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Abstract 

The set of all isometries on a metric space X with the usual composition of functions form a group and it is 

called the group of isometries and is denoted by I(X). In this paper we study the generalization of the concepts of 

minimal sets, stability and attraction, from dynamic system into the topological transformation group 

(I(X),X).We find that the collection of all minimal sets of I(X)-space is the collection of all the closures of orbits 

of X and we found some useful results about stability and attraction and we fixed the relationship among it's 

kinds. 
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1. Introduction 

    If (X,d) and (𝑌, 𝜌) are metric spaces and f is a function from X onto Y , then f is called an isometry if 𝑑(𝑥, 𝑦) =
𝜌(𝑓(𝑥), 𝑓(𝑦)) for all points x and y of X. Every isometry is a one-to-one continuous open function. The 

composition of two isometries is again an isometry and the inverse of an isometry is also an isometry. Then the 

set of all isometries on a metric space (X,d) is a group and it is denoted by I(X),[7]. 

    This paper consists of three sections. In section one, we introduce some definitions, remarks, propositions, 

theorems of limit sets(see [1]) which are needed in the next sections. In section two we generalize the concepts 

of minimal sets from a dynamic system into I(X)-space. We find that a non empty limit set of a point is a 

minimal set if and only if it is closed, theorem(2.3), also we get that the closure of the orbit of any point of X is 

minimal , theorem(2.4), moreover the set of all minimal sets of X is the set of all closure of orbits of X, 

Cor.(2.5). In this section we also prove that the collection of closures of orbits of X forms a partition for X and 

then we have a quotient space of X, theorem(2.6), and we study some properties of this space, theorem(2.11). 

Moreover we study the relation between this space and the space of component of X, theorem(2.12). In section 

three we generalize the subject of stability and attraction from dynamics system into I(X)-spaces. We give a very 

useful characterization of the sets Λ𝑊(𝑀), Λ(𝑀), theorem(3.4), and we find these sets are closed if I(X) is 

locally compact, theorem(3.5). Final we study the relationships among weak attractor, attractor and stable. 

A topological transformation group is a triple (𝐺, 𝑋, 𝜃) where G is topological group, X is a topological space 

and: 𝜃: 𝐺 × 𝑋 → 𝑋 is a continuous function such that, 

(i) 𝜃(g, 𝜃(ℎ, 𝑥)) = 𝜃(gℎ, 𝑥) for all g, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋. 

(ii) 𝜃(𝑒, 𝑥) = 𝑥, for all 𝑥 ∈ 𝑋, where e is the identity element of G. 

The map 𝜃 is called an action of G on X and the space X together with a given action 𝜃 of G is called a G-space 

(or, more precisely, a left G-space). We shall often use the notation g.x for 𝜃(g, 𝑥) g. (ℎ, 𝑥) = (gℎ). 𝑥 for 

𝜃(g, 𝜃(ℎ, 𝑥)) = 𝜃(gℎ, 𝑥). Similarly for 𝐻 ⊆ 𝐺 and 𝐴 ⊆ 𝑋 we put 𝐻𝐴 = {g𝑎/𝑎 ∈ 𝐻, 𝑎 ∈ 𝐴} for 𝜃(𝐴, 𝐻). A set A 

is said to be invariant under G if GA = A, [4]. 

Let X be a G-space and 𝑥 ∈ 𝑋 then the subspace 𝐺(𝑥) = {g. 𝑥/g ∈ 𝐺} is called the orbit (trajectory) of x under G 

. These subspaces form a partition on X and the sets of all orbits in X is denoted by X / G.  

Let 𝜋: 𝑋 → 𝑋/𝐺 denote the canonical map taking x into its orbit G(x). Then X/G endowed with the quotient 

topology (𝑈 ⊆ 𝑋/𝐺 is open if 𝜋−1(𝑈) is open in X) is called the orbit space of X (with respect to G), For 𝑥 ∈ 𝑋 

the stabilizer subgroup 𝐺𝑥 of G at x is the set  {g ∈ 𝐺/g𝑥 = 𝑥}. A point 𝑥 ∈ 𝑋 is called a critical (fixed) if  G(x) 

={x}, where G(x) is the orbit of x,[4]. 

1.1 Theorem: Let I(X) be the group of isometrics of a metric space  

https://doi.org/10.54216/PMTCS.020204
mailto:Red7obaidi756@gmail.com


Pure Mathematics For Theoretical Computer Science (PMTCS)                              Vol. 02, No. 02, PP. 30-42, 2023 

36 
Doi: https://doi.org/10.54216/PMTCS.020204  
Received: January 16, 2023 Revised: April 18, 2023 Accepted: September 21, 2023 

(X,d). If 𝜃: 𝐼(𝑋) × 𝑋 → 𝑋 is defined by 𝜃(𝑓, 𝑥) = 𝑓(𝑥) for every 𝑓 ∈ 𝐼(𝑋)and 𝑥 ∈ 𝑋, then (𝐼(𝑋), 𝑋, 𝜃) is a 

topological transformation group with the pointwise convergence topology on I(X). 

Dydo [5] generalized the concepts of limit sets from a dynamic system into a G-space as follows. 

1.2 Definition: Let X be a G-space. For any 𝑥 ∈ 𝑋, define Λ(𝑥) = {𝑦 ∈ 𝑋  

There exist a net {g𝛼} in G with g𝛼 → ∞ such that g𝛼𝑥 → 𝑦}, Λ(𝑥) is called the limit set of x. 

The proof of the following proposition can be found in [2]. 

1.3 Proposition : Let X be a G-space and 𝑥 ∈ 𝑋. Then, 

(i) Λ(𝑥) is invariant under G. 

(ii) If x ∉ Λ(𝑥) then the stabilizer subgroup 𝐺𝑥 of G at x is compact. 

(iii) The orbit G(x) of x is closed iff Λ(𝑥) ⊆ 𝐺(𝑥) 

(iv) 𝐺(𝑥)̅̅ ̅̅ ̅̅ = 𝐺(𝑥) ⋃ Λ(𝑥) 

(v) Λ(𝑥) = Λ(g𝑥) = gΛ(𝑥), for every g ∈ 𝐺. 

1.4 Proposition[1]: Let X be a G-space and 𝑥 ∈ 𝑋. If 𝑥 ∈ Λ(𝑥) then Λ(𝑥) is closed. 

1.5 Theorem[1]: Let (X,d) be an I(X)-space and 𝑥 ∈ 𝑋. If Λ(𝑥) ≠ 𝜙, then Λ(𝑥) is closed iff 𝑥 ∈ Λ(𝑥) 

1.6 Theorem[1]: Let (X,d) be an I(X)-space and 𝑥 ∈ 𝑋. Then the following statements are equivalent. 

(i) Λ(𝑥) ≠ 𝜙 

(ii) 𝑥 ∈ Λ(𝑥)̅̅ ̅̅ ̅̅  

(iii) Λ(𝑥)̅̅ ̅̅ ̅̅ = 𝐺(𝑥)̅̅ ̅̅ ̅̅ , (where G = I(X) and G(x) is the orbit of x) 

1.7 Proposition[1]: Let (X,d) be an I(X)- space such that I(X) is noncompact. If there exist 𝑥 ∈ 𝑋 such that the 

closure of the orbit of x is compact, then, 

(i) Λ(𝑥) ≠ 𝜙 

(ii) Λ(𝑥)̅̅ ̅̅ ̅̅  is compact. 

