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Abstract 

This article presents the development of families of approaches for numerically solving singularly 

perturbed two-point boundary-value problems using exponential spline functions. The proposed 

approaches exhibit second-order and fourth-order accuracy and are suitable for both singular and non-

singular problem scenarios. Numerical data are presented to demonstrate the efficacy of our 

methodologies and are compared with those proposed by various writers. 
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1. Introduction 

We study a boundary value problem for the second order that is singularly perturbed, of the following 

form [1]: 

𝜀𝑢̃′′ = 𝑔(𝜂̈)𝑢̃ + 𝑟(𝜂̈)  ,    𝜂̈ ∈ [𝑎, 𝑏]                                                                                                           (1) 

with boundary conditions 

𝑢(𝑎) = 𝜆̂1 and 𝑢(𝑏) = 𝜆̂2                                                                                                                         (2) 

   Given constants 𝜆1 , and 𝜆2, a tiny positive parameter ε 0 ≤ 𝜀 ≤  1, and bounded continuous 

functions 𝑔(𝑏), 𝑟(𝑥). The boundary value problem at both ends of the interval is influenced by the 

properties of the function 𝑟(𝜂̈). These issues occur in various domains of applied mathematics and 

engineering. For instance, consider the arena-vier stokes flow characterized by high Reynolds 

numbers and heat transfer difficulties involving Peclet numbers. Due to the existence of boundary 

value concerns, we are encountering challenges in tackling these particular problems utilizing 

numerical approaches involving homogeneous arrays. To achieve a precise estimation, it is necessary 

to have a dense grid in the boundary layer region. This article presents a novel approach using 

exponential spline functions to approximate the solution of problem (1) with fourth-order accuracy 

while satisfying the boundary requirements (2). A multitude of numerical approaches have been 

devised that rely on solving singular perturbed value problems, particularly those with boundary 

values at one or both ends of the interval.El-Zahar and El-Kabeir used An innovative approach for 

resolving boundary value problems with singular perturbations. Phaneendra and Emineni [2] 

employed the Variable mesh nonpolynomial spline approach to address singular perturbation 

situations that display twin layers. Ali and Hadhoud [3] conducted a numerical investigation on self-

adjoint singly perturbed two-point boundary value problems using the collocation method. They also 

provided an error estimation. Rashidinia and Mohammad [4] employed quintic spline algorithms to 

solve singularly perturbed boundary-value problems. Furthermore, numerous studies have detailed 
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the utilization of splines for the numerical resolution of singularly perturbed boundary value problems 

[5–11]. This article presents a novel approach to solving problem (1) by developing a variable mesh 

finite difference scheme that utilizes exponential splines. The method is proven to converge 

consistently. The concept involves employing a first-order continuity clause, variable mesh 

derivatives, exponential spline, and discretization equation at the interior nodes to address the 

problem. The key characteristic of our technology is its ability to achieve high resolution while 

maintaining computational efficiency and ease of implementation on a computer. This article 

introduces the exponential spline approach and presents the formulation of our spline function 

approximation and truncation error in section 2. The application of these methods to two instances is 

provided in section three, presents Convergence Analysis in section four, while the numerical 

solutions are explained in section five, Finally, the conclusion was mentioned in section six. 

2. Derivation of the Method 

  To simplify, we choose the break point of the interval. [𝑎, 𝑏] at 𝑐 =
3𝑎+𝑏

4
 and 𝑐 =

𝑎+3𝑏

4
 to build a 

numerical approach for approximating the solution of issue (1). interval [𝑎, 𝑏] was partitioned into 𝑛 

equal subintervals using the point𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0,1,2, … , 𝑛 − 1, 𝑛, and n is an arbitrary positive 

integer here,  𝑎 = 𝜂̈0,  𝑏 = 𝜂̈𝑛 and  ℎ =
𝑏−𝑎

𝑛
. Let 𝑢(𝜂̈) represent the exact solution and 𝑢𝑖 represent an 

approximation to 𝑢(𝜂̈𝑖) obtained using the exponential spline 𝐸𝑖(𝜂̈) that passes through the points 

