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Abstract 

Brain-computer interface (BCI) is a procedure of connecting the central nervous system to the device. In the past 

few years, BCI was conducted by Electroencephalography (EEG). By linking EEG with other neuro imaging 

technologies like functional Near Infrared Spectroscopy (fNIRS), promising outcomes were attained. An important 

stage of BCI is brain state identification from verified signal properties. Classifying EEG signals for motor imagery 

(MI) is a common use in the BCI system. Motor imagery includes imagining the movement of certain body parts 

without executing the physical movement. Deep Artificial Neural Network (DNN) obtained unprecedented 

complex classification outcomes. Such performances were obtained by an effective learning algorithm, improved 

computation power, restricted or back-fed neuron connection, and valuable activation function. Therefore, this 

study develops a Gazelle Optimization Algorithm with Deep Learning based Motor-Imagery Classification 

(GOADL-MIC) technique for EEG-Based BCI. The GOADL-MIC technique aims to exploit hyperparameter-

tuned DL model for the recognition and identification of MI signals. To achieve this, the GOADL-MIC model 

initially undergoes the conversion of one dimensional-EEG signals into 2D time-frequency amplitude one. 

Besides, the EfficientNet-B3 system is applied for the effectual derivation of feature vector and its hyperparameters 

can be selected by using GOA. Finally, the classification of MIs takes place using bi-directional long short-term 

memory (Bi-LSTM). The experimentation result analysis of the GOADL-MIC method is verified utilizing the BCI 

dataset and the results demonstrate the promising results of the GOADL-MIC algorithm over its counter techniques 

Keywords: Brain-computer interfaces; EEG signals; Deep learning; Motor imagery signals; Image classification 

1. Introduction 

A Brain-Interface Computer (BCI) is an emerging technology which allows direct communication amongst a 

computer and the human brain. BCI is majorly employed as a technology for utilizing the electrical activity in the 

brain to diagnose neurological diseases, in disabled patients who have lost their capabilities and to comprehend 

psycho-physiological processes [1]. Electroencephalography (EEG) is a non-invasive BCI system wherein brain 

actions have been taken with a higher temporal resolution, usability, portability and lower setup cost [2]. In 

applications that include handicapped patients, BCI is often implemented as a system to restore those fundamental 

abilities by making data pathways among the processing or computing devices and the human brain [3]. 
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Alternatively stated, a BCI technique employs the information from the brain activity in physically handicapped 

persons to support them when mapping their sensory-motor functions. EEG equipment has been extensively 

employed for recording brain signals in BCI systems due to it being non-invasive, higher time resolution, possible 

for mobility in the user and a moderately lower cost [4]. While a BCI must be developed to utilize EEG signals in 

a wide range of methods for controlling motor imagery (MI) BCIs, are liable to wide-ranging research. This is due 

to their expansive capabilities for applicability in domains namely neuroprosthetics, neurorehabilitation, and 

gaming, where the decoding of users’ opinions of an imagined activity will be inestimable [5]. 

MI is the most widespread technique in BCI applications that includes performing a motor task only by imagining 

or thinking. This will be just an easy moving of legs or hands and closing eyes [6]. Therefore, MI-based BCI 

techniques become a noticeable solution for identifying the preferred commands by categorizing MI tasks for 

disabled persons of their motor capacities and rehabilitation. However, MI signals can be extremely non-stationary 

and unavoidably affected by noise while they are intensely dependent upon subjects. Furthermore, the 

classification of EEG can be generally a difficult and aperiodic time series that is the addition of a huge number 

of neuronal membrane possibilities [7]. Hence, a robust pattern identification system could be essential for the 

execution of an MI-based BCI system with a higher performance. The machine learning (ML) method has been 

frequently employed in this classification method as it can be the capability to model higher-dimensional datasets 

[8]. ML technique could be briefly described as allowing computers to create effective predictions with the help 

of previous knowledge. In ML, there are numerous approaches for classification methods namely Logistic 

Regression (LR), Decision Tree (DT), Naïve Bayes (NB), K-Nearest Neighbors (KNN), and Support Vector 

Machine (SVM). Deep learning (DL) algorithms are great at developing the higher dimensional feature space as 

well as decreasing the lesser dimension. It is promising to include each potential EEG channel in this research, 

with high-frequency bandwidth without feature selection (FS), which is barely implemented in prior BCI research 

[9, 10]. 

This study develops a Gazelle Optimization Algorithm with Deep Learning based Motor-Imagery Classification 

(GOADL-MIC) technique for EEG-Based BCI. The GOADL-MIC technique aims to exploit hyperparameter-

tuned DL model for the recognition and identification of MI signals. To achieve this, the GOADL-MIC system 

initially undergoes the conversion of one dimensional-EEG signals into 2D time-frequency amplitude one. 