(iii) If Λ(𝑥) is closed, then Λ(𝑥) is compact. 

Manoussos and Stranzalos give the necessary condition for the local compactness of I(X),see the following 

theorem,[8],[9]. 

1.8 Theorem: Let (X,d) be a locally compact I(X)-space. If the space of the 

components of X is compact, then I(X) is locally compact. 

2.Minimal Sets 

In this section we study minimal sets in I(X)-spaces. 

2.1 Definition ,[6],[10]: Let X be a G-space. A subset 𝑀 ⊆ 𝑋is called minimal, if it is non-empty closed, and 

invariant, and no proper subset of M has these properties. 

2.2 Proposition: Let (X,d) be an I(X)-space and 𝑥 ∈ 𝑋 such that Λ(𝑥) ≠ 𝜙. If Λ(𝑥) is closed then Λ(𝑥) is 

minimal. 

Proof: Since Λ(𝑥) is closed and invariant. So we have only to prove that no proper subset of Λ(𝑥) has these 

properties. Let 𝐵 ⊆ Λ(𝑥) such that 𝐵 ≠ 𝜙 and B is closed and invariant. Let 𝑧 ∈ Λ(𝑥), then there exists a net 

{g𝛼}in I(X) with g𝛼 → ∞ and g𝛼(𝑥) → 𝑧. Since 𝐵 ≠ 𝜙, then there exists 𝑦 ∈ 𝐵. But 𝐵 ⊆ Λ(𝑥),then there exists 

a net {𝑓𝛼} in I(X) with 𝑓𝛼 → ∞ such that 𝑓𝛼(𝑥) → 𝑦. Since 𝑓𝛼 is an isometry, for every 𝛼, then 𝑑(𝑓𝛼
−1(𝑦), 𝑥) =

𝑑(𝑦, 𝑓𝛼(𝑥)). So 𝑓𝛼
−1(𝑦) → 𝑥. But B is invariant and 𝑦 ∈ 𝐵, then 𝑓𝛼

−1(𝑦) ∈ 𝐵, for every 𝛼. Also B is closed, then 

𝑥 ∈ 𝐵. Thus g𝛼(𝑥) ∈ 𝐵 (since B is invariant). But g𝛼(𝑥) → 𝑧 and B is closed then 𝑧 ∈ 𝐵. Hence Λ(𝑥) ⊆ 𝐵 and 

this implies that Λ(𝑥) = 𝐵. 

2.3 Theorem: Let (X,d) be an I(X)-space and 𝑥 ∈ 𝑋 such that Λ(𝑥) ≠ 𝜙. Then the following statements are 

equivalent: 

(i) Λ(𝑥) is a minimal set. 

(ii) Λ(𝑥) is a closed set. 

(iii) 𝑥 ∈ Λ(𝑥). 

Proof: 

i↔ii). By Definition (2.1) and Proposition(2.2). 

ii↔iii). By Theorem (1.5). 

The following theorem shows that in I(X)-space X the closure of the orbit of a point of X is minimal. 

2.4 Theorem: Let (X,d) be an I(X)-space. Then the closure of the orbit of any point of X is minimal. 

Proof: Let 𝑥 ∈ 𝑋 and put G = I(X).We will prove that the closure of orbit of x , 𝐺(𝑥)̅̅ ̅̅ ̅̅  is a minimal set. Let 𝐵 ⊆
𝐺(𝑥)̅̅ ̅̅ ̅̅  such that 𝐵 ≠ 𝜙. 

and B is invariant and closed (see Definition (2.1)). Since 𝐵 ≠ 𝜙 then there exists 𝑦 ∈ 𝐵 and since 𝐵 ⊆ 𝐺(𝑥)̅̅ ̅̅ ̅̅ , 

then there exists a net {𝑓𝛼} in I(X) such that 𝑓𝛼(𝑥) → 𝑦. Since 𝑓𝛼 is isometry for every 𝛼, then 𝑑(𝑓𝛼
−1(𝑦), 𝑥) =

𝑑(𝑦, 𝑓𝛼(𝑥)), for every 𝛼. Thus 𝑓𝛼
−1(𝑦) → 𝑥. Notice that 𝑦 ∈ 𝐵 and B is invariant , then {𝑓𝛼

−1(𝑦)} is a net in B. 

But B is also closed, then 𝑥 ∈ 𝐵. So 𝐺(𝑥)̅̅ ̅̅ ̅̅ ⊆ 𝐵. This completes the proof.  

2.5 Corollary: Let (X,d) be an I(X)- space .Then the collection of all minimal sets in X is the collection of all 

closures of orbits of elements of X. 
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Proof: Let 𝐵 ≠ 𝜙 a minimal set. Thus B. Then there exists 𝑥 ∈ 𝐵. Since B is invariant and closed then the 

closure orbit of x, 𝐺(𝑥)̅̅ ̅̅ ̅̅ ⊆ 𝐵 (where G=I(X)). But by Theorem(2.4), 𝐺(𝑥)̅̅ ̅̅ ̅̅  is a minimal set. Thus 𝐵 = 𝐺(𝑥)̅̅ ̅̅ ̅̅ . So 

the collection {𝐺(𝑥)̅̅ ̅̅ ̅̅ /𝑥 ∈ 𝑋} is all minimal sets of X. 

We will give a useful partition of I(X)-space, in the following theorem. 

2.6 Theorem: Let (X,d) be an I(X)- space. Then the collection of all closures of orbits of elements of X is a 

partition of X. 

Proof: Put G=I(X). Let 𝑥, 𝑦 ∈ 𝑋 such that 𝐺(𝑥)̅̅ ̅̅ ̅̅ ⋂ 𝐺(𝑦)̅̅ ̅̅ ̅̅ ≠ 𝜙. Thus there exists 𝑧 ∈ 𝐺(𝑥)̅̅ ̅̅ ̅̅ ⋂ 𝐺(𝑦)̅̅ ̅̅ ̅̅ . Since 𝑧 ∈

𝐺(𝑥)̅̅ ̅̅ ̅̅ , then there exists a net {𝑓𝛼}} in I(X) such that 𝑓𝛼(𝑥) → 𝑧. Notice that 𝑓𝛼 is isometry for every 𝛼, then 

𝑑(𝑓𝛼
−1(𝑦), 𝑥) = 𝑑(𝑦, 𝑓𝛼(𝑥)). 

