(x), γA(y−1)} = min{γA(x), γA(y)} ≥ min{β, β} = β,
ψA(xy

−1) ≤ max{ψA(x), ψA(y
−1)} = max{ψA(x), ψA(y)} ≤ max{δ, δ} = δ.

Therefore, xy−1 ∈ Cα,β,δ . Hence, Cα,β,δ is a subgroup of G.

Remark 2.10. 2 Every subgroup of an Abelian group is Abelian.

Theorem 2.11. If G is an Abelian group, then every neutrosophic subgroup of G is a neutrosophic Abelian
subgroup of G.

Proof. Given that G is an Abelian group. Then xy = yx holds for all x, y ∈ G. Since A is a neutrosophic
Abelian subgroup of G and by Theorem 2.9, we have Cα,β,δ(A) is a subgroup of G. In view of Remark
2.10, we know that Cα,β,δ(A) is an Abelian subgroup of G. By using the definition of neutrosophic Abelian
subgroup, we conclude that A is a neutrosophic Abelian subgroup group G.

The following example leads us to note that the converse of Theorem 2.11 may not be true.

Example 2.12. Consider G = S3 = {i, (12), (13), (23), (123), (132)} be the symmetric group. Consider the
neutrosophic set A of G defined by

µA(x) =

 0.9 if x = i
0 if x2 = i

0.05 if x3 = i,

γA(x) =

 0.1 if x = i
0 if x2 = i

0.05 if x3 = i,

ψA(x) =

 0 if x = i
0.03 if x2 = i
0.04 if x3 = i,
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where x ∈ G and i is the identity element of G. Clearly, A is a neutrosophic subgroup of G. Moreover, all
Cα,β,δ(A) are Abelian subgroups of G for all α, β, δ ∈ (0, 1] with 0 < α + β + δ ≤ 1. Hence, A is a
neutrosophic Abelian subgroup of G, but G is a non-Abelian group.

Theorem 2.13. Let A = (µA, γA, ψA) be a neutrosophic Abelian subgroup of G. Then the set H = {a ∈ G |
µA(ab) = µA(ba), γA(ab) = γA(ba), ψA(ab) = ψA(ba) ∀ b ∈ G} is an Abelian subgroup of G.

Proof. Since A = (µA, γA, ψA) is a neutrosophic Abelian subgroup of group G, Cα,β,δ(A) is an Abelian
subgroup of G for all α, β, δ ∈ (0, 1] with 0 < α+β+ δ ≤ 1. We shall show that H is an Abelian subgroup of
G. Clearly, H ̸= ∅ as e ∈ H . Let a, b ∈ H . Then µA(ax) = µA(xa), γA(ax) = γA(xa), ψA(ax) = ψA(xa)
and µA(ax) = µA(xa), γA(ax) = γA(xa), ψA(ax) = ψA(xa) for all x ∈ G. Now, for x ∈ G, we
have µA((ab)x) = µA(a(bx)) = µA((bx)a) = µA(b(xa)) = µA((xa)b) = µA(x(ab)), γA((ab)x) =
γA(a(bx)) = γA((bx)a) = γA(b(xa)) = γA((xa)b) = γA(x(ab)) and ψA((ab)x) = ψA(a(bx)) =
ψA((bx)a) = ψA(b(xa)) = ψA((xa)b) = ψA(x(ab)). Hence, ab ∈ H . Also, let a ∈ H . We shall show that
a−1 ∈ H . Since a ∈ H , we have µA(ax) = µA(xa), γA(ax) = γA(xa), and ψA(ax) = ψA(xa) hold for all
x ∈ G (⋆). We shall show that µA(a