Besides, the EfficientNet-B3 system can be applied for the effectual derivation of feature vector and its 

hyperparameters can be chosen by the use of GOA. Finally, the classification of MIs takes place using bidirectional 

long short-term memory (Bi-LSTM). The experimental result study of the GOADL-MIC system is tested using 

the BCI dataset.  

2. Related Works 

Rajalakshmi et al. [11] introduced an Optimal DL-Based Recognition for EEG Signal Motor Image (ODLR-

EEGSM) models. The pre-processing stage begins with the Variation Mode Decomposition (VMD) system. This 

method employs a Stacked Sparse Auto Encoder (SSAE) algorithm for recognizing major patterns. This 

classification was accomplished by implementing the Deep Wavelet Neural Networks (DWNN) improved with 

the Chaotic Dragonfly Algorithm (CDFA) method. In [12], an innovative convolutional neural network (CNN) 

was developed. The developed EEG-inception architecture was dependent upon the backbone of the inception-

time network that must be exhibited to be extremely effective for classifying time series. Similarly, the designed 

network becomes an end-wise classification, as it captures the raw input signal and doesn’t need pre-processing of 

complex EEG signals. Additionally, this study offers a new data augmentation technique for increasing the 

accuracy of EEG signals. Wang, Yang, and Huang [13] proposed an unsupervised DTL-based system. The 

Euclidean space data alignment (EA) technique could be employed for aligning the target field EEG information. 

Afterward, the common spatial pattern (CSP) has been utilized for extracting feature, and the DCNN was 

implemented to classify EEG. 

In [14], a deep domain adaptation framework with a correlation alignment (DDAF-CORAL) method was designed. 

Particularly, a 2 phase architecture was employed for extracting deep features for original EEG information. The 

allocation difference provided by context-relevant and time-relevant differences was also minimalized by aligning 

the target EEG feature distributions and covariance of the source. Lastly, the classification and adaptation losses 

have been enhanced concurrently to attain satisfactory discriminative classification effectiveness and lower feature 

distribution divergence. Cho, Jeong, and Lee [15] projected NeuroGrasp, a dual-phase DL technique that interprets 

numerous hand clutching from EEG signals in the MI model. This presented technique efficiently utilizes an EEG 

and EMG-based learning, this EEG-based inference in the test stage will be achievable. The EMG control in model 

training enables BCIs to precisely forecast hand grasp categories from EEG signals. In [16], a pre-processing 

method was presented for the representation of EEG signals. Next, a parallel-CNN (PCNN) model was designed 
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for categorizing motor imagery signals. Innovative types of images were produced to integrate spatial filtering and 

frequency band extractor for the depiction of raw EEG signals. With the help of providing the signified images 

into the PCNN, it loads combination of a 3 unique sub-methods targeting for increasing the effectiveness of 

classification. 

Liu et al. [17] introduced an innovative end wise system to decode MI-EEG signal, dense multi-branch 1D-CNN 

(CMO-CNN), without any pre-processing namely filtering, employing the EEG signals. The one dimensional 

convolutional was exploited as a feature extraction for extracting various and multi-class feature in fusion through 

diverse filter scales and depths of various types. 1D SE-block and alternative links have been included to enhance 

the generalization and powerful network. The authors [18] provided an end-wise DL model, named EEG channel 

active inference-NN (EEG-ARNN) that was dependent upon graph CNNs (GCN) to completely use the connection 

of signals in the domain of temporal and spatial. Two channel selection algorithms, such as aggregation-selection 

(AS) and edge-selection (ES), have been developed for automatically choosing a particular number of optimum 

channels. 

3. The Proposed Model 

In this work, the automatic GOADL-MIC technique was introduced for the recognition and identification of EEG 

signals for the MI classification procedure. The GOADL-MIC technique comprises several processes such as pre-

processing, EfficientNet-B3-based feature extraction, BiLSTM-based classification and GOA-based 

hyperparameter tuning. Fig. 1 illustrates the workflow of GOADL-MIC system. 

 

Figure 1: Workflow of GOADL-MIC technique 

A. Pre-processing 

In this work, the initial phase of pre-processing is performed via the CWT method. CWT is a widely used approach 

to change a one-dimensional signal into two-dimensional matrix in the frequency domain [19]. The WT is nothing 

but an effective model, the time-frequency alter than the standard cosine and Fourier transform (FT). The FT which 

produces a spectrogram with secure resolution of time-frequency, WT combines varying rules and for that reason, 

it offers optimal resolution of time-frequency. The wavelet filtering bank makes use of logical Morse wavelet with 

time-bandwidth creation and symmetry parameter equal to 60 and 3, respectively. In the meantime, the image of 

scalogram WT is denoted by 69x400, rescaled to 224x224 over bicubic interpolation. 

