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Abstract 

The application of the test case prioritization method is a key part of system testing intended to think it through 

and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take 

into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot 

fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on 

addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a 

means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The 

proposed hybrid algorithm of genetic black hole (HGBH) uses the capabilities of considering the imperatives 

such as code coverage, fault finding rate and execution time from search algorithms in our hybrid approach to 

refine test cases considerations repetitively. The strategy accomplished this by putting experiments on a large-

scale project of industrial software developed. The hybrid meta-heuristic technique ends up being better than the 

routine techniques. It helps in higher code coverage, which, in turn, enables to detect crucial defects at an early 

stage and also to allocate the testing resources in a better way. In particular, the best APFD value was 0.9321, 

which was achieved in 6 generations with 4.879 seconds the value to which the computer was run. Besides these, 

, the approach resulted in the mean value of APFD as 0.9247 and 0.9302  seconds which took from 10.509 

seconds to 30.372 seconds. The carried out experiment proves the feasibility of this approach in implementing 

complex systems and consistently detecting the changes, enabling it to adapt to rapidly changing systems. In the 

end, this research provides us with a new hybrid meta-heuristic way of test case prioritization and optimization, 

which, in turn, helps to tackle the obstacles caused by large-scale test cases and constantly changing systems. 

Keywords: Test Case Prioritization; genetic algorithms; black hole Algorithm; Software Testing; Meta-

heuristic; Hybrid. 

 

1. Introduction 

The program of software test case prioritization having a tremendous effect on the productivity of software 

testing category and ensures software quality [1]. Software systems, due to their continuous improvement, 

become more complicated and limited resources that are allocated for testing turn into challenging tasks. In this 

regard, the enormousness and uneasiness of the current software cause the invention of novel assays for the 

mentioned administration [2], [3]. The test suites for large projects may be huge, usually containing many test 

cases and keeping constant pace with the continuous changes in the system. This causes test prioritization 

difficulties due to such complexities. This is about the ability to spot out crucial defects early during program 

testing and at the same time ensuring resource allocation is kept at a minimal level [4], [5]. 

Software testing has important role in maintaining and upholding the reliability and quality of software systems. 

Functioning as one of the crucial testing method, test case priority stays as the basic principle of optimizing the 

testing scope. Using test cases with the highest probability to pinpoint defects makes it possible for testing 

resources to be allocated more efficiently, resulting in enhanced fault detection rate, and this can be achieved by 

https://doi.org/10.54216/FPA.140221
mailto:heba@kecbu.uobaghdad.edu.iq
mailto:younismi@coeng.uobaghdad.edu.iq


Fusion: Practice and Applications (FPA)                                                       Vol. 14, No. 02. PP. 261-271, 2024 

262 
Doi: https://doi.org/10.54216/FPA.140221  
Received: July 13, 2023 Revised: December 18, 2023 Accepted: February 07, 2024 

using limited testing time and budget components [6]. Nevertheless, the estimation and solution of this 

optimization problem defy simple algorithms and require complex models to identify the optimum solution 

amidst frantic search in the vast solution space. Due to the increase in the complexity of the optimization 

processes, so as the hybrid metaheuristic approaches, in recent years built-up as ambitious options to overcome 

these issues [7], [8].  

Genetic algorithms are evolutionary optimization concepts moulded from the process of natural selection. The 

algorithms repeatedly breed and change the population of solutions using genetic operators like crossover and 

mutation [9], [10]. GAs is proficient in a number of things such as exploring a diverse set of solutions; however, 

they may encounter difficulties in converging towards the optimum solutions easily [11], [12]. On the other 

hand, black hole optimization is a physics-inspired super-intelligent algorithm that intends to imitate the 

behaviour of black holes in space. Through applications of gravitational forces, black hole optimization 

techniques utilize promising areas in the solution space effectively and as result, the rate of convergence reduces 

to get to near optimal solutions [13], [14]. Employing the crossovers between genetic algorithms and black hole 

optimization into a hybrid algorithm is seen as an effective method for generating a test case prioritization list, 

along with the exploitation and exploration capabilities of genetic algorithms and black hole optimization [15], 

[16], [17]. The subject of a new hybrid genetic-black hole algorithm paper will be closely presented, with the 

focus on the combination of the GA and black hole optimization powers to stand out with the prioritization 

outcomes. 