Then by 𝑓𝛼 → 𝑧, we have 𝑓𝛼
−1(𝑧) → 𝑥. Since 𝑧 ∈ 𝐺(𝑦)̅̅ ̅̅ ̅̅  and 𝐺(𝑦)̅̅ ̅̅ ̅̅  is invariant and closed, then 𝑥 ∈ 𝐺(𝑦)̅̅ ̅̅ ̅̅ . 

Thus 𝐺(𝑥)̅̅ ̅̅ ̅̅ ⊆ 𝐺(𝑦)̅̅ ̅̅ ̅̅ . So 𝐺(𝑥)̅̅ ̅̅ ̅̅ = 𝐺(𝑦)̅̅ ̅̅ ̅̅ . This completes the proof. 

2.7 Definition: Let (X,d) be an I(X)-space, and let 𝑋∗denotes the collection whose elements are closures of orbits 

of elements of X. By Theorem (2.6), 𝑋∗ is a partition of X, thus we can define the natural map 𝑃: 𝑋 → 𝑋∗ taking 

x into its closure of orbit (𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Then 𝑋∗ endowed with the quotient topology (𝑉 ⊆ 𝑋∗ is open if 𝑃−1(𝑉) is 

open in X) is called the closure orbit space of X. 

2.8 Proposition: Let (X,d) be an I(X)-space. If Λ(𝑥) = 𝜙 for every 𝑥 ∈ 𝑋, then the orbit space and the closure 

orbit space coincide. 

Proof: Since in any I(X)-space (𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝐼(𝑋))(𝑥) ⋃ Λ(𝑥), for each 𝑥 ∈ 𝑋, then we get the orbit space and 

the closure orbit space coincide. 

2.9 Proposition: Let (X,d) be an I(X)-space. Then 

(i) The closure orbit space 𝑋∗ is a 𝑇1-space. 

(ii) If A is a finite subset of X, then P(A) is closed where 𝑃: 𝑋 → 𝑋∗ is the quotient map. 

Proof: 

(i) Put G=I(X). Let 𝑥 ∈ 𝑋. Now, 𝑃−1(𝑃(𝐺(𝑥)̅̅ ̅̅ ̅̅ ) = 𝑃−1{𝐺(𝑥)̅̅ ̅̅ ̅̅ }). Since the set of all closure orbits of X , 

𝑋∗ is a partition of X, then 𝑃−1({𝐺(𝑥)̅̅ ̅̅ ̅̅ }) = 𝐺(𝑥)̅̅ ̅̅ ̅̅ . Thus 𝑃−1({𝐺(𝑥)̅̅ ̅̅ ̅̅ }) is closed, for every 𝑥 ∈ 𝑋. 

Then {𝐺(𝑥)̅̅ ̅̅ ̅̅ } is closed, for every 𝑥 ∈ 𝑋, that is 𝑋∗ is a 𝑇1- space. 

(ii) By (i). 

The following proposition gives useful properties of minimal sets in I(X)-space. 

2.10 Proposition: Let (X,d) be an I(X)- space and M be a minimal set. Then 

(i) M is open if and only if 𝑖𝑛𝑡(𝑀) ≠ 𝜙, (where int(M) is the interior of M). 

(ii) If 𝑖𝑛𝑡(𝑀) ≠ 𝜙, then M is a union of the components of elements of M in X. 

(iii) If 𝑖𝑛𝑡(𝑀) ≠ 𝜙 and I(X) is connected, the M is a component of X. 

(iv) If 𝑖𝑛𝑡(𝑀) ≠ 𝜙 and X is connected, then M=X. 

Proof: i) →). Let M be an open set. Since M is a minimal set, then 𝑖𝑛𝑡(𝑀) ≠ 𝜙. ←). Let 𝑖𝑛𝑡(𝑀) ≠ 𝜙, then there 

exists 𝑎 ∈ 𝑀and an open set B in X such that 𝑎 ∈ 𝐵 ⊆ 𝑀. Since M is minimal and 𝑎 ∈ 𝑀, then (𝐼(𝑋))(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆ 𝑀. 

Thus by Theorem(2.4), 𝑀 = (𝐼(𝑋))(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Now, we want to prove that 𝑀 = 𝑖𝑛𝑡(𝑀). Let 𝑏 ∈ 𝑀 then 𝑏 ∈

(𝐼(𝑋))(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Thus there exists a net {𝑓𝛼} in I(X) such that 𝑓𝛼(𝑎) → 𝑏. Since 𝑓𝛼 is an isometry, for every 𝛼, then 

𝑑(𝑓𝛼
−1(𝑏), 𝑎) = 𝑑(𝑏, 𝑓𝛼(𝑎)). 

Thus by 𝑓𝛼(𝑎) → 𝑏, we have 𝑓𝛼
−1(𝑏) → 𝑎. But B is an open nbhd of a, then there exists 𝛽 such that 𝑓𝛼

−1(𝑏) ∈ 𝐵, 

for every𝛼 ≥ 𝛽. Then 𝑏 ∈ 𝑓𝛽(𝐵). Since 𝑓𝛽 is isometry, then 𝑓𝛽(𝐵) is open. But 𝐵 ⊆ 𝑀 and M is invariant 

then𝑓𝛽(𝐵) ⊆ 𝑀. Thus 𝑏 ∈ 𝑖𝑛𝑡(𝑀). So 𝑀 = 𝑖𝑛𝑡(𝑀), i.e. M is open. 

ii) Let 𝑖𝑛𝑡(𝑀) ≠ 𝜙. Let 𝑎 ∈ 𝑀 and C(a) be a component of a. Then  𝐶(𝑎) ⋂ 𝑀 ≠ 𝜙. Since 𝑖𝑛𝑡(𝑀) ≠ 𝜙, then by 

(i) M is open. But M is closed (Since M is minimal), then 𝐶(𝑎) ⋂ 𝑀𝑐 = 𝜙, otherwise C(a) is disconnected. Thus 

𝐶(𝑎) ⊆ 𝑀. So 𝑀 = ⋃ 𝐶(𝑎)𝑎∈𝐴 . 

iii)Let 𝑖𝑛𝑡(𝑀) ≠ 𝜙 and I(X) is connected. Since 𝑀 ≠ 𝜙, then there exists 𝑎 ∈ 𝑀. 

By (ii), we have 𝐶(𝑎) ⊆ 𝑀, where C(a) is a component of a. 

Since (𝐼(𝑋))(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is minimal (by Theorem (2.4))and M is a minimal set, then 𝑀 = (𝐼(𝑋))(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (since 𝑎 ∈ 𝑀). 

Since I(X) is a connected space, then 𝐼(𝑋) × {𝑎}  is connected. 