B. Feature Extraction using EfficientNet-B3 Model 
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In the GOADL-MIC technique, the EfficientNet-B3 model can be employed. When EfficientNet CNN techniques 

were employed in the dataset of ImageNet, they established that their methods outpaced the entire current methods 

concerning the amount of top 1 parameters and accuracy. A new technique to scale CNN technique is the basis for 

the EfficientNet model. It creates usage of a direct and great compound co-efficient. Exclusively in comparison to 

conventional plans that scale features like width, wisdom, and objective. EfficientNet measures every feature with 

an appropriate set of scaling co-efficient reliably. Scaling individual features functions on model implementation 

but altering all modules about the available assets functions on complete implementation [20]. 

When compared to other models, EfficientNet is much lesser with ImageNet accuracy equivalent to its individual. 

For example, the ResNet_50 technique has 23,534,592 limitations. It is required to meet the prospects of the 

smallest Efficient Net (named EfficientNet_B0), which consumes 5,330,564 limits. We presented an effectual 

technique depending upon the Efficient Net_B3 CNN technique because it attacks good stability among accuracy 

as well as computational power. The main factor of the EfficientNet method is MBConv (mobile inverted 

bottleneck convolution). The MobileNet methods ideas were the basis for MBConv. One of the main ideas to 

employ is depth-wise separable Conv, which involves a point-wise and a depth-wise Conv. The following dual 

extra ideas were reserved from MobileNetV2 and the second enhanced form of MobileNet such as linear 

bottlenecks and residual connections [20]. The EfficientNet method family starts with its stem. The stem is general 

to every 8 techniques and the last layers. There are 7 blocks after the stem. The complete amount of layers in 

EfficientNetB0 is 237, whereas the complete amount in EfficientNetB7 is 813. The 2nd element is the basis for 

the 1st sub‐block of the 7 major blocks, excluding the first. Module 3 is linked to the sub-block through the skip 

connection. In the first sub‐blocks, the skip connection has been integrated with Module 4. Module 5 transports 

collectively every sub-block by linking it in a skip way to the one beforehand. Lastly, subblocks are generated by 

uniting the modules being employed in the exact method in the block. 

C. Hyperparameter Tuning using GOA 

The GOADL-MIC technique employs the GOA for the hyperparameter tuning process. GOA is based on the 

existence capabilities of gazelles which leverage the gazelles’ adaptive features for real‐time optimizer issues. This 

model incorporates the lower bound (𝐿𝐵) and upper bound (𝑈𝐵) constraints for establishing the allowable range 

of value for the population and also, and its technique exploits gazelles as searching agents that are denoted by 

𝑛 × 𝑑 [21].  

𝑋 = [

𝑥1,1 𝑥1,2 … 𝑥1,𝑑−1 𝑥1,𝑑

𝑥2,1 𝑥2,2 … 𝑥2,𝑑−1 𝑥2,𝑑

⋮ ⋮ 𝑥𝑖,𝑗 ⋮ ⋮
𝑥𝑛,1 𝑥𝑛,2 … 𝑥𝑛,𝑑−1 𝑥𝑛,𝑑

]                                  (1) 

Where the candidate population (position vector matrix) is represented as 𝑋. 𝐿𝐵𝑗  and 𝑈𝐵𝑗  are the lower and upper 

boundaries, correspondingly, 𝑟𝑎𝑛𝑑 refers to the random values. 𝑛 and 𝑑 variables are the gazelle and the 

dimensionality, correspondingly. 

𝑥𝑖,𝑗 = 𝑟𝑎𝑛𝑑 × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵𝑗                                   (2) 

After producing candidate solutions by 𝑥𝑖,𝑗 in all the iterations, the potential solution is recognized as the minimum 

solution. The best gazelles establish extraordinary skills in predator evasion, threat recognition, and warning 

others, the fittest gazelles are designated as the optimum solution obtained so far. Eq. (3) is used to create the Elite 

𝑛 × 𝑑 matrix, which acts as a reference to guide the gazelle in defining the subsequent step during the search stage. 

𝐸𝑙𝑖𝑡𝑒 =

[
 
 
 
 
𝑥1,1

′ 𝑥1,2
′ … 𝑥1,𝑑−1

′ 𝑥1,𝑑
′

𝑥2,1
′ 𝑥2,2

′ … 𝑥2,𝑑−1
′ 𝑥2,𝑑

′

⋮ ⋮ 𝑥𝑖,𝑗
′ ⋮ ⋮

𝑥𝑛,1 𝑥𝑛,2 … 𝑥𝑛,𝑑−1 𝑥𝑛,𝑑]
 
 
 
 

                            (3) 

Where 𝑥𝑖:𝑗
′  denotes the location vector of the leading gazelle. After each iteration, the Elite matrix is dynamically 

updated when the better gazelle exceeds the present top gazelles. We apply a controlled Brownian movement 

represented by the regulated and uniform step to safeguard effective search of neighboring areas. This stochastic 

movement is subjected to the Gaussian (likelihood distribution) function, with variance (𝜎2) 1 and mean (𝜇) 0. 