The black hole optimization algorithm approach combined with the genetic algorithm (GA) technique put 

forward here, tries to solve the problem at hand. Genetic algorithms are known traits in the sphere of 

optimization, while the BHO wielded power, and immersed its users by the social bonds of the humpback 

whales, has had its presence shown successfully the competition side of various optimization problems. Let’s 

notice that the merging of the meta-heuristics methods opens up a promising line for the solution of all the 

complexities faced while setting up the test case priorities and optimization. This paper aims to add to existing 

literature by zoning in on a hybrid approach that takes the both process of genetic algorithms and black hole 

optimization and further proposes to do this for the smooth prioritization of test cases. The key facets of the 

paper's contribution can be summarized as follows: 

1. The paper discourse on the new way the rotation of black hole and genetics optimization is presented, this 

work involves the implementation of black hole optimisation and genetics algorithms. This multistage 

technique considers inefficient test cases generation through the use of genetic algorithms, that is, in the 

second phase proceeds with a black hole optimization approach aimed to ensure testing of crucial cases 

selection. 

2. The paper focuses on the dynamics of mixed developmental process incorporation on a software project by 

using the prototypical project study. As the integrated black hole algorithm can be incorporated both in the 

cross-over and the mutation process and is obviously found to have clearer better performance and as a 

result solved the problem of greater complexity that human could not spot easily and could be handled by 

human at best fully. 

3. The paper strong points on  black hole algorithm integration along with crossover and mutation steps leads 

to a more probability of successful application as far as contemporary systems are concerned setting aside 

its pragmatic capability. 

In closing, the intelligent prioritization of test cases in software systems is a new breakthrough in the area of 

testing, which may influence the quality of software testing and the redistribution of resources in large and 

dynamic software systems. The hybridization of genetic algorithms and the black hole optimization gives raise to 

interesting opportunities for finding a suitable problem-solving algorithm with respect to difficulties of test case 

prioritization and optimization.  

 

2. Related Work 

In the last couple of years, the fast growth in the size and complexity of software systems has dramatically 

become a nightmare to manually generate test input, which is quite costly now [18]. Therefore, the researchers 

investigated the possibility of automatic test data generation through the exploration of the inadequacy of 

exhaustive enumeration to work for larger programs which are due to the fact the execution of random methods 

normally ignores important software features that are not covered in the tests [19]. Main challenges in testing 

data generation are the epitome of unpredictability incurred by huge and complex software systems [20]. To 

these many challenges, different methodologies have come up such as test case generation from models [21] and 

utilization of genetic algorithms (GA) [22], [23], simulated annealing (SA) [24] and ant colony optimization 
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(ACO)[25]. Another instance in that context is the work of Ramírez, Romero, and Ventura [26] who designed a 

search-based algorithm based on Simulated Annealing (SA) which has the possibility to solve complicated 

problems. Although SA has been in use since metallurgical annealing it has become a useful technique also in 

computation. Such an approach confirms that the proposed SA is highly malleable, can be effectively applied for 

multi-objective tasks and extracting system source code design abstractions is an example. They also studied 

simulated annealing’s potential in software architecture design, using a Hybrid Harmony Search and Particle 

Swarm Optimization Algorithm (HSPSO) for package modularizing and constructing algorithms to auto clean-

up which minimizes coupling among packages and cycle dependencies in object-oriented systems. Expressly, 

software modularization [27] is another technical field on which hill climbing algorithms (HC) are utilized as 

one of their basic approaches. Even though Genetic Algorithms (GA) are quite powerful in producing test data 

for path coverage they can encounter challenges, particularly on many targets routes, where [28] was indicated. 

