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Abstract 

The beta-Lindley distribution is used in the field of survival analysis to imitate techniques employed with human 

lifetime data. The neutrosophic beta-Lindley distribution (NBL) is designed to characterize a range of survival 

statistics with indeterminacies. The established distribution is used, for instance, to describe unknown data that is 

roughly favorably skewed. The evolved NBL's three main statistical characteristics—the neutrosophic moments, 

hazard, and survival functions are covered in this article. Additionally, The well-known maximum likelihood 

estimation method is used to estimate the neutrosophic parameters. To check if the predicted neutrosophic 

parameters were met, a simulation study was done. Notably, talks of prospective NBL uses in the real world 

have made use of actual data. Actual data were utilized to show how well the suggested model performed in 

compared to the current distributions. 

Keywords: Bladder cancer; survival analysis; beta- Lindley distribution; neutrosophic statistics; hazard function. 

1. Introduction 

 

The analysis of ambiguous, fuzzy, imprecise, or uncertain observations can be done using neutrosophic statistics, 

which is an extension of classical statistics. The analysis of neutrosophic numbers and events, neutrosophic 

regression, neutrosophic probability distribution, and neutrosophic estimate are all carried out using neutrosophic 

statistical methods [1] to create neutrosophy, which enables the depiction of uncertainty, ambiguity, and 

contradiction. Traditional statistics usually make the assumption that the data is unambiguous, in which case 

each observation is assigned a certain value. However, sometimes facts from the real world are unclear or 

insufficient. Neurosophic statistics offers a paradigm for handling confusing, inadequate, and inconsistent data in 

order to get beyond these limitations [2-4]. 

Non-empirical statistics consider three variables: membership in truth, membership in indeterminacy, and 

membership in falsity. The degree of authenticity, ambiguity, or falsity associated with an observation or a 

hypothesis is represented by each factor. Membership functions are used to represent these degrees in a manner 

akin to fuzzy sets [2, 3]. 

Neutrophic statistics is used in several fields, including decision-making, pattern recognition, data mining, and 

image processing [4-9]. It provides a flexible mathematical tool for simulating and examining complex systems 

that are very uncertain and imprecise. 

One of the most important applications of neutrosophic information is the analysis of survival statistics. The 

survival analysis statistical technique estimates the time until an event occurs [10]. The probability distributions 

of the temporal data serve as the framework for the overall survival study. Survival analysis and neutrosophic 

reasoning are used to create a neutrosophic survival probability distribution. The likelihood of an event 

happening at different dates is represented by the survival probability distribution in the context of neutrosophic. 

Neutosophic reasoning is used to account for the ambiguity and uncertainty of the survival statistics. It allows for 
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the portrayal of only having a limited or foggy understanding of events. The degree of truth, falsity, and 

ambiguity associated with the survival probability at various time points must be taken into consideration by 

both neutrosophic parameters and the already available survival data. This can be done using mathematical 

models and techniques particular to neutosophic logic. Numerous studies discuss the neutrosophic probability 

distribution [10-22]. 

There are many uses for the beta-Lindley distribution, including in survival analysis. In this work, the 

applications of the beta-Lindley distribution when the data is in interval form and contains some neutrosophical 

indeterminacy were expanded. A variety of qualities are studied under the newly proposed distribution and their 

applications are explored with the help of simulated and real data applications based on bladder cancer. 

 

2. Neutrosophic beta- Lindley distribution (NBL) 

 

The goal of the neutrosophic probability distribution (NPD) is to manage uncertain information with limited 

knowledge. It is an extension of classical probability theory. The idea of indeterminacy is included, which states 

that the likelihood of an event can be true, untrue, or undetermined all at once. Three parameters are used by the 

NPD: truth-membership, indeterminacy-membership, and falsity-membership. The NPD provides for a more 

subtle portrayal of uncertainty, which makes it fascinating to understand. Neutosophic probability, which 

considers the possibility of indeterminacy in addition to typical crisp probabilities, enables a more expansive 

interpretation of uncertainty. 