The Brownian movement can be described using Eq. (4),  

𝑓𝐵(𝑥, 𝜇, 𝜎) =
1

√2𝜋𝜎2
𝑒 (−

(𝑥 − 𝜇)2

2𝜎2
) =

1

√2𝜋
𝑒 (−

𝑥2

2
)                       (4) 
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At the time of grazing, a Brownian movement pattern is modeled for the gazelle's movement. This can be 

mathematically modeled as follows: 

𝑔𝑖+1 = 𝑔𝑖 + 𝑠 ⋅ 𝑅 ∗⋅ 𝑅𝐵 ∗⋅ (𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐵 ∗⋅ 𝑔𝑖)                             (5) 

Where𝑔𝑖 and 𝑔𝑖+1 are the solutions attained in the existing and subsequent iterations. The parameter “𝑠” shows 

the grazing velocity of the gazelle. The vector 𝑅𝐵 is a random number that simulates Brownian movement, and 𝑅 

is a uniformly distributed random number within [0,1]. Once the predator is discovered, the exploration stage 

begins. In this phase, the Lévy fight strategy is adopted, integrating occasional long jumps and short steps. The 

mathematical expression of Lévy is given below [21]: 

𝐿(𝑥𝑗) ≈ |𝑥𝑗|
1−𝛼                                                            (6) 

Where the fight distance is represented as 𝑥𝑗, and the power-law exponent is 𝛼 in [1, 2]: 

𝑓𝐿(𝑥; 𝛼, 𝛾) =
1

𝜋
∫ 𝑒𝑥𝑝(−𝛾𝑞𝛼)𝑐𝑜𝑠(𝑞𝑥)𝛿𝑞

∞

0

                                 (7) 

In Eq. (7), the movement is controlled by the distribution index (𝛼), and 𝛾 denotes the scaling unit. GOA produces 

stable Lévy movement by accepting 𝑡ℎ𝑒 𝛼 value, and its formula is given below. 

𝐿𝑒𝑣𝑦(𝛼) = 0.05 ×
𝑥

|𝑦|
1
𝛼

                                                     (8) 

Where 𝑦 and 𝑥 are a uniform distribution with variance 1 and mean 0. 

𝜎𝑥 = (
ᴦ(1 + 𝛼) sin (

𝜋𝛼
2

)

ᴦ (
1 + 𝛼

2
) 𝛼2

(
𝛼−1

2
)
)

1/𝛼

                                            (9) 

In optimization studies, this algorithm has shown improved search capability. The gazelle applies 𝐿𝐹 for its escape. 

The gazelle behaviors in finding predators can be mathematically described as follows: 

𝑔𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑔𝑖⃗⃗  ⃗ + 𝑆 ⋅ 𝜇 ⋅ �⃗� ∗⋅ 𝑅𝐿
⃗⃗ ⃗⃗ ∗⋅ (𝐸𝑙𝑖𝑡𝑒𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑅𝐿
⃗⃗ ⃗⃗ ∗⋅ 𝑔𝑖⃗⃗  ⃗)                            (10) 

In Eq. (10), 𝑆 denotes the top speed that the gazelles could achieve, 𝑎𝑛𝑑 𝑅𝐿
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   shows the Lévy distribution‐based 

random vector. The predator chases the gazelle can be expressed by, 

𝑔𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑔𝑖⃗⃗  ⃗ + 𝑆 ⋅ 𝜇 ⋅ 𝐶𝐹 ∗⋅ 𝑅𝐵
⃗⃗⃗⃗  ⃗ ∗⋅ (𝐸𝑙𝑖𝑡𝑒𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑅𝐵
⃗⃗⃗⃗  ⃗ ∗⋅ 𝑔𝑖⃗⃗  ⃗)                           (11) 

Where 𝐶𝐹 denotes the cumulative effects of the predator, evaluated as 𝐶𝐹 = (1 − 𝑖𝑡𝑒𝑟/𝑖𝑡𝑒𝑟𝑀𝑎𝑥). The PSR 

(predator success rate) affects the gazelle’s capability to prevent local minima. �⃗⃗�  refers to the binary vector 

produced by random value 𝑟 within [0,1] so that �⃗⃗� = 0 for 𝑟 < 0.34; or else �⃗⃗� = 1. 