(𝜂̈𝑖 , 𝑢𝑖) and (𝜂̈𝑖+1, 𝑢𝑖+1). It is not only necessary for 𝐸𝑖(𝜂̈) to satisfy the interpolator's conditions at 𝑥𝑖 
and 𝑥𝑖+1, but also for the continuity of the first derivative to be fulfilled at the shared nodes 

(𝜂̈𝑖 , 𝑢𝑖).The expression 𝐸𝑖(𝜂̈) is written in the following format: 

𝐸𝒊(𝜂̈) = 𝑎𝑖𝑒
𝜔̌(𝜂̈−𝜂̈𝑖) + 𝑏𝑖𝑒

−𝜔̌(𝜂̈−𝜂̈𝑖) + 𝑐𝑖(𝜂̈ − 𝜂̈𝑖) + 𝑑𝑖                                                                               (3) 

where   𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖and 𝑑𝑖are constants and 𝜔̌ is free parameter to be determined later The exponential 

spline function𝐸(𝜂̈) of class 𝐶2[𝑎, 𝑏] interpolated𝑢(𝜂̈) at the network points 𝑥𝑖 , 𝑖 = 0,1,2, … , 𝑛 

depended on a parameter 𝜔̌. 

To derive an expression for the coefficient of equation (2) in term 𝑢̃
𝑖+
1

2

, 𝐷𝑖 , 𝑁𝑖+1
2

, Ψ𝑖and Ψ𝑖+1, we first 

define:  

𝐸𝑖 (𝜂̈𝑖+1
2
) = 𝑢̃

𝑖+
1
2
   ,   𝐸𝑖

(1)(𝜂̈𝑖) =  𝒥𝑖  

𝐸𝑖
(2)(𝜂̈𝑖+1) =  ℱ̃𝑖+1

2
  , 𝐸𝑖 

(3)(𝜂̈𝑖) =
1

2
[Ψ𝑖+1 +Ψ𝑖] 

Through algebraic manipulation, we derive the following expression: 

     𝑎𝑖 =

ℎ3(Ψ𝑖+1 +Ψ𝑖)𝑒
−𝜃
2 + 2ℎ2𝜃ℱ̃

𝑖+
1
2

2𝜃3(𝑒
𝜃
2 + 𝑒

−𝜃
2 )

 

     𝑏𝑖 =

2ℎ2𝜃ℱ̃
𝑖+
1
2
−ℎ3(Ψ𝑖+1 +Ψ𝑖)𝑒

𝜃
2

2𝜃3(𝑒
𝜃
2 + 𝑒

−𝜃
2 )

 

  𝑐𝑖 =
2𝒥𝑖𝜃

2 − ℎ2(Ψ𝑖+1 +Ψ𝑖)

2𝜃2
 

𝑑𝑖 =

𝜃2𝑢̃
𝑖+
1
2
− ℎ2ℱ̃

𝑖+
1
2

𝜃2
−
ℎ2(2𝒥𝑖𝜃

2 − ℎ(Ψ𝑖+1 +Ψ𝑖))

2𝜃2
 

Where 𝜃 = 𝜔̌ℎ and 𝑖 = 0,1,2, … , 𝑛. 

By evaluating the derivative at point (𝜂̈𝑖, 𝑢̃𝑖),, namely when 𝐸𝑖−1
(𝑚)(𝜂̈𝑖) = 𝐸𝑖

(𝑚)(𝜂̈)  and 𝑚 = 0,1.2, we 

obtain the subsequent consistency relations for 𝑖 = 1,… , 𝑛. 
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𝒥𝑖 + 𝒥𝑖−1 =

2ℎ (2 − 𝑒
𝜃
2 − 𝑒

−𝜃
2 ) ℱ̃

𝑖+
1
2

𝜃2(𝑒
𝜃
2 + 𝑒

−𝜃
2 )

+

2ℎ (𝑒
𝜃
2 − 𝑒

−𝜃
2 − 𝑒−𝜃 − 𝑒𝜃) ℱ̃

𝑖−
1
2

𝜃3(𝑒
𝜃
2 + 𝑒

−𝜃
2 )