The beta-Lindley distribution which proposed by Merovci and Sharma [23] can be defined in terms of the 

cumulative distribution function (CDF) and probability density function (PDF), respectively, by: 

𝐹(𝑥; 𝜃, 𝛼, 𝛽) =
(1−((𝜃+1+𝜃𝑥)/(𝜃+1))𝑒−𝜃𝑥)

𝛼

𝛼𝐵(𝛼,𝛽)

 ×  2𝐹1 (𝛼, 1 − 𝛽; 𝛼 + 1; 1 −
𝜃+1+𝜃𝑥

𝜃+1
𝑒−𝜃𝑥)

          (1) 

f(𝑥; 𝜃, 𝛼, 𝛽) =
𝜃2(𝜃+1+𝜃𝑥)𝛽−1(1+𝑥)𝑒−𝜃𝛽𝑥

𝐵(𝛼,𝛽)(𝜃+1)𝛽  × [1 −
𝜃+1+𝜃𝑥

𝜃+1
𝑒−𝜃𝑥]

𝛼−1

, 𝑥 > 0, 𝜃, 𝛽, 𝛼 > 0 
      (2) 

Smarandache [2] was the first to introduce the idea of neutrosophic probability as a function  
3

:  0,  1NP →  

where U is a neutrosophic sample space and defined the probability mapping to take the form 

( ) ( ) ( ) ( )( ) ( )  ,   ,    ,  ,   NP S ch S ch neut S ch anti S   = =

 0  ,  ,    1  0        3where and        + +  .  

The term   represents the set of sample space, R represents the set of real numbers, and  denotes a sample 

space event, NX and NY  denote neutrosophic r.v. Additionally, we present certain well-known concepts and 

features of neutrosophic probability and logic that are crucial for developing this model of neutrosophic 

probability.  

. 

Definition 1 Consider the real-valued crisp r.v.W , which has the following definition:  :    W R→  

where   is the event space and NW  neutrosophic r.v. as follows: 

( )   :   NW R I→  

and 

     NW W I= +  

The term I  represents indeterminacy. 

 Theorem 1 Let the neutrosophic r.v.     NW W I= + and the CDF of W is ( ) ( )     WF w P W w=   [15]. The 

following assertions are correct: 

( ) ( )      ,N WFW w F w I= −  
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( ) ( )      ,
NW Wf w f w I= −  

where 
NWF and 

NWf are the CDF and PDF of a neutrosophic r.v. NW , respectively.  

Theorem 2 Let    NW W I= + , is the neutrosophic r.v., then the expected value and variance can be derived as 

follows: ( ) ( )     NE W E W I= + and ( ) ( )   NV W V W=  [15]. 

Suppose the neutrosophic variable could be expressed as: N L U Nw w w I= + where  ,N L UI I I  and Lw  and 

U Nw I  denote the determined and indeterminate parts, respectively. 

Assume that the neutrosophic random variable  ,N L Ux x x  follows the beta-Lindley having neutrosophic 

parameters:  ,N L U   ,  ,N L U   ,  ,N L U   where the letters L and U are the lower values and 

the upper values, respectively. Then, the neutrosophic CDF and PDF of neutrosophic beta-Lindley (NBL) is 

given by 

 

( )
( ) ( )( )( )
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1 1 / 1
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Figures 1: The pdf of NBL when  2,2.2N  ,  1.5,1.7N  ,  1.6,1.9N   

 

 

Figures2: The pdf of NBL when  1.8,2N  ,  1.2,1.5N  ,  1.3,1.5N   
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3. Statistical Properties of NPL 

 

3.1  The neutrosophic Survival and hazard functions 

The survival function, ( )S x , which is the probability of a member is surviving prior to some time, is defined 

for  

( )
( ) ( )( )( )

( )

2 1

1 1 / 1
, , , 1

,
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    ,1 ; 1;1
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  
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−

−
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                 (5) 

The hazard function, ( )h x , is defined as: 
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( )
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                            (6) 

3.2. The neutrosophic moments 

Theorem 3. The neutrosophic  thk  moment, ( )
k

E x , of the NBL is given as 
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Proof: 
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4.  Parameter Estimation of NBL 

 

The Maximum Likelihood Estimator (MLE) is a popular statistical method for estimating a probability 

distribution's parameters from observed data. Finding the parameter values that maximize the likelihood 

function, which gauges the likelihood of witnessing the provided data under various parameter settings, is the 

notion underlying MLE. The MLE offers estimates that are most likely to have produced the observed data by 

maximizing the likelihood function. It is a well-known and commonly applied statistical method with 

applications in many different industries. 