𝑔𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {
𝑔𝑖⃗⃗  ⃗ + 𝐶𝐹[𝐿𝐵⃗⃗⃗⃗  ⃗ + �⃗� ∗⋅ (𝑈𝐵⃗⃗ ⃗⃗  ⃗ − 𝐿𝐵⃗⃗⃗⃗  ⃗)] ∗∙ �⃗⃗� ;

𝑖𝑓 𝑟 ≤ 𝑃𝑆𝑅𝑠

𝑔𝑖⃗⃗  ⃗ + [𝑃𝑆𝑅𝑠(1 − 𝑟) + 𝑟](𝑔𝑟1⃗⃗ ⃗⃗⃗⃗  − 𝑔𝑟2⃗⃗ ⃗⃗⃗⃗  ); 𝑒𝑙𝑠𝑒

                          (12) 

The GOA method originates an FF to get high efficiency of classifier. It states an optimistic number to represent 

the finest outcome of the candidate solution. In this study, the decrease of classifier rate of error is regarded as FF 

that expressed below:    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                  (13) 

D. Image Classification using Bi-LSTM Model 

For MI classification, the GOADL-MIC technique uses the Bi-LSTM model. LSTM has been designed to 

overcome the RNN vanishing gradient issue. In order to achieve this, the LSTM’s model has been developed with 
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3 gates like output, forget, and input [22]. The LSTM cell includes input gate 𝑖𝑡, output gate 0𝑡, and forget 

gate 𝑓𝑡  which can be determined by following measures. The forget gate (𝑓𝑡) can be accountable to determine 

whether data from the earlier state (𝐶𝑡−1) is to be forgotten or retained. These outcomes are accomplished 

depending on the inputs from both the existing input vector (𝑥𝑛𝑒𝑤𝑟
) and the hidden layer (HL) (ℎ𝑡−1), where the 

next mathematical formula can be applied to determine it: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑛𝑒𝑤𝑡
] + 𝑏𝑓)                                       (14) 

The Weight matrix and bias terms were described by 𝑊𝑓 and 𝑏𝑓, correspondingly. Similarly, the input gate (𝑖𝑡) 

defines how much data (𝑥𝑡) and (ℎ𝑡−1) should be accepted to upgrade the cell state, and could be determined as: 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑛𝑒𝑤𝑡
] + 𝑏𝑖)                                          (15) 

�̃�t =  tanh (𝑊𝑐[ℎ𝑡−1)𝑥𝑛𝑒𝑤𝑓
] + 𝑏𝑐)                                       (16) 

�̃�t refers to an existing condition. To decide which data to forget and which data to reserve, the updated cell state 

can be given below: 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 ⊙ 𝑖𝑡 ⊙ �̃�t                                                (17) 

where the sign ⊙ describes element‐wise vector multiplication, and 𝐶𝑡 portrays the long‐term state. The data flow 

among the existing cell state and its HL must be measured via an output gate 𝑜𝑡: 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑛𝑒𝑤𝑡
] + 𝑏o), and                                       (18) 

ℎ𝑡 = o𝑡 ⊙ tanh(𝐶𝑡)                                             (19) 

Where ℎ refers to the output. Some of the various LSTM models that could be employed such as stacked LSTM, 

Bi-LSTM, encoder‐decoder LSTM, CNN‐LSTM, and Vanilla LSTM. 

Graves and Schmidhuber in 2005 proposed BiLSTM based on the BRNN with LSTM cell. It is popular in which 

the successive data retain higher temporal dependency. Consequently, it can be essential for evaluating the 

conditions in the prospect. The BiLSTM is a vital tool to handle such a condition. It consists of the fully connected 

(FC) layer, BiLSTM layer, and input layer. Besides, a softmax layer must be employed for the output. In these 

guidelines, Bi-LSTM could absorb the input to be transferred backward and forward. The forward LSTM involves 

data from the right to left, representing its HL in such a way: ℎ⃗ = 𝐿𝑆𝑇𝑀(𝑥𝑛𝑒𝑤 , ℎ⃗ 𝑡−1) while the backward LSTM 

deals with data in the backward way and its HL should be offered ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑛𝑒𝑤 , ℎ⃖⃗𝑡−1).  The structure of the 

Bi-LSTM system was displayed in Fig. 2.  

 

Figure 2: Architecture of Bi-LSTM model 

Finally, the forward and backward conditions can be combined to produce a Bi-LSTM output in accordance with 

the given formula: 
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ℎ𝑡 = [ℎ⃗ 𝑡 ,  ℎ⃗⃗⃗⃖𝑡]                                                         (20) 

Determine that the ℎ𝑡 last HL encodes the majority of the input features of the signal that can be further utilized 

as input for an FC layer targeted for converting to vector with distance according to its class count. With respect 

to error classification, a layer of softmax was permitted. The distribution probability can be represented as given: 

�̃� = 𝑠𝑜𝑓𝑡max(𝑊𝑠ℎ𝑓 + 𝑏𝑠)                                            (21) 

where 𝑏𝑠 and 𝑊𝑠 specify the bias and weight correspondingly. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp(𝑧𝑖)

∑ exp𝑘
𝑗=1 (𝑧𝑗)

                                       (22) 

where 𝑧𝑖 represents the 𝑖𝑡ℎ component of the input vector 𝑧. With the help of reducing the error among actual Y 

and predicted �̃�, the Bi-LSTM architecture has been trained. 