− 2ℎ𝑢̃
𝑖+
1
2
 

−2ℎ𝑢̃
𝑖−
1

2

+

ℎ2(2(𝑒
𝜃
2−𝑒

−𝜃
2 )+𝜃(𝑒

𝜃
2+𝑒

−𝜃
2 ))(Ψ𝑖−1+2Ψ𝑖+Ψ𝑖+1)

2𝜃3(𝑒
𝜃
2+𝑒

−𝜃
2 )

                                                                               (4) 

𝒥𝑖 + 𝒥𝑖−1 =
ℎ(𝑒

𝜃
2−𝑒

−𝜃
2 )ℱ̃

𝑖−
1
2 

𝜃
                                                                                                                       (5) 

and  

ℎ((𝑒
𝜃
2−𝑒

−𝜃
2 ))(Ψ𝑖−1+2Ψ𝑖+Ψ𝑖+1)

2𝜃3(𝑒
𝜃
2+𝑒

−𝜃
2 )

=
2𝑁𝑖+1

(𝑒
𝜃
2+𝑒

−𝜃
2 )

−
(𝑒𝜃+𝑒−𝜃)ℱ̃

𝑖−
1
2

(𝑒
𝜃
2+𝑒

−𝜃
2 )

                                                                            (6) 

From Equations. (4) to (6) we get the following: 

(
2(ℎ2+𝜃2)−ℎ2(𝑒

𝜃
2+𝑒

−𝜃
2 )

𝜃2(𝑒
𝜃
2+𝑒

−𝜃
2 )

) ℱ̃
𝑖−
3

2

+ 2(
((𝜃2+2)−2𝜃2)(𝑒𝜃+𝑒−𝜃)−2ℎ2(𝑒

𝜃
2+𝑒

−𝜃
2 )

2𝜃2(𝑒
𝜃
2+𝑒

−𝜃
2 )

) ℱ̃
𝑖−
1

2

+

(
2(ℎ2+𝜃2)−ℎ2(𝑒

𝜃
2+𝑒

−𝜃
2 )

𝜃2(𝑒
𝜃
2+𝑒

−𝜃
2 )

) ℱ̃
𝑖+
1

2

                                                                                                                   (7) 

which can further be written as, 

𝑢̃
𝑖−
3

2

− 𝑢̃
𝑖−
1

2

+ 𝑢̃
𝑖+
1

2

= 𝜇̂ℱ̃
𝑖−
3

2

+ 2𝛿̂ℱ̃
𝑖−
1

2

+ 𝜇̂ℱ̃
𝑖+
1

2

                                                                                      (8) 

Where 

𝜇̂ =
2(ℎ2 + 𝜃2) − ℎ2 (𝑒

𝜃
2 + 𝑒

−𝜃
2 )

𝜃2(𝑒
𝜃
2 + 𝑒

−𝜃
2 )

 

𝛿̂ =
((𝜃2 + 2) − 2𝜃2)(𝑒𝜃 + 𝑒−𝜃) − 2ℎ2 (𝑒

𝜃
2 + 𝑒

−𝜃
2 )

2𝜃2(𝑒
𝜃
2 + 𝑒

−𝜃
2 )

 

Equation (8) provides 𝑛 − 1 algebraic linear equations for the unknowns 𝑢̃
𝑖+
1

2
,
, 0,1,2, … , 𝑛 − 1. To 

directly compute 𝑢̃
𝑖+
1

2
,
, 0,1,2, … , 𝑛 − 1, two additional equations are required, one at either end of the 

integration range. The two equations are derived using the Taylor series and the method of 

indeterminate coefficients. These equations exist. 