Thus the orbit (𝐼(𝑋))(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is connected. But C(a) is a component of a then 𝐼(𝑋)(𝑎) ⊆ 𝐶(𝑎). Thus (𝐼(𝑋))(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆
𝐶(𝑎) (since C(a) is closed). Then M=C(a). 

iv).Since 𝑖𝑛𝑡(𝑀) ≠ 𝜙, then by (ii) , 𝐶(𝑎) ⊆ 𝑀, for every component C(a) of 𝑎 ∈ 𝑀. But X is connected , then 

C(a)=X . Thus M=X. 

2.11 Theorem: Let (X,d) be an I(X)-space. If (𝐼(𝑋))(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 𝜙 for every 𝑥 ∈ 𝑋, then 

(i) The quotient map 𝑃: 𝑋 → 𝑋∗ is open. 

(ii) The closure orbit space 𝑋∗ is a discrete space. 
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Proof: 

i). Let B be an open set of X. Note that 𝑃−1(𝑃(𝐵)) ⋃ (𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑥∈𝐵 .By Theorem(2.4), (𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅is a minimal set 

for every 𝑥 ∈ 𝐵 and since 𝑖𝑛𝑡((𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ≠ 𝜙, for every 𝑥 ∈ 𝐵, then by Proposition (2.10) ,i, (𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is an 

open set, for every 𝑥 ∈ 𝐵. Thus 𝑃−1(𝑃(𝐵)) is open .Then P(B) is open. So P is open. 

ii). Since 𝑖𝑛𝑡((𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ≠ 𝜙 and (𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is a minimal set for every 𝑥 ∈ 𝑋 (by Theorem (2.4)), then by 

Proposition (2.10),i, (𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is open. It follows from (i), P is open, then 𝑃((𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) is open. Thus 

{(𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅} is open in 𝑋∗, for every 𝑥 ∈ 𝑋. So 𝑋∗ is a discrete space. 

Let (X,d) be an I(X)-space and let ∑(𝑋) denotes the collection of all components of X. 

2.12 Theorem: Let (X,d) be an I(X)-space and 𝑖𝑛𝑡((𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ≠ 𝜙, for every 𝑥 ∈ 𝑋, then 

(i) If I(X) is connected, then 

(a) 𝑋∗ = ∑(𝑋) 

(b) ∑(𝑋) is a discrete space. 

(ii) If X is connected, then 𝑋∗ = {𝑋}. 

Proof: 

i)  

a) By Theorem (2.4) and Proposition (2.10), iii. 

b) By (a) and by Theorem (2.11),ii . 

ii) By Theorem (2.4) and Proposition (2.10) , iv. 

2.13Theorem: Let (X,d) be a locally compact I(X)-space such that int((𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ≠ 𝜙, for every 𝑥 ∈ 𝑋 and 

𝑋∗ is compact. If I(X) is connected ,then I(X) is a locally compact space. 

Proof: By Theorem(1.8) and Theorem (2.12), i. 

3. Stability and Attraction for compact sets 

In this section we generalized the concepts of stability and attraction for compact sets from dynamic system into 

I(X)-space. 

3.1 Definition: Let (X,d) be an I(X)-space and M be a non-empty compact subset of X. Define, 

Λ𝑤(𝑀) = {𝑥 ∈ 𝑋/Λ(𝑥) ⋂ 𝑀 ≠ 𝜙, 

Λ(𝑀) = {𝑥 ∈ 𝑋/Λ(𝑥) ≠ 𝜙 and Λ(𝑥) ⊆ 𝑀}. 

The sets Λ𝑤(𝑀), Λ(𝑀) are respectively called the region of weak attraction and attraction of the set M. 

Moreover, any point x in Λ𝑤(𝑀) or Λ(𝑀) respectively is said to be weakly attracted , attracted to M. 

Notice that if I(X) is compact, then Λ𝑤(𝑀) = Λ(𝑀) = 𝜙, so we assume I(X) to be not compact in this section. 

3.2 Example: Let N be the set of all positive integers and (N,d) be the discrete metric space, then Λ𝑤(𝑀) = 𝑁, 

Λ(𝑀) = 𝜙 for every non-empty compact subset M of X. 

Solution: Since N is a discrete metric space then M is a non-empty finite set. First we want to calculate Λ(𝑥). 

For every 𝑥 ∈ 𝑁. Let 𝑦 ∈ 𝑁 such that 𝑦 ≠ 𝑥. For every 𝑛 ∈ 𝑁 such that 𝑦 ≠ 𝑥 + 𝑛, define 𝑓𝑛: 𝑁 → 𝑁 as follows, 

𝑓𝑛(𝑥) = 𝑦 𝑓𝑛(𝑦) = 𝑥 + 𝑛, 𝑓𝑛(𝑥 + 𝑛) = 𝑥 and 𝑓𝑛(𝑡) = 𝑡, for every 𝑡 ∈ 𝑁 distinct from x,y and x+n. Notice that 

𝑓𝑛 ∈ 𝐼(𝑁), for every 𝑛 ∈ 𝑁, and 𝑓𝑛(𝑥) = 𝑦 → 𝑦, 𝑓𝑛 → ∞, because 𝑓𝑛(𝑦) = 𝑥 + 𝑛, for every 𝑛 ∈ 𝑁 (that is 

𝑓𝑛(𝑦) → ∞). Thus 𝑦 ∈ Λ(𝑥), for every 𝑦 ≠ 𝑥. Since N is a discrete space, then Λ(𝑥) is closed. Thus by  

Theorem (1.5), 𝑥 ∈ Λ(𝑥). So Λ(𝑥) = 𝑁. Since M is a non-empty finite set, then Λ(𝑥) ⋂ 𝑀 ≠ 𝜙 for every 𝑥 ∈ 𝑁. 

Thus Λ𝑤(𝑀) = 𝑁 and since Λ(𝑥) = 𝑁 ⊄ 𝑀, for every 𝑥 ∈ 𝑁 then Λ(𝑀) = 𝜙. 

3.3Example: Let 𝑋 = 𝑌 ⋃ 𝑍, where 𝑌 = {(0, 𝑦)/𝑦 ∈ 𝑅} and 𝑍 = {(𝑧, 0)/𝑧 ≥ 1 𝑜𝑟 𝑧 ≤ −1}. 

Let 𝑑 = min{1, 𝑑′) where 𝑑′ is the Euclidean metric, then Λ𝑤(𝑀) = 𝜙 or 𝐵 ⋃(−𝐵)and Λ(𝑀) = 𝜙 or 𝐵 ⋂(−𝐵) 

where B=M\Y for every non-empty compact subset M of X. 

Solution: First we will calculate Λ(𝑥), for every 𝑥 ∈ 𝑋. Notice that Λ(𝑥) = 𝜙 for every 𝑥 ∈ 𝑦. Let (0, 𝑧) ∈ 𝑍. 