4. Results and Discussion 

The experimental outcomes of the GOADL-MIC system can be examined on 2 datasets comprising BCI 

Competition 2003 dataset-III and BCI competition-IV dataset 2b. The BCI competition 2003, dataset-III [23], 

encompasses 3-channel EEG data in normal females, for the imagination of left, and right-hand activities. The BCI 

competition-IV dataset 2b includes 9 subjects each with 5 sessions of MI empirically, between that the main 2 

sessions can be affirmed without response and the residual 3 sessions can be incorporated online feedback [24]. 

These datasets can be accessed by mailing the principal author of the study. 

Table 1 and Fig. 3 represent the overall performance of the GOADL-MIC technique on the BCI Competition-III 

dataset. The accomplished findings indicate the proficient outcomes of the GOADL-MIC model below all epochs. 

According to 500 epochs, the GOADL-MIC technique offers 𝑝𝑟𝑒𝑐𝑛 of 98.76%, 𝑟𝑒𝑐𝑎𝑙 of 97.44%, 𝑎𝑐𝑐𝑢𝑦 of 

98.17%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.29%. Meanwhile, based on 1000 epochs, the GOADL-MIC system gives 𝑝𝑟𝑒𝑐𝑛 of 

98.92%, 𝑟𝑒𝑐𝑎𝑙 of 97.63%, 𝑎𝑐𝑐𝑢𝑦 of 98.21%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.27%. Moreover, with 2000 epochs, the GOADL-

MIC system gives 𝑝𝑟𝑒𝑐𝑛 of 94.93%, 𝑟𝑒𝑐𝑎𝑙 of 98.83%, 𝑎𝑐𝑐𝑢𝑦 of 98.93%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.97%. Finally, based on 

2500 epochs, the GOADL-MIC method gains 𝑝𝑟𝑒𝑐𝑛 of 96.15%, 𝑟𝑒𝑐𝑎𝑙 of 97.64%, 𝑎𝑐𝑐𝑢𝑦 of 96.78%, and 𝐹𝑠𝑐𝑜𝑟𝑒 

of 96.72%, respectively. 

Table 1: Overall performance of the GOADL-MIC model under the BCI Competition-III dataset 

BCI Competition-III Dataset 

No. of Epoch 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑨𝒄𝒄𝒖𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

500 98.76 97.44 98.17 98.29 

1000 98.92 97.63 98.21 98.27 

1500 98.98 99.44 99.81 99.77 

2000 94.93 98.83 98.93 96.97 

2500 96.15 97.64 96.78 96.72 

Average 97.55 98.19 98.38 98.00 
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Figure 3: Overall performance of the GOADL-MIC system on the BCI Competition-III dataset 

Table 2 and Fig. 4 highlight the comparative outcomes of the GOADL-MIC technique on the BCI Competition-

III dataset [25]. The achieved results represent that the Improved GA FKNN-LDA system and WTSE-SVM 

algorithm get worse performance with least 𝑎𝑐𝑐𝑢𝑦 values of 84.00% and 86.40%. Additionally, the Adaptive PP-

Bayesian and STFT-DT models exhibit closer 𝑎𝑐𝑐𝑢𝑦 values of 90.00% and 90.00%. Although the CWTFB-TL 

and AORNDL-MIC techniques offer reasonable performance, the GOADL-MIC technique highlighted a 

maximum 𝑎𝑐𝑐𝑢𝑦 of 96.38%. 

Table 2: 𝐴𝑐𝑐𝑢𝑦 analysis of the GOADL-MIC system compared with other models under the BCI Competition-

III dataset 

BCI Competition-III Dataset 

Models Accuracy 

Adaptive PP-Bayesian 90.00 

STFT-DL Algorithm 90.00 

Optimized GA FKNN-

LDA 84.00 

WTSE-SVM Model 86.40 

CWTFB-TL Model 95.71 

AORNDL-MIC 

Algorithm 96.14 

GOADL-MIC 98.38 
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Figure 4:  𝐴𝑐𝑐𝑢𝑦 analysis of the GOADL-MIC technique compared with other systems 

The 𝑎𝑐𝑐𝑢𝑦 curves for training (TRA) and validation (VAL) shown in Fig. 5 for the GOADL-MIC model on the 

BCI Competition-III dataset provide valued insights into its effectiveness in varied epochs. Mainly, it is consistent 

upgrade in both TRA and TES 𝑎𝑐𝑐𝑢𝑦 with amplified epochs, representing the ability of the system in learning and 

recognizing patterns from both data of TRA and TES. The higher tendency in TES 𝑎𝑐𝑐𝑢𝑦 emphasizes the model's 

adaptability to the TRA dataset as well as the ability to create correct forecasts on unnoticed data, underscoring 

skills of strong generalization. 