The MLE of the parameters 𝜃𝑁 , 𝛼𝑁 , 𝛽𝑁 of the NBL distribution is mostly used. Maximum likelihood estimation 

(MLE) method in estimating NBL parameters. Suppose 1 2, ,...,N N Nnx x x  be a random sample of size 𝑛 from the 

NBL, the log-likelihood function is then given by: 

 
ℓ = ln 𝐿 = 𝑛(2log (𝜃𝑁) − log Γ(𝛼𝑁) − log Γ(𝛽𝑁) + log Γ(𝛼𝑁 + 𝛽𝑁)

 −𝛽𝑁log (𝜃𝑁 + 1))

 + ∑  𝑛
𝑖=1  log (1 + 𝑥𝑁𝑖

) + (𝛽𝑁 − 1)log (𝜃𝑁 + 1 + 𝜃𝑁𝑥𝑁𝑖
)

 −𝜃𝑁𝛽𝑁 ∑  𝑛
𝑖=1   𝑥𝑁𝑖

+ (𝛼𝑁 − 1) ∑  𝑛
𝑖=1  log (1 −

𝜃𝑁+1+𝜃𝑁𝑥𝑁𝑖

𝜃𝑁+1
𝑒−𝜃𝑁𝑥𝑁𝑖) .

     (8) 

 Therefore, MLE of 𝜃̂𝑁, 𝛼̂𝑁, and 𝛽̂𝑁, respectively, can be obtained by solving the following log-likelihood 

equations: 
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5. Simulation results 

 

R software is used to execute a Monte Carlo simulation with various sample sizes, 30,50,150,300n = and 

neutrosophic parameters in four cases: 

(1)  1.8,2N  ,  1.2,1.5N  , and  1.3,1.5N   

(2)  1,1.5N  ,  1,1.3N  , and  1.5,1.8N   

(3)  2,2.3N  ,  1.8,2N  , and  2,2.4N   

(4)  2.5,3N  ,  2, 2.5N  , and  2.3,2.7N   

 

One thousand times are repeated in the simulation. Performance indicators like the estimators' neutrosophic 

average and the bias of that average (NAB), NBA = ∑ (𝛿̂1000
𝑖=1 − 𝛿)/𝑛 , and neutrosophic Mean Square Error 

(NMSE), NMSE = ∑ (𝛿̂ − 𝛿)21000
𝑖=1 /𝑛 are attained for all values of n . Tables 1–4 present the findings.  These 

tables show that, as predicted, as sample sizes increase, both the NAB and NMSE for neutrosophic parameters 

decrease. The neutrosophic MLE for the NBL also provides accurate estimation with a larger sample size, 

according to the study's findings. 
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Table 1: Average performance criteria for case 1 

n   NAB 

  

  NMSE  

 
N  N  N  N  N  

N  

30 [0.0183,0.0191] [0.0201,0.0210] [0.0275,0.0283] [0.0373,0.0381] [0.0414,0.0422] [0.0485,0.0501] 

50 [0.0121,0.0134] [0.0144,0.0152] [0.0225,0.0243] [0.0331,0.0342] [0.0364,0.0372] [0.0443,0.0463] 

150 [0.0110,0.0119] [0.0149,0.0151] [0.0212,0.0225] [0.0321,0.0329] [0.0349,0.0351] [0.0318,0.0328] 

300 [0.0044,0.0057] [0.0075,0.0084] [0.0147,0.0159] [0.0254,0.0268] [0.0273,0.0288] [0.0264,0.0271] 

 

 

Table 2: Average NAB and NMSE for case 2 

N  NAB   NMSE  

 
N  N  N  N  N  N  

30 [0.015,0.0143] [0.1057,0.1292] [0.1175,0.1527] [0.0207,0.0548] [0.1515,0.2263] [0.1870,0.3160] 

50 [0.0065,0.0089] [0.0642,0.0784] [0.0713,0.0927] [0.0121,0.0323] [0.0821,0.1226] [0.1014,0.1713] 

150 [0.0023,0.0031] [0.0213,0.0260] [0.0236,0.0307] [0.0039,0.0105] [0.0253,0.0379] [0.0313,0.0529] 

300 [0.0015,0.0021] [0.0138,0.0168] [0.0153,0.0199] [0.0023,0.0063] [0.0150,0.0224] [0.0185,0.0312] 

 

Table 3: Average NAB and NMSE for case 3 

N  NAB   NMSE  

 
N  N  N  N  N  N  

30 [0.0243,0.0197] [0.1823,0.2370] [0.1641,0.2005] [0.1003,0.1105] [0.3201,0.5409] [0.2593,0.3873] 

50 [0.0131,0.0109] [0.0863,0.1122] [0.0777,0.0950] [0.0492,0.0546] [0.1276,0.2156] [0.1033,0.1544] 