In addition, the capabilities of the Firefly algorithm (FA) to efficiently maximize the values of mathematical 

formulas are not comparable to the abilities of other algorithms to recognize code and function statements with 

high coverage value [29]. Furthermore, the incorporation of Particle Swarm Technique and Genetic Algorithm 

(GA) [30], and the parallel use of Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) 

algorithms [31], [32] lead into new, unreliable results in ensuring software optimization, but the concern about 

convergence time and their non-functional testing remains unexplored. 

3. Test Case Prioritization 

In software testing, the test-case prioritization is a vital activity, and it is aimed to systematically ordering test 

case execution in the best dynamics that make the testing process more productive [3]. It implies the systematic 

generation of test cases under diverse conditions, subject to different success criteria, that helps to point to the 

tests which probably may have revealed the key flaws the earliest and guide the allocation of the testing 

resources effectively [33]. This procedural step is the basis because of enumerating the test cases orders as an 

answer to the possible exhaustive limitations. 

Extensive testing, which means that there are all test cases executed without precedence, it is time for the 

software testers to know that there is a problem waiting for their solution [34]. The test coverage for complex 

and large scale of software systems is often difficult to achieve because the number of potential test scenarios 

grows exponentially as systems become more complex. Freely speech about the fact that many of the test cases 

cannot be seamlessly executed when they belong to large test suites, usually due to the amount of time and 

resources required, is obvious. In addition to all these, the result is even extended to the detection of faults which 

occurs in a later form as shown in Figure (1), resulting into high costs and defect in quality of the software [35]. 

 

Figure 1: Test Case Prioritization Process. 

Test case prioritization is identified as a decisive strategy among the many testing techniques to address the 

problems raised by a large number of test cases. The testing strategy achievement is implemented by structurally 

placing the cases of the test in a manner with the purpose defined and by extracting key priorities. It is through 

this that critical defects are detected and eliminated early [36]. These help to guide the ordering of the testing 

draws in such a manner that a clear picture of the disease profile of the community is represented. Optimizing 

the utilization of testing resources will thus be efficient. Prioritizing test cases in essence creates a strategic tool 

that when applied appropriately makes testing process more efficient by assigning resources effectively and 

faster detection of the major issues that software tends to have [37], [38]. 
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4. Methodology 

The proposed hybrid algorithm of genetic black hole (HGBH) for test case prioritization begins by reading test 

suite data and configuring major parameters including of population size, number of generations, crossover rate, 

and mutation rate. Having accomplished that, the objective function is stated to become a measuring instrument 

of test case prioritization solutions fitness. The algorithm opens with the population initialization for the genetic 

algorithm: random passing of the test cases is produced and for each chromosome they are evaluated by the 

objective function; the initial generation count is set to 1 as illustrated in Algorithm (1). 

Algorithm 1 Hybrid Genetic Black Hole (HGBH) 

Initialize population P with random solutions (test case orderings) 

Evaluate fitness of each solution in P using objective function 

Set maximum generations G, population size N 

Set genetic algorithm parameters (crossover rate, mutation rate, selection mechanism, etc.) 

Set black hole algorithm parameters (number of black holes, migration rate, etc.) 

 

for generation = 1 to G do: 

    // Perform genetic algorithm operations 

    Select parents from population P based on fitness 

    Perform crossover and mutation to generate offspring with black hole optimization: 

        // Crossover with Black Hole Optimization 

        for each pair of parents do: 

            Apply crossover operator to generate offspring 

            Evaluate fitness of offspring 

            Apply black hole optimization to improve offspring positions: 

                for each offspring do: 

                    Move offspring towards better solutions using gravitational force: 

                    offspring_position = current_position - (gravitational_force / distance^2) 

        // Mutation with Black Hole Optimization 

        for each offspring do: 

            Apply mutation operator to modify components in the offspring 

            Evaluate fitness of the mutated offspring 

            Apply black hole optimization to improve the offspring's position: 