2𝑢̃0 − 3𝑢̃1
2

+ 𝑢̃3
2

= (Φ0ℱ̃0 +Φ1ℱ̃1

2

+Φ2ℱ̃3

2

+Φ3ℱ̃5

2

)     𝑎𝑡 𝑖 = 1                                                           (9) 

2𝑢̃𝑛 − 3𝑢̃𝑛−1
2

+𝑢̃𝑛−13
= (Φ0ℱ̃𝑛 +Φ1ℱ̃𝑛−1

2

+Φ2ℱ̃𝑛−3
2

+Φ3ℱ̃𝑛−5
2

)  𝑎𝑡 𝑖 = 𝑛                                         (10) 

The local truncation errors associated with equations (8), (9), and (10) are denoted as 𝑡𝑖 for 𝑖 =
1,2, … . , n − 1. 
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𝑡𝑖 =

{
 
 

 
 

− 
1 

64
ℎ4𝑢𝑖

(5)
+𝑂(ℎ5) ,     𝑖=1.  

ℎ2(1−2𝜇̂−𝛿̂)𝑢𝑖
(2)+ℎ3(

1

2
−𝜇̂+

𝛿̂

2
)𝑢𝑖

(3)+ℎ4(
−80

834
−
7

4
𝜇̂+

𝛿̂

8
)𝑢𝑖

(4)

+ℎ3(
1

16
−
13𝜇̂

24
−
𝛿̂

48
)𝑢𝑖

(5)+ℎ6(
85

6534
−
82𝜇̂

415
−

𝛿̂

415
)𝑢̃𝑖

(6)+𝑂(ℎ7) ,    𝑖=2,3,….,𝑛−1 .

−ℎ4

64
𝑢𝑖
(5)+ 𝑂(ℎ5),    𝑖=𝑛.

                    

Equations (8) to (10) introduce a set of approaches based on the selection of 𝜇̂, 𝛿̂ and Φ. Class of 

methods for assigning values to (𝜇̂, 𝛿̂) = (0.5, 0.833). 

1- Method with third order convergence for (Φ0, Φ1, Φ2)(−0.0416,0.687,0.1041), the local 

truncation mistake is: 

𝑡𝑖 = {
− 

1 

96
ℎ5𝑢̃𝑖

(5)
+ 𝑂(ℎ6) ,     𝑖 = 1, 𝑛

−1

240
ℎ6𝑢̃𝑖

(6)
+ 𝑂(ℎ7) ,    𝑖 = 2,3, … . , 𝑛 − 1

                                                                                   (11) 

  Method with fourth order convergence for (Φ0, Φ1, Φ2, Φ3) = (
−1

120
,
5

8
,
7

48
,
−1

80
), the local truncation 

mistake is: 

𝑡𝑖 = {

19 

5120
ℎ6𝑢̃𝑖

(6)
+ 𝑂(ℎ7) ,     𝑖 = 1, 𝑛

−1

240
ℎ6𝑢̃𝑖

(6)
+ 𝑂(ℎ7) ,    𝑖 = 2,3, … . , 𝑛 − 1

                                                                       (12) 

3. Exponential Spline solution 

   The linear equations that are supplied by equations (8-10) are the foundation for the spline solution 

to the problem (1) with the condition defining the boundary (2). Let us now consider the following: 

Ũ = (𝑢̃
𝑖−
1

2

), U̅ = (𝑢̅̃
𝑖−
1

2

), Τ = (𝑡
𝑖−
1

2

) and 𝐸 = (𝑒
𝑖−
1

2

) = (𝑈
𝑖−
1

2

− 𝑈
𝑖−
1

2

) for 𝑖 = 1,2, Be n- 

If we consider column vectors in several dimensions, we may express the conventional matrix 

equations for the exponential spline approach as follows. 

𝒟 = Ζ̅ + Τ 

𝒟U̅̃ = Ζ̅                                                                                                                  (13) 

𝒟(Ũ − U̅̃) = Τ 

𝒟𝐸 = Τ̇                                                                                                                   (14) 

Also, 

𝒟 = Ψ0 + ℎ
4ℋŨ 

The three-band symmetric matrix N0 has the form: 

 

Ψ0 =

[
 
 
 
 
 
−1
1
0

1 0 …
−2 1 0
1 −2 1

⋯
0
0
0

⋱ ⋱ ⋱ ⋱ ⋮
0 0 ⋱
0
0

0
0

…
…

⋱ ⋱
−1
…

−2 
1

1
1]
 
 
 
 
 

 

The matrix ℋ has the form: 
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ℋ =

[
 
 
 