−1y) = µA(ya
−1), γA(a

−1y) = γA(ya
−1), and ψA(a

−1y) = ψA(ya
−1)

hold for all y ∈ G. Putting x = y−1 in (⋆), we get µA(ay
−1) = µA(y

−1a), γA(ay−1) = γA(y
−1a), and

ψA(ay
−1) = ψA(y

−1a). Now, µA(a
−1y) = µA((a

−1y)−1) = µA(y
−1a) = µA(ay

−1) = µA((ay
−1)−1) =

µA(ya
−1). Similarly, we can show that γA(a−1y) = γA(ya

−1) and ψA(a
−1y) = ψA(ya

−1) hold for all
y ∈ G. Thus, a−1 ∈ H . So H is a subgroup of G. Next, we show that H is an Abelian subgroup of
G. Let a, b ∈ H . Without loss of generality, let µA(a) = α, γA(a) = β, ψA(a) ≤ 1 − (α + β) and
µA(b) = α1, γA(b) = β1, ψA(a) ≤ 1 − (α1 + β1). Then a ∈ Cα,β,1−(α+β)(A), b ∈ Cα1,β1,1−(α1+β1)(A).
Let α < α1 and β < β1. Then µA(b) = α1 > α, γA(b) = β1 > β and ψA(b) ≤ 1− (α1+β1) < 1− (α+β),
so b ∈ Cα,β,1−(α+β)(A). Thus, a, b ∈ Cα,β,1−(α+β)(A) and so ab = ba. Hence, H is an Abelian subgroup of
G.

Proposition 2.14. (1) IfA = (µA, γA, ψA) is a neutrosophic Abelian subgroup of a group G, thenA is also
a neutrosophic normal subgroup of G.

(2) The sets H and C(A) are same, that is, C(A) = H .

Proof.
C(A) = {a ∈ G : µA([a, x]) = µA(e), γA([a, x]) = γA(e),

ψA([a, x]) = ψA(e) for all x ∈ G}
= {a ∈ G : µA(a

−1x−1ax) = µA(e), γA(a
−1x−1ax) = γA(e),

ψA(a
−1x−1ax) = ψA(e) for all x ∈ G}

= {a ∈ G : µA((xa)
−1ax) = µA(e), γA((xa)

−1ax) = γA(e),
ψA((xa)

−1ax) = ψA(e) for all x ∈ G}
= {a ∈ G : µA(xa) = µA(ax), γA(xa) = γA(ax),
ψA(xa) = ψA(ax) for all x ∈ G}

= H.

Theorem 2.15. Let A = (µA, γA, ψA) be a neutrosophic Abelian subgroup of a group G. Then C(A) is an
Abelian subgroup of G.

Theorem 2.16. Let A = (G1, µA, γA, ψA) and B = (G2, µB , γB , ψB) be two neutrosophic subgroups of a
group G1 and G2, respectively. Then A×B is a neutrosophic Abelian subgroup of G1 × G2 if and only if both
A and B are neutrosophic Abelian subgroups of G1 and G2, respectively.

Proof. First, let A and B be neutrosophic Abelian subgroups of G1 and G2, respectively. Then Cα,β,δ(A) and
Cα,β,δ(B) are Abelian subgroups of G1 and G2, respectively for all α, β, δ ∈ (0, 1] with 0 < α + β + δ ≤ 1,
so Cα,β,δ(A)×Cα,β,δ(B) is an Abelian subgroup of G1×G2. But Cα,β,δ(A×B) = Cα,β,δ(A)×Cα,β,δ(B).
Therefore, Cα,β,δ(A×B) is an Abelian subgroup of G1 ×G2 for all α, β, δ ∈ (0, 1] with 0 < α+ β + δ ≤ 1.
Thus, A×B is a neutrosophic Abelian subgroup of G1 × G2.

Conversely, let A × B be a neutrosophic Abelian subgroup of G1 × G2. Then Cα,β,δ(A × B) is an Abelian
subgroup of G1 × G2, that is, Cα,β,δ(A) × Cα,β,δ(B) is an Abelian subgroup of G1 × G2. Thus, Cα,β,δ(A)
and Cα,β,δ(B) are Abelian subgroups of G1 and G2, respectively. Hence, A and B are neutrosophic Abelian
subgroups of G1 and G2, respectively.
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Definition 2.17. Let A = (µA, γA, ψA) be a neutrosophic subgroup of a group G. Then A is called a
neutrosophic cyclic subgroup of G if Cα,β,δ(A) is a cyclic subgroup of G for all α, β, δ ∈ (0, 1] with
0 < α+ β + δ ≤ 1.