150 [0.0029,0.0025] [0.0182,0.0236] [0.0163,0.0200] [0.0029,0.0025] [0.0096,0.0107] [0.0183,0.0278] 

300 [0.0022,0.0019] [0.0128,0.0166] [0.0115,0.0140] [0.0064,0.0071] [0.0152,0.0257] [0.0123,0.0184] 

 

Table 4: Average performance criteria for case 4 

n  NAB   NMSE  

 
N  N  N  N  N  N  

30 [0.0150,0.0200] [0.1641,0.2005] [0.0054,0.0084] [0.0109,0.0339] [0.7202,0.9250] [0.0313,0.0824] 

50 [0.0080,0.0109] [0.0777,0.0950] [0.0030,0.0048] [0.0054,0.0168] [0.2871,0.3687] [0.0152,0.0405] 

150 [0.0018,0.0025] [0.0163,0.0200] [0.0007,0.0011] [0.0011,0.0033] [0.0517,0.0664] [0.0030,0.0079] 

300 [0.0013,0.0019] [0.0115,0.0140] [0.0006,0.0009] [0.0007,0.0022] [0.0342,0.0439] [0.0020,0.0053] 
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6. Applications 

 

In a practical application in this section, a real-world dataset was used to measure interest in the NBL 

distribution. The data under consideration is a compilation of 128 cancer patients' months-long remission 

durations. The remission periods reported here are based on a subset of data from bladder cancer studies that [24] 

published and are largely intended for descriptive purposes. The findings of the goodness of fit test based on the 

Kolmogorov-Smirnov (KS) test indicate that the Beta-Lindley distribution is one of the plausible distributions 

for the remission times. According to [14], this data demonstrates that interval reporting rather than precise 

reporting is used to offer remission times for specific cancer patients, including [7.26, 8.2], [12, 14.77], [15, 

17.2], [5.3, 7.1], [75.02, 81], and [1.5, 3.2]. Two neutrosophic distributions, which were used previously for 

analyzing this data: The neutrosophic exponential distribution (NE) [14] and the neutrosophic inverse power 

Lindley distribution (NIPL) [25], are contrasted with the suggested NBL's model appropriateness. Which model 

fits the data the best is determined using the log-likelihood value (LogL), Akaike Information Criteria (AIC), 

Bayesian Information Criteria (BIC), and Kolmogorov-Smirnov (KS) tests. The highest LogL values and the 

lowest AIC, BIC, and KS statistic values identify the model that fits the data the best. A higher p-value also 

indicates that the model best matches the neutrosophic data. Table 5 provides a list of the neutrosophic 

maximum likelihood estimators and model sufficiency indicators. The outcomes show that for data, the NBL is 

superior to the NE and NIPL. The table's bold values display how effectively the suggested model performs. 

 

Table 5: The criteria selection neutrosophic distributions for cancer patients’ data 

 NBL NIPL NE 

Parameter ]1.51 1[ , .68N =
 

]1.202 .[ ,1 213N =
 

]0.1081 1[ ,0. 0822N =
 

 ]0.143 0[ ,  .155N =
 

]0.1532 .[ ,  0 1578N =
 

 

 ]0.136 0[ ,  .144N =
 

  

LogL [78.2591, 79.3684] [80.3025, 81.1497] [10.352, 13.241] 

AIC [152.2511, 153.7428] [156.605, 158.2994] [63.508, 65.334] 

BIC [150.2064, 151.4234] [154.8234, 156.5187] [60.218, 61.229] 

KS-value [0.118, 0.123] [0.124, 0.132] [0.752, 0.774] 

KS- p-value [0.961, 0.969] [0.955, 0.987] [1.135×10-6, 1.188×10-6] 

 

 

7. Conclusions 

 

The neutrosophic beta-Lindley distribution (NBL) is advocated in this article. In a range of application data, this 

well-known distribution can be utilized to account for problems with survival and reliability. The key statistical 

properties of the developed NBL have all been explored, including the neutrosophic survival function, 

neutrosophic hazard rate, and neutrosophic moments. The developed neutrosophic MLEs have been used to 

demonstrate neutrosophic average bias and MSEs for a variety of sample sizes. To determine whether the 

computed neutrosophic parameters were met, a simulation study was conducted. The sample size and 

neutrosophic parametric value are crucial factors in accurately estimating an unknown parameter, according to 

simulation data. Another argument in favor of the use of the NBL in neutrosophic situations is the collecting of 

remission times from 128 cancer patients. 
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