                Move offspring towards better solutions using gravitational force: 

                offspring_position = current_position - (gravitational_force / distance^2) 

                 

    Select survivors for the next generation based on combined fitness 

end for 

 

Select best solution from final population as the prioritized test suite 

 

The algorithm begins with the step of forming a population  P, whose every element being a set of random 

solutions is a different arrangement of test cases. Thus, this step ensures diversity, belonging to those most 

helpful and appealing to diverse approaches. With regards to evaluation; when the initial population is made, the 

fitness of each solution is ascertained based on objective function. The tasking of this function is to decide how 

good are the cases of testing to be put in the sequence based on different factors, either code coverage, fault 

detection rate or execution time. Fitness scores correspondingly increase as higher genetic information result in 

the more proficient individuals. 

It is necessary to fix both the GA parameters and the BHO the algorithm. These parameter are sample of cross 

over rate, mutation rate, selection mode, number black holes, migration rate etc. Correct set of these parameters 

is vital for program work. The algorithm proceeds with genetic algorithm operations for each generation:- The 

algorithm proceeds with genetic algorithm operations for each generation: They mate with each other giving rise 

to a new generation with improved fit. This aspect will give more possibilities for higher-fitness solutions to be 

chosen as parents and therefore increase the probability of successful solutions. Various crossbreeding and 

mutation operations are introduced into the selected pair to produce new offspring. Crossover can, in this case, 

be defined as the process of exchanging genetic information from two parents, whereas mutation is associated 

with random implementation of changes in individual offspring. 
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To observe that, the two tasks are illustrated by black hole optimization enhancement of crossover both steps and 

mutation. The integration of elder generations of the new breed to the offspring provides enhanced performance 

plus enduring diversity. During crossover, where the parents pairs get mixed up to form the offspring, each 

parent submits one copy of their chromosomes to another. At the end, the black hole optimization is run on those 

children to make sure they are maximally optimized. This method operates in the same manner by moving 

newborns closer to the optimal solutions based on gravitational forces, which are then used to develop complex 

functions. 

In the same way, in the mutation-step each offspring is altered, and then black hole optimization method applies 

for correcting the offspring positions by means of the gravitational force calculation. This process reoccurs 

permanently and is thus leading to a better generation that contributes to well-being. Finally, after a population 

has a new breed and those individuals have been optimized; survivors of the next generation are ranked based on 

the integrated fitness from both genetic algorithm and the enhancements from black hole optimization. It makes 

sure that the population becomes this way as it gets better solutions with time. 

The process moves on through generations as defined in the algorithm, till the number of generations has been 

occupied. Furthermore, the final results from the population will be selected only in light of containing the best 

case scenario. It defines the perfect sequence of the test cases applying together several black holes and genetic 

method to meet better results. Genetic algorithms and black hole optimization together breed a successful 

diversity of techniques that constitute a balance between exploration and exploitation resulting in an efficient 

priority system for test cases. The blend of these two algorithms brings the efficiency of the algorithms into play 

so that they can do a thorough search job, yielding the output of high-quality solutions and eventually improve 

software testing in terms of effectiveness. 

Thus, the best solution from the respective final population is chosen and is handed over to the algorithm as the 

answer in form of the output as shown in Figure (2). A self-learning mechanism is introduced within a genetic 

algorithm whereby it has an ability to produce highly effective exploratory test cases through an integration of 

black hole optimization approach. 

 

5. Result and Discussion 

The evaluation of performance and the discussion of the results are the main tasks of the procedure. The aim of 

the analysis is to determine the effectiveness and efficiency of the hybrid genetic-black hole technique for the 

test case selection. The results of different runs (Mutation, Crossover, Generation) and best solutions obtained as 

well as the reported analysis are used to conduct the evaluation. Evaluation is centered around a set of important 

metrics: namely, execution time, quality of the prioritized test suites, Average Percentage Faults Detected 

(APFD) as shown in Figure (3), and the quality of the test suite. 