Remark 2.18. 2 Every subgroup of a cyclic group is cyclic.

Theorem 2.19. If G is a cyclic group, then every neutrosophic subgroup of G is a neutrosophic cyclic subgroup
of G.

Proof. Given that G is a cyclic group. Then G = ⟨x⟩ for some x ∈ G. Let A be a neutrosophic subgroup of
G. Since A is a neutrosophic Abelian subgroup of G and by Theorem 2.9, we have Cα,β,δ(A) is a subgroup
of G. In view of Remark 2.10, we know that Cα,β,δ(A) is a cyclic subgroup of G. By using the definition of
neutrosophic cyclic subgroup, we conclude that A is a neutrosophic cyclic subgroup group G.

The following example leads us to note that the converse of Theorem 2.19 may not be true.

Example 2.20. Consider G =
〈
a, b | a3 = b2 = e, bab−1 = a−1

〉
be dihedral group of order six. Consider

the neutrosophic set A of G defined by

µA(x) =

 0.9 if x = e
0 if x2 = e

0.05 if x3 = e,

γA(x) =

 0.1 if x = e
0 if x2 = e

0.05 if x3 = e,

ψA(x) =

 0 if x = e
0.01 if x2 = e
0.05 if x3 = e,

where x ∈ G and e is the identity element of G. Clearly, A is a neutrosophic subgroup of G. Moreover, all
Cα,β,δ(A) are cyclic subgroups of G for all α, β, δ ∈ (0, 1] with 0 < α+β+δ ≤ 1. Hence,A is a neutrosophic
cyclic subgroup of G, but G is not a cyclic group.

Proposition 2.21. If G be a cyclic group, then every neutrosophic subgroup of G is a neutrosophic cyclic
subgroup of G.

Proof. Let G = ⟨x⟩ be a cyclic group, and let A be any neutrosophic subgroup of G. Then

µA(x
n) ≥ µA(x

n−1) ≥ µA(x
n−2) ≥ . . . ≥ µA(x),

γA(x
n) ≥ γA(x

n−1) ≥ γA(x
n−2) ≥ . . . ≥ γA(x),

ψA(x
n) ≤ ψA(x

n−1) ≤ ψA(x
n−2) ≤ . . . ≤ ψA(x)

hold for all n ∈ N. Therefore, if xm ∈ Cα,β,δ(A) for some m ∈ N, then xm, xm+1, xm+2, . . . ∈ Cα,β,δ(A),
that is, Cα,β,δ(A) = ⟨x−1⟩, which is a cyclic subgroup of G for all α, β, δ ∈ (0, 1] with 0 < α + β + δ ≤ 1.
Hence, A is a neutrosophic cyclic subgroup of G.

Theorem 2.22. Let h : G1 → G2 be homomorphism of a group G1 into a group G2. Let B be a neutrosophic
Abelian subgroup of G2. Then h−1(B) is a neutrosophic Abelian subgroup of G1.

Proof. Let B be a neutrosophic Abelian subgroup of G2. Therefore, Cα,β,δ(B) is an Abelian subgroup of G2

for all α, β, δ ∈ (0, 1] with 0 < α + β + δ ≤ 1. Then Cα,β,δ(h
−1(B)) = h−1(Cα,β,δ(B)) = {x ∈ G1 |

h(x) ∈ Cα,β,δ(B)}. Let x1, x2 ∈ Cα,β,δ(h
−1(B)). Then h(x1), h(x2) ∈ Cα,β,δ(B). Then

µh−1(B)(x1) ≥ α, γh−1(B)(x1) ≥ β, ψh−1(B)(x1) ≤ δ,
µh−1(B)(x2) ≥ α, γh−1(B)(x2) ≥ β, ψh−1(B)(x2) ≤ δ.
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That is,
µB(h(x1)) ≥ α, γB(h(x1)) ≥ β, ψB(h(x1)) ≤ δ,
µB(h(x2)) ≥ α, γB(h(x2)) ≥ β, ψB(h(x2)) ≤ δ.

This implies that
min{µB(h(x1)), µB(h(x2))} ≥ α,
min{γB(h(x1)), γB(h(x2))} ≥ β,
max{ψB(h(x1)), ψB(h(x2))} ≤ δ.