 
 
 
Φ0

𝜇̂
0

Φ1 Φ2 Φ3

𝛿 𝜇 0
𝜇̂ 𝛿 𝜇

⋯
0
0
0

⋱ ⋱ ⋱ ⋱ ⋮
0 0 ⋱
0
0

0
0

…
…

⋱ ⋱
𝜇̂
…

𝛿 
𝛿

𝜇̂
𝜇̂]
 
 
 
 
 
 

 

Regarding vector Z, 

Z̅𝑖 =

{
 
 

 
 ℎ𝒢̌ + ℎ2 (Φ0𝑞1

2
+Φ1𝑞3

2
+Φ2𝑞5

2
+Φ3𝑞7

2
)

ℎ2 (μ𝑞
𝑖−
3
2
+ δ𝑞

𝑖−
1
2
+ μ𝑞

𝑖+
1
2
)

−ℎ𝒢̌ + ℎ2 (Φ0𝑞𝑛−1
2
+Φ1𝑞𝑛−3

2
+Φ2𝑞𝑛−5

2
+Φ3𝑞𝑛−7

2
)

 

Set Ψ0 = 𝒩0 + 𝒱0 

Where, 

𝒩0 =

[
 
 
 
 
 
−3
1
0

1 0 …
−2 1 0
1 −2 1

⋯
0
0
0

⋱ ⋱ ⋱ ⋱ ⋮
0 0 ⋱
0
0

0
0

…
…

⋱ ⋱
−1
…

−2 
1

1
−3]
 
 
 
 
 

 

And 

𝒱0 =

[
 
 
 
 
 
2
0
0

0 0 …
0 0 0
0 0 0

⋯
0
0
0

⋱ ⋱ ⋱ ⋱ ⋮
0 0 ⋱
0
0

0
0

…
…

⋱ ⋱
0
…

0 
0

0
2]
 
 
 
 
 

 

 

4. Convergence Analysis 

   Our primary objective at the moment is to establish a limit for ‖E‖∞. Let's revisit error equation 

(14) in (13) and express it in a different form. 

𝐸 = 𝒟−1𝑇 = [𝒩0 + 𝒱0 + ℎ
2ℋŨ]

−1
𝑇 = (𝐼 +𝒩0

−1(𝒱0 + ℎ
2ℋŨ))𝒩0𝑇 

This implies that 

‖𝐸‖∞ = ‖(𝐼 +𝒩0
−1(𝒱0 + ℎ

2ℋŨ))
−1

‖
∞
‖𝒩0

−1‖
∞
‖𝑇‖∞                                             (15) 

To determine the bound on ‖𝐸‖∞,, we require the following two lemmas.  

Lemma 1: If Σ is a square matrix of a certain size 𝑛 and ‖Σ‖ < 1, then the (1 + Σ)−1 exists and. 

‖(𝐼 + Σ)−1‖ ≤ (1 − ‖Σ‖)−1 

Lemma 2: The matrix (𝒩0 + 𝒱0 + ℎ
2ℋ𝑢̃) is nonsingular if ‖ũ‖∞ <

ℎ2−2ℓ

ℎ2ℓ(2𝜇+𝛿)
 ,where  

ℓ =
1

8
((𝑎 − 𝑏)2 + ℎ2) (2 + ℎ2(2𝜇 + 𝛿) ‖Ũ‖

∞
) 

Proof: 
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     Since, 𝒟 = (𝒩0 + 𝒱0 + ℎ
2ℋŨ) = (𝐼 +𝒩0

−1(𝒱0 + ℎ
2ℋŨ))𝒩0 and the matrix 𝒩0 is 

nonsingular, to prove that 𝒟 is nonsingular, it is sufficient to demonstrate 

(𝐼 +𝒩0
−1(𝒱0 + ℎ

2ℋŨ))𝒩0 nonsingular. Moreover, 

‖Ũ‖
∞
≤ ‖𝑢̃‖∞ = 𝑚𝑎𝑥𝑎≤𝑥≤𝑏|𝑢̃(𝑥)| 

‖𝒩0
−1‖

∞
<

  (𝑎−𝑏)2+ℎ2

8ℎ2
   

‖𝒱0‖∞ = 2 

‖ℋ‖∞ = 2𝜇̂ + 𝛿̂ 

Also 

‖𝒩0
−1(𝒱0 + ℎ

2ℋŨ)‖
∞
≤ ‖𝒩0

−1‖
∞
(‖(𝒱0 + ℎ

2ℋŨ)‖
∞
) ≤ ‖𝒩0

−1‖
∞
(‖𝒱0‖∞ + ℎ

2‖ℋ‖∞‖Ũ‖∞) 