Now, for every positive integer n, define 𝑓𝑛: 𝑋 → 𝑋, by 𝑓𝑛((0, 𝑦)) = (0, 𝑦 + 𝑛) and 𝑓𝑛((𝑥, 0)) = (𝑥, 0) ∈ 𝑍. So 

𝑓𝑛 ∈ 𝐼(𝑋) for every positive integer n, and 𝑓𝑛 → ∞. 

But 𝑓𝑛((𝑧, 0)) = (𝑧, 0) → (,0). Thus (𝑧, 0) ∈ Λ(𝑧, 0). Also (−𝑧, 0) ∈ Λ((𝑧, 0)). 

Thus Λ(𝑧, 0) = {(𝑧, 0), (−𝑧, 0)}. Now, let M be a non-empty compact subset of X. 

If 𝑀 ⊆ 𝑌, then Λ𝑤(𝑀) = 𝜙 and Λ(𝑀) = 𝜙 (since Λ((0, 𝑦)) = 𝜙 and Λ((𝑧, 0)) ⋂ 𝑀 = 𝜙). 

If 𝑀 ⋂ 𝑍 ≠ 𝜙. Put 𝐵 = 𝑀/𝑌, then Λ((𝑧, 0)) ⋂ 𝐵 ≠ 𝜙 and Λ((−𝑧, 0)) ⋂ 𝐵 ≠ 𝜙, for every (𝑧, 0) ∈ 𝐵. 

Thus Λ𝑤(𝑀) = 𝐵 ⋃(−𝐵). Notice that if (𝑧, 0) ∈ 𝐵 and (−𝑧, 0) ∉ B, then Λ(−𝑧, 0) = Λ(𝑧, 0) ⊄ 𝑀. Thus 

Λ(𝑀) = 𝐵 ⋂(−𝐵). 

The following theorem gives a useful characterization for weak attracted and attracted point. 

3.4 Theorem: Let (X,d) be an I(X)-space and M a non-empty compact subset of X. Then   

(i) A point x is weak attracted to M if and only if there exists a net {𝑓𝑛} in I(X) such that 𝑓𝑛 → ∞ and 

𝑑(𝑓𝑛(𝑥), 𝑀) → 0. 

(ii) A point x is attracted to M if and if only if for every net {𝑓𝛼} in I(X) with𝑓𝛼 → ∞, there exists a 

subnet {𝑓𝛽} of {𝑓𝛼} such that 𝑑(𝑓𝛽(𝑥), 𝑀) → 0. 

Proof: i)→). Let 𝑥 ∈ Λ𝑤(𝑀). Then Λ(𝑥) ⋂ 𝑀 ≠ 𝜙. So there exists 𝑦 ∈ Λ(𝑥) ⋂ 𝑀. 
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Thus there exists a net {𝑓𝛼} in I(X) with 𝑓𝛼 → ∞ and 𝑓𝑞(𝑥) → 𝑦. Then 𝑑(𝑓𝛼(𝑥), 𝑦) → 0. 

Since 𝑦 ∈ 𝑀, then 𝑑(𝑓𝛼(𝑥), 𝑀) ≤ 𝑑(𝑓𝛼(𝑥), 𝑦), for every 𝛼. Hence 𝑑(𝑓𝛼(𝑥), 𝑀) → 0. 

←). Let {𝑓𝛼} be a net in I(X) with 𝑓𝛼 → ∞ such that 𝑑(𝑓𝛼(𝑥), 𝑀) → 0. For every 𝛼, put 𝑡𝛼 = 𝑑(𝑓𝛼(𝑥), 𝑚).Thus 

for every positive integer n there exists 𝑦𝑛 ∈ 𝑀 such that 𝑑(𝑓𝛼(𝑥), 𝑦𝑛) < 𝑡𝛼 +
1

𝑛
. Since {𝑦𝑛} is a sequence 

in M and M is a compact set ,then there are 𝑦𝛼 ∈ 𝑀 and a subsequence {𝑦𝑚} of {𝑦𝑛} such that 𝑦𝑚 → 𝑦𝑛. Now, 

𝑑(𝑓𝛼(𝑥), 𝑦𝛼) ≤ 𝑑(𝑓𝛼(𝑥), 𝑦𝑚) + 𝑑(𝑦𝑚, 𝑦𝛼) 

< 𝑡𝛼 +
1

𝑚
+ 𝑑(𝑦𝑚, 𝑦𝛼) 

Since 𝑑(𝑦𝑚, 𝑦𝛼) → 0 and 
1

𝑚
→ 0 as 𝑚 → ∞, then 𝑑(𝑓𝛼(𝑥), 𝑦𝛼) ≤ 𝑡𝛼. 

Since 𝑡𝛼 = 𝑑(𝑓𝛼(𝑥), 𝑀) ≤ 𝑑(𝑓𝛼(𝑥), 𝑦𝛼). So 𝑡𝛼 = 𝑑(𝑓𝛼(𝑥), 𝑦𝛼), for every 𝛼. 

But we have a net {𝑦𝛼} in M, then there exists 𝑦 ∈ 𝑀 and a subnet {𝑦𝛽} of {𝑦𝛼} such that 𝑦𝛽 → 𝑦 (since M is 

compact ). Now, 

𝑑(𝑓𝛽(𝑥), 𝑦) ≤ 𝑑(𝑓𝛽(𝑥), 𝑦𝛽) + 𝑑(𝑦𝛽 , 𝑦) = 𝑡𝛽 + 𝑑(𝑦𝛽 , 𝑦). Since 𝑡𝛽 → 0 and 𝑦𝛽 → 𝑦, then 𝑓𝛽(𝑥) → 𝑦. But 𝑓𝛽 →

∞, then 𝑦 ∈ Λ(𝑥). So Λ(𝑥) ⋂ 𝑀 ≠ 𝜙 (Since 𝑦 ∈ 𝑀). Then 𝑥 ∈ Λ𝑤(𝑀). 

ii) →). Let 𝑥 ∈ Λ(𝑥) and {𝑓𝛼} be a net in T(X) such that 𝑓𝛼 → ∞. Then Λ(𝑥) ≠ 𝜙 and Λ(𝑥) ⊆ 𝑀. 

Since Λ(𝑥) ≠ 𝜙, then by Theorem (1.6), 𝑥 ∈ Λ(𝑥)̅̅ ̅̅ ̅̅ . But Λ(𝑥)̅̅ ̅̅ ̅̅  is invariant then {𝑓𝛼(𝑥)} is a net in Λ(𝑥)̅̅ ̅̅ ̅̅ . Since 

Λ(𝑥) ⊆ 𝑀 and M is closed, then Λ(𝑥)̅̅ ̅̅ ̅̅ ⊆ 𝑀, that is {𝑓𝛼(𝑥)}is a net in M. Thus 𝑑(𝑓𝛼(𝑥), 𝑀) = 0, for every 𝛼. This 

completes the proof. 