Hence,
µB(h(x1)h(x

−1
2 )) ≥ min{µB(h(x1)), µB(h(x2))} ≥ α,

γB(h(x1)h(x
−1
2 )) ≥ min{γB(h(x1)), γB(h(x2))} ≥ β,

ψB(h(x1)h(x
−1
2 )) ≤ max{ψB(h(x1)), ψB(h(x2))} ≤ δ.

Therefore,
µB(h(x1)h(x

−1
2 )) ≥ α, γB(h(x1)h(x

−1
2 )) ≥ β, ψB(h(x1)h(x

−1
2 )) ≤ δ.

It follows that
h(x1)h(x

−1
2 ) ∈ Cα,β,δ(B) ⇒ h(x1x

−1
2 ) ∈ Cα,β,δ(B)

⇒ x1x
−1
2 ∈ h−1(Cα,β,δ(B))

⇒ x1x
−1
2 ∈ Cα,β,δ(h

−1(B)).

Hence,Cα,β,δ(h
−1(B)) is a subgroup of G1 for all α, β, δ ∈ (0, 1] with 0 < α+β+δ ≤ 1. AsCα,β,δ(h

−1(B))
is an Abelian subgroup of G2, we have h(x1)h(x2) = h(x2)h(x1). This implies that h(x1x2) = h(x2x1)
and so µB(h(x1x2)) = µB(hx1x2)), γB(h(x1x2)) = γB(hx1x2)), and ψB(h(x1x2)) = ψB(h(x2x1)).
It follows that µh−1(B)(x1x2) = µh−1(B)(x2x1), γh−1(B)(x1x2) = γh−1(B)(x2x1), and ψh−1(B)(x1x2) =
ψh−1(B)(x2x1). Hence, x1x2 = x2x1. Thus, Cα,β,δ(h

−1(B)) is an Abelian subgroup of G1 for all α, β, δ ∈
(0, 1] with 0 < α+ β + δ ≤ 1. Hence, h−1(B) is a neutrosophic Abelian subgroup of G1.

Theorem 2.23. Let h : G1 → G2 be a surjective homomorphism of a group G1 onto a group G2. Let A =
(µA, γA, ψA) be a neutrosophic Abelian subgroup of G1. Then h(A) is a neutrosophic Abelian subgroup of
G2.

Proof. Since A is a neutrosophic Abelian subgroup of G1, we have Cα,β,δ(A) is an Abelian subgroup of G1

for all α, β, δ ∈ (0, 1] with 0 < α+ β + δ ≤ 1. We shall show that h(A) is a neutrosophic Abelian subgroup
of G2. For this, we show will that Cα,β,δ(h(A)) is an Abelian subgroup of G2. Let y1, y2 ∈ Cα,β,δ(h(A)).
Then there exist x1, x2 ∈ G1 such that h(x1) = y1, h(x2) = y2. Then

µh(A)(y1) ≥ α, γh(A)(y1) ≥ β, ψh(A)(y1) ≤ δ,
µh(A)(y2) ≥ α, γh(A)(y2) ≥ β, ψh(A)(y2) ≤ δ.

Since h(Cα,β,δ(A)) ⊆ Cα,β,δ(h(A)), there exist x1, x2 ∈ G1 such that

µA(x1) ≥ µh(A)(y1) ≥ α, γA(x1) ≥ γh(A)(y1) ≥ β, ψA(x1) ≤ ψh(A)(y1) ≤ δ,
µA(x2) ≥ µh(A)(y2) ≥ α, γA(x2) ≥ γh(A)(y2) ≥ β, ψA(x2) ≤ ψh(A)(y2) ≤ δ.

This implies that
min{µA(x1), µA(x2)} ≥ α,
min{γA(x1), γA(x2)} ≥ β,
max{ψA(x1), ψA(x2)} ≤ δ.

Hence,
µA(y1y

−1
2 ) ≥ min{µA(y1), µA(y2)} ≥ α,

γA(y1y
−1
2 ) ≥ min{γA(y1), γA(y2)} ≥ β,

ψA(y1y
−1
2 ) ≤ max{ψA(y1), ψA(y2)} ≤ δ.