(16) 

Thus, replacing  ‖ũ‖∞ , ‖𝒩0
−1‖

∞
, ‖𝒱0‖∞ and ‖ℋ‖∞ in equation (16), we get 

‖𝒩0
−1(𝒱0 + ℎ

2ℋŨ)‖
∞
≤ (

  (𝑎 − 𝑏)2 + ℎ2

8ℎ2
) (2 + ℎ2(2𝜇̂ + 𝛿̂) ‖Ũ‖

∞
) 

‖𝑢̃‖∞ <
ℎ2−2ℓ

ℎ2ℓ(2𝜇̂+𝛿̂)
                                                                                                                                  (17) 

Therefor equation (17) leads 

‖𝒩0
−1(𝒱0 + ℎ

2ℋŨ)‖
∞
≤ 1 

The no singularity of matrix 𝒟 is demonstrated by lemma 1. Given that ‖𝒩0
−1(𝒱0 + ℎ

2ℋŨ)‖
∞
≤ 1 

, it may be inferred by applying lemma (1) and equation (14) , we get that, 

‖𝐸‖∞ ≤
‖𝒩0

−1‖
∞
‖𝑇‖∞

1− ‖𝒩0
−1‖

∞
‖(𝒱0+ℎ

2ℋŨ)‖
∞

 .  

From Equation. (11) we have 

‖𝑇‖∞ =
427

7560
ℎ2𝑀5, 𝑀5 = 𝑚𝑎𝑥𝑎≤𝑥≤𝑏|𝑦

(5)(𝜂̈𝑖)| 

Then 

‖𝐸‖∞ ≤
‖𝒩0

−1‖
∞
‖𝑇‖∞

1 − ‖𝒩0
−1‖

∞
‖(𝒱0 + ℎ

2ℋŨ)‖
∞

≅ 𝑂(ℎ3) 

Also, from Eq. (12) we have 

‖𝑇‖∞ =
32

675
ℎ6𝑀6,  𝑀6 = 𝑚𝑎𝑥𝑎≤𝑥≤𝑏|𝑦

(6)(𝜂̈𝑖)| 

‖𝐸‖∞ ≤
‖𝒩0

−1‖
∞
‖𝑇‖∞

1 − ‖𝒩0
−1‖

∞
‖(𝒱0 + ℎ

2ℋŨ)‖
∞

≅ 𝑂(ℎ4) 

5. Numerical Results 

    We solve two problems that are sensitive to small changes by using different values of h and ε. 

numerical solutions is computed and then evaluated against precise solutions at a particular grade 

point. Maple 22 is in charge of performing the calculations.  

 

Example 1: Consider the singularly perturbed boundary value problem 
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𝜀ũ(2)(𝜂̈) − ũ(𝜂̈) = 𝑐𝑜𝑠2(𝜋𝜂̈) + 2𝜀𝜋2 cos(2 𝜋𝜂̈) 

With boundary condition, 

ũ(0) = 0 ,ũ(1) = 0. 

The precise solution is as follows: 

ũ(𝜂̈) = cos(𝜋𝜂̈) + 𝑥 +
𝑒
(
𝑥−1

√𝜀
)
+ 𝑒

−(
𝑥

√𝜀
)

1 + 𝑒
−(

1

√𝜀
)

− 𝑐𝑜𝑠2(𝜋𝜂̈) 

   The problem was addressed using approach (8) by examining various numbers for 𝑛 =16, 32, 64, 

128, and 256, along with ε values of 0.0625, 0.03125, 0.015625, and 0.0078125. Tables 1-2, displays 

the highest absolute errors in solutions and juxtaposes them with the findings in [4], showcasing the 

accuracy of our method. 