←). Since I(X) is non-compact, then there exists a net {𝑓𝛼}  in I(X) such that 𝑓𝛼 → ∞. Thus there exists a subnet 

{𝑓𝛽} of {𝑓𝛼} such that 𝑑(𝑓𝛽(𝑥), 𝑀) → 0. 

Then from the proof of (i),we have Λ(𝑥) ≠ 𝜙. 

We will prove that Λ(𝑥) ⊆ 𝑀, let 𝑦 ∈ Λ(𝑥) then there exists a net {g𝑞} in I(X) with g𝛼 → ∞ and g𝛼(𝑥) → 𝑦. So 

there exists a subnet {g𝛽} of {g𝛼} such that 𝑑(g𝛽(𝑥), 𝑚) → 0. 

It follows from the proof of (i), there exists 𝑧 ∈ 𝑀 and a subnet {g𝛾} of {g𝛽}such that g𝛾 → 𝑧. But g𝛾 → 𝑦. Then 

y=z (since X is 𝑇2-space). 

Then Λ(𝑥) ⊆ 𝑀, that is 𝑥 ∈ Λ(𝑥). 

We now give an important properties of Λ𝑤(𝑀) and Λ(𝑀). 

3.5 Theorem: let (X,d) be an I(X)-space and M be a non-empty compact subset of X .Then 

(i) Λ(𝑀) ⊆ Λ𝑤(𝑀) 

(ii) Λ𝑤(𝑀)and Λ(𝑀) are Invariant. 

(iii) If 𝑥 ∈ Λ(𝑀), then Λ(𝑥) ⊆ Λ(𝑀). 

(iv) If I(X) is locally compact then Λ(𝑀) and Λ𝑤(𝑀) are closed 

Proof: 

(i) Let 𝑥 ∈ Λ(𝑀), then Λ(𝑥) ≠ 𝜙 and Λ(𝑥) ⊆ M, so Λ(𝑥) ⋂ 𝑀 ≠ 𝜙. Thus Λ(𝑀) ⊆ Λ𝑤(𝑀) 

(ii) It is clear that Λ(𝑥) = Λ(𝑓(𝑥)), for every 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝐼(𝑋), then Λ𝑤(𝑀) and Λ(𝑀) are 

invariant. 

(iii) Let 𝑥 ∈ Λ(𝑀), then Λ(𝑥) ≠ 𝜙 and Λ(𝑥) ⊆ M. We will prove that Λ(𝑥) ⊆ Λ(𝑀), let 𝑦 ∈ Λ(𝑥) and 

𝑧 ∈ Λ(𝑦), than there are two nets {𝑓𝛼} and {g𝛼} with  𝑓𝛼 → ∞,  g𝛼 → ∞, such that  𝑓𝛼(𝑥) → 𝑦 and 

 g𝛼(𝑥) → 𝑧. 

Now, 

𝑑((g𝛼𝑜𝑓𝛼)(𝑥), 𝑧) = 𝑑(𝑓𝛼(𝑥), g𝛼
−1(𝑧)) (since g𝛼is an isometry) 

≤ 𝑑(𝑓𝛼(𝑥), 𝑦) + 𝑑(𝑦, g𝛼
−1(𝑧)) 

= 𝑑(𝑓𝛼(𝑥), 𝑦) + 𝑑(g𝛼(𝑦), 𝑧) 

Since 𝑓𝛼(𝑥) → 𝑦 and g𝛼(𝑦) → 𝑧, then we have (g𝛼𝑜𝑓𝛼)(𝑥) → 𝑧. 

Now, if g𝛼𝑜𝑓𝛼 → ∞, then 𝑧 ∈ Λ(𝑥) and if there exists 𝑓 ∈ 𝐼(𝑋) such that g𝛼𝑜𝑓𝛼 → 𝑓 Then by Proposition(1.4), 

𝑧 = 𝑓(𝑥). Thus z belongs to the orbit of 𝑥, (𝐼(𝑋))(𝑥) so always 𝑧 ∈ (𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Since Λ(𝑥) ≠ 𝜙, then by 

Theorem (1.6), 𝑧 ∈ Λ(𝑥)̅̅ ̅̅ ̅̅ . Notice that Λ(𝑥) ⊆ M and M is closed, then Λ(𝑥)̅̅ ̅̅ ̅̅ ⊆ M. 

Thus Λ(𝑦) ⊆ M, for every 𝑦 ∈ Λ(𝑥). Then Λ(𝑥) ⊆ Λ(𝑀). 

(iv) Let y be a limit point of Λ(𝑀). First we show that Λ(𝑀) ⊆ M. Let 𝑥 ∈ Λ(𝑀), then Λ(𝑥) ≠ 𝜙 and 

Λ(𝑥) ⊆ M. Since M is closed and 𝑥 ∈ Λ(𝑥)̅̅ ̅̅ ̅̅ , then 𝑥 ∈ 𝑀. Thus Λ(𝑀) ⊆ M. But Λ(𝑀)̅̅ ̅̅ ̅̅ ̅ is invariant, 

then (𝐼(𝑋))(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆ Λ(𝑀)̅̅ ̅̅ ̅̅ ̅. Thus Λ(𝑦) ⊆ M. We claim that Λ(𝑦) ≠ 𝜙, since y is a limit of Λ(𝑀), then 

there exists a sequence {𝑦𝑛} in Λ(𝑀) such that 𝑦𝑛 → 𝑦. So for every n, there exists 𝑥𝑛 ∈ 𝑋 such that 

𝑦𝑛 ∈ Λ(𝑥𝑛) ⊆ M, therefore there exists a net {𝑓𝛼
𝑛} in 𝐼(𝑋) such that 𝑓𝛼

𝑛 → ∞ and 𝑓𝛼
𝑛(𝑥𝑛) → 𝑦𝑛. 

Since I(X) is locally compact then by [11,11D.d, page 77](for the proof see [1]), there exists a 

diagonal net {𝑓𝛼𝑚
𝑚 (𝑥𝑚)} such that 𝑓𝛼𝑚

𝑚 → ∞ and 𝑓𝛼𝑚
𝑚 (𝑥𝑚) → 𝑦. But {𝑥𝑚} is a sequence in a compact 

set M, therefore there exists a subsequence {𝑥𝑘} of {𝑥𝑚} and 𝑥 ∈ 𝑀 such that 𝑥𝑘 → 𝑥. Thus 𝑥 ∈
Λ(𝑀). This completes the proof. In the same way we can to prove that Λ𝑤(𝑀) is closed. 
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3.6 Corollary: Let (X,d) be an I(X)- space and M be a non-empty compact subset of X. If I(X) is locally compact 

then (M) is compact. 