Running time of an algorithm denotes its computational expenditure for finding the prioritized test suites 

although it’s an important measure. It is important to notice that the execution timelines differ in the experiment 

results depending on the run, and the time ranges from about 4.3 seconds to 30.3 seconds as illustrated in Figure 

(4). This variation could be associated with the factors of the size of test suite, the level of complexity in the 

definition of the test cases, and environment parameters applied during different runs. Generally, the algorithm 

works well relative to other algorithm in the sense that the running time of the algorithm is within the reasonable 

range and also practical for actual application. 
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Figure 2: The Proposed Hybrid Genetic Black Hole (HGBH) Algorithm. 
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Figure 3: Average Percentage Faults Detected for Different Mutations. 

 

 

Figure 4: Execution Time for Different Mutations. 

Then, follow-up is the fitness function, evaluated as the Average Percentage of Faults Detected (APFD), through 

which you can understand how good the selection algorithm the prioritized test suits. The most notably APFD 

scores found in given results are approximately 0.932, 0.919, 0.925 and 0.930 for Crossover 0.6, Crossover 0.7, 

Crossover 0.8, and Crossover 0.9, correspondingly as shown in Figure(5). 
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Figure 5: Average Percentage Faults Detected for Different Crossovers. 

The values mean that the maximum coverage and the priority putting order of the tests manage to detect a high 

percentage of faults and find most of the bugs in the software under test. Nevertheless, need to note that the issue 

arises concerning time consuming verses exactness since it may these calculations to last longer as they nearly 

equals as described in Figure (6). 

 

Figure 6: Execution Time for Different Crossovers. 

The effectiveness of the ordered test suites generated by the algorithm is also verified by looking at the results of 

the alternative generations as illustrated in Figure (7). The fittest solutions be those that get detected mostly 

faults, and stand as ones of high fitness values based on the optimization of test cases to maximize fault 

detection. Alongside, the particular array of the solutions obtained from the algorithm is an indication of 

variation in fitness values among the runs and the best solutions explored. If the algorithm fails to consider the 

diversity of regions of the search space, there is a risk of it converging to suboptimal solutions; thus adequate 

diversity is equally important. 
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Figure 7: Average Percentage Faults Detected for Different Generations. 

On the other hand, by the test statistics, the hybrid algorithm is shown to have decent time performance in test 

case prioritization and being able to perform well in both decent time performance in the fault detection 

department and computational efficiency as shown in Figure (8). Another step of further study, proving the 

algorithm on larger and more representative testing suites, may be the next stage to check its robustness and 

scalability for any software system and testing tests. Also, a comparative analysis carried out with test cases of 

the already-existing test case prioritization techniques could provide clarity of the relative benefits and 

drawbacks of the presented algorithm. In sum, the finding of the hybrid genetic-black hole method points to a 

promising way for automated testing software process optimization and maintenance quality improvement. 

 

Figure 8: Execution Time for Different Generations. 

6. Conclusion  

 

This paper presents a hybrid meta-heuristic technique offering genetic algorithms and black holes optimum 

approaches in order to allow us to do efficient allocation of resources and find defects early on during the 

software construction process. The consequence of surpassing the traditional approaches in powering industrial 

software based on our technique is higher code coverage, an earlier detection of defects, and a resource 

utilization that achieved maximum efficiency. Though the aim is to show how the proposed approach performed, 

the results obtained in the APFD value estimations for first item of the selection set with fittest APFD 0.9321 

achieved in 6 generations and the mean APFD estimations ranging from 0.9247 to 0.9302 across various 

procedural datasets showing robustness and effectiveness. Lastly, the direction of test case prioritization in 

upcoming years might lie in more and more merging of machine learning technologies, coming up with dynamic 
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prioritization methods, and discovering cross domain utilitarian aspects in the software tests to overcome new 

issues with testing and produce exceptional quality of software systems. Through these innovations not only it 

could become the one bringing major breakthroughs to the software testing and the optimization, but with it, the 

proposed approach could greatly affect the whole discipline. 
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