Example 2: Consider the singularly perturbed boundary value problem 

𝜀ũ(2)(𝜂̈) − (1 + 𝜂̈(1 − 𝜂̈))ũ(𝜂̈)

= −1 − 𝜂̈(1 − 𝜂̈) − 2√𝜀 + 𝜂̈(1 − 𝜂̈)2𝑒
(
−𝜂̈

√𝜀
)
(2√𝜀 − 𝜂̈2(1 − 𝜂̈))𝑒

(−(
1−𝜂̈

√𝜀
))

 

With boundary condition, 

ũ(0) = 0 , ũ(1) = 0. 

The precise solution is as follows 

ũ(𝜂̈) = 1 + 𝜂̈(𝑥 − 1)𝑒
(
−𝜂̈̈

√𝜀
)
− 𝜂̈𝑒

(−(
1−𝜂̈̈

√𝜀
))

. 

This problem was addressed by applying procedure (8) using different values of 𝑛 =16,32,64,128,256 

and 𝜀 =0.0625,0.03125,0.015625,0.0078125, resulting in the precise solution. Table 3 lists the largest 

absolute errors in solutions and compares them with the results from [4] to showcase the accuracy of 

our approach. 

Table 1: The maximum absolute errors in solutions of example1. 

 

 

𝜀 𝑛 = 16 𝑛 = 32 𝑛 = 64 𝑛 = 128 𝑛 = 256 

0.0625 8.02 × 10−8 0.81 × 10−9 2.93 × 10−10 9.86 × 10−12 2.95 × 10−17 

0.03125 3.24 × 10−7 2.42 × 10−9 7.94 × 10−10 8.64 × 10−12 5.86 × 10−17 

0.015625 5.71 × 10−7 4.75 × 10−8 8.85 × 10−10 4.77 × 10−12 8.99 × 10−17 

0.0078125 4.85 × 10−7 2.03 × 10−8 7.75 × 10−10 7.51 × 10−12 6.24 × 10−17 

 

Table 2: The maximum absolute errors in solutions of example1 (𝑛 = 256). 

 

 

𝜀 Rashidinia [4] Our method 

0.0625 6.17 × 10−10 2.95 × 10−17 

0.03125 3.02 × 10−10 5.86 × 10−17 

0.015625 8.39 × 10−10 8.99 × 10−17 

0.0078125 3.01 × 10−9 6.24 × 10−17 

 

Table 3: The maximum absolute errors in solutions of example 2. 

 

𝜀 𝑛 = 16 𝑛 = 32 𝑛 = 64 𝑛 = 128 𝑛 = 256 

0.0625 1.51 × 10−16 3.62 × 10−17 7.91 × 10−18 5.94 × 10−20 8.17 × 10−22 

0.03125 1.48 × 10−16 2.81 × 10−17 3.85 × 10−18 4.77 × 10−20 6.22 × 10−22 

0.015625 0.92 × 10−16 3.92 × 10−17 5.37 × 10−18 3.72 × 10−19 5.83 × 10−22 

0.0078125 0.97 × 10−16 1.63 × 10−17 6.63 × 10−18 7.35 × 10−19 8.24 × 10−22 
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Table 4: The maximum absolute errors in solutions of example2 (𝑛 = 32). 

 

 

𝜀 Rashidinia [4] our method 

1 × 10−1 1.846 × 10−4 3.71 × 10−19 
1 × 10−2 2.682 × 10−4 3.90 × 10−19 
1 × 10−3 2.642 × 10−4 2.89 × 10−19 

1 × 10−4 1.043 × 10−4 2.78 × 10−19 
 

 

6. Conclusion 

   A new exponential spline technique is created to address singularly perturbed boundary value 

problems, taking into account the boundary condition. Our technique (8) was found to display third 

and fourth-order convergence throughout the convergence analysis. This article employs a first-degree 

exponential spline. The largest absolute errors in Tables 2 to 4 highlight the advantages of our method 

compared to earlier methods. 
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