Therefore,
µA(y1y

−1
2 ) ≥ α, γA(y1y

−1
2 ) ≥ β, ψA(y1y

−1
2 ) ≤ δ.

It follows that

y1y
−1
2 ∈ Cα,β,δ(A) ⇒ h(y1y

−1
2 ) ∈ h(Cα,β,δ(A)) ⊆ Cα,β,δ(h(A))

⇒ h(y1)h(y
−1
2 ) ∈ Cα,β,δ(h(A))

⇒ y1y
−1
2 ∈ Cα,β,δ(h(A)).
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Hence, Cα,β,δ(h
−1(B)) is a subgroup of G1 for all α, β, δ ∈ (0, 1] with 0 < α+β+δ ≤ 1. Let h(x1), h(x2) ∈

Cα,β,δ(h(A)). Then there exists Cδ,θ,ω(A) such that x1, x2 ∈ Cδ,θ,ω(A), where δ, θ, ω ∈ (0, 1] and 0 <
δ + θ + ω ≤ 1. Since Cα,β,δ(A) is an Abelian group, we get x1x2 = x2x1 and so h(x1)h(x2) = h(x1x2) =
h(x2x1) = h(x2)h(x1), that is, y1y2 = y2y1. Thus, Cα,β,δ(h(A)) is an Abelian subgroup of G2. Hence, h(A)
is a neutrosophic Abelian subgroup of G2.

Theorem 2.24. Let h : G1 → G2 be a homomorphism of a group G1 into a group G2. Let B be a neutrosophic
cyclic subgroup of G2. Then h−1(B) is neutrosophic cyclic subgroup of G1.

Proof. Since B is neutrosophic cyclic subgroup of G2, we have Cα,β,δ(B) is a cyclic subgroup of G2 for all
α, β, δ ∈ (0, 1] with 0 < α+β+δ ≤ 1. LetCα,β,δ(B) = ⟨g2⟩ for some g2 ∈ G2. Now, for g2 ∈ G2, there exists
g1 ∈ G1 such that h(g1) = g2. Thus, Cα,β,δ(B) = ⟨f(g1)⟩. So, h−1(Cα,β,δ) = Cα,β,δ(h

−1(B)) = ⟨g1⟩.
Hence, h−1(B) is a neutrosophic cyclic subgroup of G1.

Theorem 2.25. Let h : G1 → G2 be a surjective homomorphism of a group G1 onto a group G2. Let A be a
neutrosophic cyclic subgroup of G1. Then h(A) is a neutrosophic cyclic subgroup of G2.

Proof. Let A be a neutrosophic cyclic subgroup of G1. Therefore, Cα,β,δ(A) is a cyclic subgroup of G1 for all
α, β, δ ∈ (0, 1] with 0 < α + β + δ ≤ 1. We shall show that h(A) is a neutrosophic cyclic subgroup of G2.
Let g ∈ Cα,β,δ(f(A)). As h is surjective, therefore, let g = h(g1) for some g1 ∈ G1. As g1 ∈ G1, we can find
one Cα,β,δ(A) which exists for all g1 ∈ G1 and hence, for all g ∈ Cα,β,δ(h(A)) such that g1 ∈ Cα,β,δ(A).
Since Cα,β,δ(A) is a cyclic subgroup of G1, let Cα,β,δ(A) = ⟨g1⟩. So, g1 = gn. Thus, g = h(g1)h((g1)

n) =
(h(g1))

n, that is, Cα,β,δ(h(A)) is a cyclic subgroup of G2. Hence, h(A) is a neutrosophic cyclic subgroup of
G2.

Definition 2.26. The support of a neutrosophic set A of X is defined to be

suppX(A) = {x ∈ X | µA(x) > 0, γ(x) > 0, ψA(x) < 1}.

Clearly, suppX(A) is
⋃
{Cα,β,δ(A) | for all α, β, δ ∈ (0, 1] such that α+ β + δ ≤ 1}.