 

 

 

Figure 5:  𝐴𝑐𝑐𝑢𝑦 curve of the GOADL-MIC system with the BCI Competition-III dataset 

https://doi.org/10.54216/FPA.160103


Fusion: Practice and Applications (FPA)                                                          Vol. 16, No. 01. PP. 37-51, 2024 

 
 

46 
Doi: https://doi.org/10.54216/FPA.160103  
Received: July 24, 2023 Revised: November 27, 2023 Accepted: April 18, 2024 

 

 

Figure 6:  Loss curve of the GOADL-MIC model with the BCI Competition-III dataset 

Fig. 6 establishes an extensive summary of the TRA and TES loss values for the GOADL-MIC algorithm below 

the BCI Competition-III dataset through numerous epochs. The TRA loss constantly reduces as the method refines 

weights to minimalize classifier errors under both datasets. The loss curves exhibit the model's position with the 

TRA data, highlighting its skill to take patterns efficiently. Noteworthy is the nonstop refinement of parameters in 

the GOADL-MIC model, directed at lessening discrepancies amongst predictions and real TRA labels. 

The overall performance of the GOADL-MIC system under the BCI-Competition-IV dataset is reported in Table 

3 and Fig. 7. The simulation results identified the proficient performance of the GOADL-MIC technique under all 

epochs. With S1, the GOADL-MIC technique offers 𝑎𝑐𝑐𝑢𝑦 of 88.94%, 73.01%, 86.06%, 83.99%, and 89.96% 

under epochs 500-2500 respectively. Also, based on S3, the GOADL-MIC methodology provides 𝑎𝑐𝑐𝑢𝑦 of 

89.88%, 82.03%, 95.85%, 76.96%, and 87.85% on epochs 500-2500. Besides, with S5, the GOADL-MIC 

algorithm achieves 𝑎𝑐𝑐𝑢𝑦 of 85.92%, 86.84%, 90.06%, 92.82%, and 83.06% on epochs 500-2500. Meanwhile, 

with S7, the GOADL-MIC technique gets 𝑎𝑐𝑐𝑢𝑦 of 84.84%, 92.98%, 86.96%, 82.95%, and 96.94% on epochs 

500-2500, correspondingly. 

Table 3: Overall performance of the GOADL-MIC system under the BCI Competition-IV dataset 

BCI Competition-IV Dataset 

No. of 

Epoch 
S1 S2 S3 S4 S5 S6 S7 S8 S9 

Average 

500 88.94 86.85 89.88 88.04 85.92 77.90 84.84 97.98 84.83 87.24 

1000 73.01 85.08 82.03 95.98 86.84 80.83 92.98 85.12 94.09 86.22 

1500 86.06 98.09 95.85 99.88 90.06 91.94 86.96 90.93 88.88 92.07 

2000 83.99 92.85 76.96 90.87 92.82 94.02 82.95 89.92 96.94 89.04 

2500 83.96 82.92 87.85 93.13 83.06 88.88 96.94 91.03 83.09 87.87 

Average 83.19 89.16 86.51 93.58 87.74 86.71 88.93 91.00 89.57 88.49 
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Figure 7: Overall performance of the GOADL-MIC model on the BCI Competition-IV dataset 

Table 4 and Fig. 8 represent a detailed comparative analysis of the GOADL-MIC method on the BCI Competition-

IV dataset [25]. These results stated that the GOADL-MIC technique reaches improved performance with each 

subject. According to S-1, the GOADL-MIC system gains an increased 𝑎𝑐𝑐𝑢𝑦 of 91.90% whereas the CSP, 

FBCSP, FDBN, and AORNDL-MIC methodologies obtain decreased 𝑎𝑐𝑐𝑢𝑦 values of 68.97%, 72.89%, 84.06%, 

and 84.14% correspondingly. Followed by, S-3, the GOADL-MIC method achieves raised 𝑎𝑐𝑐𝑢𝑦 of 89.20% 

whereas the CSP, FBCSP, FDBN, and AORNDL-MIC algorithms get reduced 𝑎𝑐𝑐𝑢𝑦 values of 59.98%, 64.17%, 

69.11%, and 87.82%. Additionally, based on S-5, the GOADL-MIC method attains an increased 𝑎𝑐𝑐𝑢𝑦 of 90.62% 

but the CSP, FBCSP, FDBN, and AORNDL-MIC systems get diminished 𝑎𝑐𝑐𝑢𝑦 values of 79.78%, 96.06%, 

95.99%, and 88.66%. Finally, on S-9, the GOADL-MIC method accomplishes better 𝑎𝑐𝑐𝑢𝑦 of 92.01% however, 

the CSP, FBCSP, FDBN, and AORNDL-MIC systems get diminished 𝑎𝑐𝑐𝑢𝑦 values of 86.16%, 90.04%, 93.98%, 

and 90.50%, respectively. 