Proof: We will prove Λ(𝑀) ⊆ M, let 𝑥 ∈ Λ(𝑀), then Λ(𝑥) ≠ 𝜙 and Λ(𝑥) ⊆ M. Since M is a compact subset of a 

Hausdorff space, then Λ(𝑥)̅̅ ̅̅ ̅̅ ⊆ 𝑀. 

But by Theorem (1.6), 𝑥 ∈ Λ(𝑥)̅̅ ̅̅ ̅̅ . Thus Λ(𝑀) ⊆ M. Then by Theorem (3.5) Λ(𝑀) is compact. 

In general Λ𝑤(𝑀) ≠ Λ(𝑀) as shown in Examples (3.2), and (3.3). But the following theorem shows that 

Λ𝑤(𝑀) = Λ(𝑀) if M is invariant. 

3.7 Theorem: Let (X,d) be an I(X)-space and M be a non-empty compact subset of X .If M is invariant, then 

(i) Λ𝑤(𝑀) = 𝑀 

(ii) Λ(𝑀) = Λ𝑤(𝑀). 

Proof: 

(i) Let 𝑥 ∈ Λ𝑤(𝑀). Then Λ(𝑥) ⋂ 𝑀 ≠ 𝜙, thus there exists 𝑦 ∈ Λ(𝑥) ⋂ 𝑀. So there exists a net {𝑓𝛼} in 

𝐼(𝑋) with 𝑓𝛼 → ∞ and 𝑓𝛼(𝑥) → 𝑦. Since M is invariant and 𝑦 ∈ 𝑀, then {𝑓𝛼
−1(𝑦)} is a net in M. 

But 𝑓𝛼(𝑥) → 𝑦 and 𝑑(𝑓𝛼
−1(𝑦), 𝑥) = 𝑑(𝑓𝛼(𝑥), 𝑦) (Since 𝑓𝛼 is an isometry). Then 𝑓𝛼

−1(𝑦) → 𝑥, so 

𝑥 ∈ 𝑀 (since M is closed). Thus Λ𝑤(𝑀) ⊆ M. 

Now, we prove M ⊆ Λ𝑤(𝑀), let 𝑥 ∈ 𝑀. Since M is invariant and closed, then the closure of orbit of x is a 

subset of M. Since M is compact then (I(X))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is compact. So by Proposition (1.7), Λ(𝑥) ≠ 𝜙. 

Now, 𝜙 ≠ Λ(𝑥) ⊆ (I(X))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊆ M, then Λ(𝑥) ⋂ 𝑀 ≠ 𝜙, that is M ⊆ Λ𝑤(𝑀). Hence Λ𝑤(𝑀) = 𝑀. 

iii) First we will prove that M ⊆ Λ(𝑀). Let 𝑥 ∈ 𝑀. Since M is invariant, then the closure orbit of x is a 

closed subset of M .But M is compact, then the closure orbit of x is compact .Thus by Proposition 

(1.7) , Λ(𝑥) ≠ 𝜙 and since Λ(𝑥) ⊆ 𝑀, then 𝑥 ∈ Λ(𝑀). Thus M ⊆ Λ(𝑀). So by (i) and Proposition 

(3.2.5),i, we have Λ(𝑀) = Λ𝑤(𝑀). 

The converse of Theorem (3.7),ii,is not true in general. In Example (3.3), if we take 𝑀 =
{(0,1), (1,0), (−1,0)}, then  Λ𝑤(𝑀) = Λ(𝑀). But M is not invariant. 

3.8 Definitions,[3]: Let (X,d) be an I(X)- space .A non-empty compact subset M of X is said to be, 

i) A weak attractor if Λ𝑤(𝑀) is a neighborhood of M. 

ii) An attractor if Λ(𝑀) is a neighborhood of M. 

iii) Stable if every neighborhood U of M contains an invariant neighborhood V of M and if it is not 

stable, it is called unstable. 

3.9 Example: Let (N,d) be the discrete metric space where N is the set of all positive integers and M be a non-

empty compact subset of N. Then,  

i) M is a weak attractor. 

ii) M is not attractor. 

iii) M is unstable 

Solution 

i) It follows that from the solution of Example (3.2) Λ𝑤(𝑀) = 𝑁 for every nonempty compact M of N and since 

𝑀 ⊆ Λ𝑤(𝑀) and Λ𝑤(𝑀) is open then M is a weak attractor. 

ii) See the solution of Example (3.2) Λ(𝑀) = 𝜙, for every M. Then 𝑀 ⊄ Λ(𝑀)  therefore M is not attractor. 

iii) Notice that M is unstable .Since N is a discrete space ,then M is a finite set. So M is open in N. 

Now, Put 𝑛 = max{𝑘/𝑘 ∈ 𝑀}, define 𝑓: 𝑁 → 𝑁 by 𝑓(𝑛) = 𝑛 + 1, 𝑓(𝑛 + 1) = 𝑛 and 𝑓(𝑟) = 𝑟 for every 𝑟 ∈ 𝑁 

distinct from n and 𝑛 + 1. So 𝑓 ∈ 𝐼(𝑁). 

But 𝑓(𝑛) = 𝑛 + 1 ∉ 𝑀 .Thus M is not invariant. Then M is open but not invariant. 

Hence M is unstable. 

3.10 Example: In Example (3.3), if we take 𝑀 =  {(1,0), (−1,0)} then M is a weak attractor, attractor and stable. 

Solution: First we will show that M is open, since 𝑋 = 𝑌 ⋃ 𝑍 where 𝑌 = {(0, 𝑦)/𝑦 ∈ 𝑅}, 𝑍 = {(𝑧, 0)/𝑧 ≥

1 𝑜𝑟 𝑧 ≤ −1} and 𝑑 = min {1, 𝑑′}, where 𝑑′ is the Euclidean metric, then 𝐵 ((1,0),
1

2
) = {(1,0)} and 

𝐵 ((−1,0),
1

2
) = {(−1,0)}, Thus M is open. See the solution of Example (3.3) Λ((1,0)) = {(1,0), (−1,0)} and 

Λ((−1,0)) = {(1,0), (−1,0)}. Thus Λ𝑤(𝑀) = Λ(𝑀) = {(1,0), (−1,0)}. Then Λ𝑤(𝑀) and Λ(𝑀) are 

neighborhoods of M, thus M is a weak attractor and attractor. 

It is clear that, for every 𝑓 ∈ 𝐼(𝑋), then either 𝑓((1,0)) = (1,0), 𝑓((−1,0)) = (−1,0) or 𝑓((1,0)) =

(−1,0), 𝑓((−1,0)) = (1,0), thus M is invariant and since M is open .Then M is stable . 

Now we are ready to prove some results about the concepts that introduced. 

3.11 Proposition: Let (X,d) be an I(X)-space and M be a non-empty compact subset of X. If M is a weak attractor 

or attractor ,then the corresponding sets Λ𝑤(𝑀) or Λ(𝑀) are open. 