Proposition 2.27. For a function f : X → Y and neutrosophic sets A and B of X and Y , respectively, we
have

(1) f(suppX(A)) ⊆ suppY (f(A)), equivalently holds if f is bijective,

(2) f−1(suppY (B)) = suppX(f−1(B)).

Proposition 2.28. If A is a non-zero neutrosophic subgroup of a group G, then suppG(A) is a subgroup of G.

The following example shows that the converse of Proposition 2.28 is untrue.

Example 2.29. Let G = (R,+) be a group of real numbers under addition. Define the neutrosophic set A on
G by

µA(x) =

0.31 if x = 0
0.72 if x ∈ Q− {0}
0 if x ∈ R−Q,

γA(x) =

0.21 if x = 0
0.62 if x ∈ Q− {0}
0 if x ∈ R−Q,

ψA(x) =

0.51 if x = 0
0.22 if x ∈ Q− {0}
1 if x ∈ R−Q.

Clearly, A is not a neutrosophic subgroup of G, but suppG(A) = Q is a subgroup of G.
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Proposition 2.30. If A is a neutrosophic normal subgroup of a group G, then suppG(A) is a normal subgroup
of G.

The following example shows that the converse of Proposition 2.30 is untrue.

Example 2.31. Let G = S3 = {e, a, a, b, ab, ab}, where b = c = a be the symmetric group on 3 symbols.
Define the neutrosophic set A on G by

µA(x) =


1
2 if x = e
1
2 if x = b
1
3 otherwise,

γA(x) =


1
2 if x = e
3
4 if x = b
1
3 otherwise,

ψA(x) =

0 if x = e
1
3 if x = b
1
2 otherwise.

Clearly, A is a neutrosophic subgroup of G and suppG(A) = S3 is normal in G. But A is not a neutrosophic
normal subgroup of G, for C 1

2 ,
1
2 ,1

= {x ∈ G | µA(x) ≥ 1
2 , γA(x) ≥

1
2 , ψA(x) ≤ 1} = {e, b} is not normal in

G.

Theorem 2.32. Let A = (µA, γA, ψA) be a neutrosophic subgroup of a group G. Then A is a neutrosophic
Abelian subgroup of G if and only if suppG(A) is an Abelian (cyclic) subgroup of G.

Proof. If suppG(A) is an Abelian subgroup of G, then the result follows as Cα,β,δ ⊆ suppG(A) for α, β, δ ∈
(0, 1] such that α+ β + δ < 1.

Conversely, let A be a neutrosophic Abelian subgroup of G. Let a, b ∈ suppG(A). Then a ∈ Cα1,β1,δ1(A)
and b ∈ Cα2,β2,δ2(A) for some αi, βi, δi ∈ (0, 1] such that αi + βi + δi < 1, where i = 1, 2.

Case i: When α1 < α2, β1 < β2 and δ1 > δ2, a, b ∈ Cα1,β1,δ1(A) and ab = ba.

Case ii: When α1 > α2, β1 > β2 and δ1 < δ2, a, b ∈ Cα1,β2,δ2(A) and ab = ba.

Other cases can similarly be dealt with. That is, when A is a neutrosophic cyclic subgroup of G, suppG(A) is
cyclic and can be proved on the same lines.

Definition 2.33. If A = (µA, γA, ψA) is a neutrosophic set of a group G and H is a subgroup of G, then the
restriction of A on H is denoted by A|H is a neutrosophic set on H defined as

(A|H)(x) = (µA|H(x), γA|H(x), ψA|H(x)),

where µA|H(x) = µA(x), γA|H(x) = γA(x) and ψA|H(x) = ψA(x).

The proof of the following propositions is easy and hence omitted.

Proposition 2.34. Let A = (µA, γA, ψA) be a neutrosophic set of a group G. Then we have the following:

(1) If A is a neutrosophic subgroup of G and H is a subgroup of G, then A|H is a neutrosophic subgroup of
H .

(2) If A|H is the restriction of the neutrosophic set A of G on the subgroup H of G, then suppH(A|H) =
suppG(A) ∩H .

(3) IFA is a cyclic neutrosophic subgroup of G andH is a subgroup of G, thenA|H is a cyclic neutrosophic
subgroup of H if and only if H is a cyclic subgroup of G.
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