Table 4: Comparison analysis of the GOADL-MIC system under the BCI Competition-IV dataset 

BCI Competition-IV Dataset 

Subject 
CSP 

Model 

FBCSP 

MIRSR 

FDBN 

Model 

AORNDL-

MIC 

GOADL-

MIC 

S-1 68.97 72.89 84.06 84.14 91.90 

S-2 64.71 64.03 68.06 90.08 91.48 

S-3 59.98 64.17 69.11 87.82 89.20 

S-4 99.70 99.95 99.96 94.76 96.38 

S-5 79.78 96.06 95.99 88.66 90.62 

S-6 78.00 83.84 90.94 88.07 89.59 

S-7 79.71 80.93 84.85 90.22 91.93 

S-8 95.85 95.82 97.12 92.11 93.76 

S-9 86.16 90.04 93.98 90.50 92.01 

Average 79.21 83.08 87.12 89.60 91.87 
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Figure 8: 𝐴𝑐𝑐𝑢𝑦 analysis of the GOADL-MIC system compared with other algorithms under the BCI 

Competition-IV dataset 

Fig. 9 clarifies the average comparison analysis of the GOADL-MIC approach on the BCI Competition-IV dataset. 

The obtained findings display that the CSP algorithm gets poorer performance with decreased average 𝑎𝑐𝑐𝑢𝑦 value 

of 79.21%. In addition, the FBCSP MIRSR system displays a closer average 𝑎𝑐𝑐𝑢𝑦 value of 83.08%. While the 

FDBN and AORNDL-MIC techniques provide considerable performance, the GOADL-MIC technique 

emphasized a maximum average 𝑎𝑐𝑐𝑢𝑦 of 91.87%. 

 

Figure 9: Average of the GOADL-MIC model under BCI Competition-IV dataset 

The 𝑎𝑐𝑐𝑢𝑦 curves for TRA and VAL shown in Fig. 10 for the GOADL-MIC algorithm with the BCI Competition-

IV dataset offer esteemed insights into its efficiency in varied epochs. Predominantly, it is reliable upgrading in 

both TRA and TES 𝑎𝑐𝑐𝑢𝑦 with raised epochs, representing the ability of the method in learning and recognizing 

patterns from the data of TRA and TES. The increased trend in TS 𝑎𝑐𝑐𝑢𝑦 underlines the model's flexibility to the 

TRA dataset and capability to produce exact predictions on hidden data, highlighting skills of robust 

generalization. 
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Figure 10:  𝐴𝑐𝑐𝑢𝑦 curve of the GOADL-MIC model with the BCI Competition-IV dataset 

 

Figure 11:  Loss curve of the GOADL-MIC system under BCI Competition-IV dataset 

Fig. 11 exhibits an extensive summary of the TRA and TES loss values for the GOADL-MIC algorithm below the 

BCI Competition-IV dataset at many epochs. The TRA loss continually reduces as the method refines weights to 

minimalize classifier errors under both datasets. The loss curves show the model's position with the TRA data, 

emphasizing its ability to take patterns competently. Noteworthy is the continuous improvement of parameters in 

the GOADL-MIC system, intended at decreasing differences amongst predictions and actual TRA labels. 

Therefore, the projected model can be used for precise MI classification method. 

5. Conclusion 

In this work, the automated GOADL-MIC technique was introduced for the detection and classification of EEG 

signals for the MI classification procedure. The GOADL-MIC system comprises several processes such as pre-

processing, EfficientNet-B3-based feature extraction, GOA-based hyperparameter tuning, and BiLSTM-based 

classification. To accomplish this, the GOADL-MIC technique initially undergoes the conversion of one 

dimensional-EEG signals into 2D time-frequency amplitude ones. Besides, the EfficientNet-B3 model can be 

applied for the effectual derivation of feature vector and its hyperparameters can be selected by using GOA. 
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Finally, the classification of MIs takes place using the Bi-LSTM model. The experimental outcome analysis of the 

GOADL-MIC system is verified utilizing the BCI dataset and the results demonstrate the promising results of the 

GOADL-MIC method over its counter approaches in terms of different measures. Future work can focus on the 

design of ensemble models for the enhanced detection and classification of EEG signals 
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