Proof: Let Y denote any one of the sets Λ𝑤(𝑀) or Λ(𝑀) since Y is a neighborhood of M, then there exists an 

open set U such that 𝑀 ⊆ 𝑈 ⊆ 𝑌 thus 𝑈 ⋂ 𝑌𝑐 . Since U is open then 𝑈 ⋂ 𝜕𝑌𝑐 = 𝜙 (where 𝜕𝑌𝑐 is the boundary of 

𝑌𝑐 ). So 𝑈 ⋂ 𝜕𝑌 = 𝜙 (Since 𝜕𝑌𝑐 = 𝜕𝑌), thus 𝑀 ⋂ 𝜕𝑌 = 𝜙. 
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Let 𝑌 = Λ(𝑀), suppose that 𝑌 ⋂ 𝜕𝑌 ≠ 𝜙, then there exists 𝑥 ∈ 𝑌 ⋂ 𝜕𝑌. So Λ(𝑀) ⊆ 𝑀 and Λ(𝑥) ≠ 𝜙 (since 𝑌 =
Λ(𝑀)) .Then by Theorem (1.6) ,we have 𝑥 ∈ 𝑀, a contradiction(since 𝑀 ⋂ 𝜕𝑌 = 𝜙) So 𝑌 ⋂ 𝜕𝑌 = 𝜙, then Y is 

open. Also we want to prove that Λ𝑤(𝑀) is open. Suppose that 𝑌 ⋂ 𝜕𝑌 ≠ 𝜙 (where 𝑌 = Λ𝑤(𝑀)) thus there 

exists 𝑥 ∈ 𝑌 ⋂ 𝜕𝑌, so Λ(𝑥) ⋂ 𝑀 ≠ 𝜙, that is there exists 𝑦 ∈ Λ(𝑥) ⋂ 𝑀. Then there exists a net {𝑓𝑛} in I(X) such 

that 𝑓𝛼 → ∞ and 𝑓𝛼(𝑥) → 𝑦. Since 𝜕𝑌 is invariant and closed, then 𝑦 ∈ 𝜕𝑌, a contradiction (since 𝑀 ⋂ 𝜕𝑌 = 𝜙). 

Hence 𝑌 ⋂ 𝜕𝑌 = 𝜙 and thus Y is open. 

3.12 Theorem: Let (X,d) be an I(X)-space and let M be a non-empty compact subset of X. Then M is an attractor 

if and only if M is invariant and open. 

Proof: →). Let M be an attractor, then Λ(𝑀) is a neighborhood of M thus 𝑀 ⊆ Λ(𝑀), and also Λ(𝑀) ⊆ 𝑀. So 

𝑀 = Λ(𝑀). Hence by and Theorem (3.5),ii, and by Proposition (3.11)M is open and invariant. 

←). Let M be open and invariant. Then by Theorem (3.5), Λ(𝑀) = 𝑀. Thus M is an attractor. 

3.13 Theorem: Let (X,d) be an I(X)-space and let M be a non-empty compact subset of X . If M is stable ,then 

(i) M is invariant. 

(ii) If M is a singleton {x}, then is a critical point. 

Proof: 

Let D be the intersection of all invariant neighborhoods of M. Since X is invariant then 𝐷 ≠ 𝜙 and 𝑀 ⊆ 𝐷. 

Suppose that 𝐷 ⊄ 𝑀, thus there exists 𝑦 ∈ 𝐷 and y M. Since (X,d) is a metric space. 

i) So 𝑋\{𝑦}is an open set and 𝑀 ⊆ 𝑋\{𝑦}. But M is stable, then  

there  exists an invariant neighborhood U of M such that 𝑀 ⊆ 𝑈 ⊆ 𝑋\{𝑦}. From the definition of D, we have 

𝐷 ⊆ 𝑈, then 𝑦 ∈ 𝑈, a contradiction, (since 𝐷 ⊆ 𝑋\{𝑦}). Thus must be M=D .So M is invariant. 

Let M={x}, then by (i) , we have {x} is invariant, that is 𝑓{𝑥} ∈ {𝑥} for every 𝑓 ∈ 𝐼(𝑋). So x is a critical point. 

In Example (3.9), M is open and unstable, this example gives a motivation to the following proposition. 

3.14 Proposition: Let (X,d) be an I(X)-space and let M be a non-empty compact subset of X. If M is open ,then M 

is stable if and only if, is invariant 

Proof: 

→). By Theorem (3.13) . 

←). Since M is open and invariant  then every neighborhood of M contains an invariant neighborhood of M. 

Thus M is stable. 

3.15 Corollary:  Let (X,d) be an I(X)-space and M be a non-empty compact invariant subset of X. If 

𝑖𝑛𝑡 ((𝐼(𝑋))(𝑥))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 𝜙 for every 𝑥 ∈ 𝑀 then M is stable. 

Proof: Since M is invariant and compact, then 𝑀 = ⋃ 𝐼(𝑋)(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑥∈𝑀 .Since (𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ has a non-empty interior for 

every 𝑥 ∈ 𝑀, then by Theorem(2.4) and Proposition (2.10), (𝐼(𝑋))(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is open, for every 𝑥 ∈ 𝑀. Thus M is open 

,then by Proposition (3.14) , M is stable. 

     We study now the relation between attractor and stability. 

3.16 Theorem: Let (X,d) be an I(X)-space. If a subset M of X is attractor, then it is weak attractor . 

Proof: By Theorem (3.12) and Theorem (3.7). 

     The converse of Theorem (3.16) is not true in general, see Example (3.9). 

     It follows from Theorem (3.7), the following Proposition. 

3.17 Proposition: Let (X,d) be an I(X)-space and M be an invariant compact 

subset of X .Then M is attractor if and only if M is a weak attractor. 

3.18 Theorem: Let (X,d) be an I(X)-space. If a compact subset M of X is an attractor, then M is stable. 

Proof: By Theorem (3.12) and Proposition (3.14). 

The converse of Theorem (3.18) is true if M is open, as shown by the following theorem. 

3.19 Theorem: Let (X,d) be an I(X)-space and M be an open compact subset of X. If M is stable, then it is 

attractor . 

Proof: By Theorem (3.13) ,i, and theorem(3.12). 

3.20 Corollary: Let (X,d) be an I(X)-space and M be a compact open set. If M is stable then M is a weak 

attractor. 

Proof: By Theorem (3.16) and Theorem (3.19). 

     In Example (3.9), there exists a weak attractor but it is unstable. 

     If we take M to be invariant, then the converse of corollary is true, see the following theorem 

3.21 Theorem: Let (X,d) be an I(X)-space and M be an invariant compact subset of X. If M is a weak attractor, 

then M is stable. 

Proof: By Theorem (3.7) and Theorem (3.18). 
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