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Abstract 

In practical scenarios, it is common to encounter fuzzy data that contains numerous imprecise 

observations. The uncertainty associated with this type of data often leads to the use of interval 

statistical measures and the proposal of neutrosophic versions of probability distributions to better 

handle such data. This study introduces a new generalized design of the log-logistic distribution within 

a neutrosophic framework, building upon encouraging applications of this distribution in fields such 

as economics, engineering, survival analysis, and lifetime modeling. The proposed neutrosophic log-

logistic distribution (NLLD) is analyzed in terms of statistical properties, including moments, shape 

coefficients, and various survival characteristics. To evaluate the performance of the predicted 

neutrosophic parameters, an estimation procedure is conducted. Finally, the practical application of 

the proposed model is demonstrated using a sample dataset consisting of 128 bladder cancer patients. 

Keywords: Neutrosophic probability; uncertain data; estimation; log-logistic model 

 

1. Introduction 

Statistical distributions are a powerful tool for describing and predicting real-world events [1]. In a 

wide range of fields, classical distributions have played a crucial role in representing data over the 

past few decades [2]. The statistics literature alone contains hundreds of continuous univariate 

distributions [3]. In economics, the log-logistic distribution (LLD), which is also called the Fisk 

distribution when studying income inequality, is widely used in many fields, such as economics, 

actuarial studies, survival analysis, dependability, hydrology, and engineering [4]. The LLD is useful 

because it can be utilized to develop functions for growing hazard rates. This makes it a good choice 

to the log-normal distribution in many situations. This benefit is especially clear when working with 

censored observations, which is a famous type of data in these areas [5]. The LLD is a random variable 

distribution that doesn't have a negative value, and its logarithm follows the well-known logistic 

distribution. It was first used to model the growth of a population [6]. One of the best things about the 

LLD is that it shows the cumulative distribution function in a closed form. Because of this, it is a good 

choice for statistics analysis with limited data [7]. The LLD is a type of survival time parametric model 

in which the risk rate goes up at first, then down, and sometimes shows a hump-like pattern. Al-

shomrani et al. [8] investigated that the LLD is a more reliable option to the Weibull distributed data. 

But the LLD can only be used in certain situations because the risk function must be monotonic 

regardless of input values. Researchers like Ragab and Green [9] have looked at the LLD's order data 

and signified its characteristics. Kantam et al. [10] also used the LLD to come up with a way to sample 

acceptance sampling. Kantam et al. [11] developed a modified maximum likelihood (ML) procedure 

for this distribution to improve its estimation framework. Overall, the landscape of statistical 

distributions gives a lot of choices, and the LLD has shown itself to be a useful and flexible distribution 
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that can be used in many different ways and has traits that are helpful in analyzing variety of data. As 

shown in [12], the idea of a Neutrosophic Set (NS) offers a bigger context that includes both fuzzy 

and classical sets. This extension, proposed by Smarandache is rooted in the notion of neutrosophy 

[13]. 

Real-world situations often involve uncertain data, and several researchers have addressed this 

challenge using the Neutrosophic Set approach [14, 15]. Neutrosophy logic [16] guides the 

examination of statements that possess degrees of uncertainty, neutrality, inconsistency, or ambiguity 

[16]-[19]. Recognizing the presence of inaccuracies in the variables under study, Smarandache 

pioneered the application of neutrosophic techniques in precalculus, calculus, and statistics [20]. 

Consequently, the exploration of neutrosophic statistics has emerged as a field investigating the 

impact of inconsistency on statistical modeling. 

While the idea of statistical modeling from a neutrosophic standpoint has recently been presented in 

a few papers [21]-[23], discussions on neutrosophic descriptive statistics and probability measurement 

can be found in [24]. Notably, applications of neutrosophic decision-making in quality control have 

demonstrated significant effectiveness [25]. Salama et al. [26] have made notable contributions by 

introducing neutrosophic algebraic structures for probability models. However, it is worth noting that 

the research on neutrosophic statistics has predominantly focused on the application side of algebraic 

structures, with limited attention given to the logic of probability distributions. Consequently, despite 

the growing popularity of neutrosophic distributions, there remains a dearth of research aimed at 

comprehending the fundamental characteristics of probability models and their application to various 

real-world data scenarios. 

This work introduces the neutrosophic Log-Logistic model with the primary objective of integrating 

ambiguous information regarding the study variables. It is essential to consider ambiguities in research 

parameters for practical analysis and incorporate them into the model used to represent the system. 

Notably, no previous research has explored the neutrosophic structure of the log-logistic model, which 

serves as a motivating factor for our continued efforts in this direction. 

The remaining sections of this investigation are summarized as follows: Section 2 establishes the 

neutrosophic generalization of the log-logistic distribution. In Section 3, we explain the mathematical 

technique employed to identify unknown distributional characteristics. Section 4 details the 

implementation approach of the NLLD in a real-world situation. Finally, in Section 5, we provide a 

comprehensive summary of the research findings. 

  

2. Proposed Model with Some Useful properties 

The shorthand 𝒴~NLLD (δN,  λN) denotes aneutrosophiclog-logistic distribution with a 

neutrosophicpositive scaleδN = [δl, δu] and positive shape λN = [λl, λu] parameters for the random 

variable 𝒴.The neutrosophic cumulative distribution function (CDF̃N) of a real random value𝒴, or 

simply 𝒴 distribution function. The neutrosophic cumulative function CDF̃N is shown in Figure 1 as 

the general statistical pattern of the NLLD. This CDF̃N is used to calculate the likelihood that how 

many operational units will fail in less than or equal to the specific period of time.The LLND of CDF̃N 

is given by: 

𝒬N(𝒴) =
(
𝒴

δN
⁄ )

λN

1+(
𝒴

δN
⁄ )

λN
, 𝒴 > 0        (1) 

When δl = δu = δ and λl = λu = λ NLLD convert to the current log logistic distribution make a 

note.However, Figure 1 shows the CDF̃N curve with inaccurate values of δN and  λN. 
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Figure 1: The curve of the 𝐶𝐷𝐹̃𝑁 for the inaccurate values 

Likewise, the other significant function of the NLLD is the neutrosophic density function (PDF̃N) is 

sketched in Figure 2. Figure 2 illustrates the basic statistical pattern of the PDF̃N when the scale and 

shape parameters of the distribution are considered to be indeterminate. The area under the 

neutrosophic curve represent the interval in which the NLLD will fall. In figure 2 the shaded part 

illustrate the neutrosophic region due to uncertainties in the distribution defined parameters. During 

this period, the total area of the graph equals the probability of neutrosophic log-logistic variable 

occurring.  The following theorems can be used to construct some more useful functions of the NLLD. 

The probability density function of a NLL random variable 𝒴 with parameters δN and λN is: 

𝓆N(𝒴) =
(
λN

δN
⁄ )(

𝒴
δN

⁄ )
λN−1

(1+(
𝒴

δN
⁄ )

λN
)

2 , δN > 0, λN > 0, 𝑎𝑛𝑑 𝒴 ≥ 0.    (2) 
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Figure 2: NLLD density function with neutrosophic parameters 

 

The survival function, also known as the reliability function, is denoted by 𝒮N(𝒴). It is the probability 

that the time of failure (random event) 𝒴 occurs after. The NLL model takes form the: 

𝒮N(𝒴) = 1 − ℊN(𝒴) =
1

1+(
𝒴

δN
⁄ )

λN
       (3) 

 

Figure 3: Survival curves for the proposed model 
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The hazard rate is a component of hazard function (HF), which is a larger equation.The hazard 

function may be described as the probability of an event of interest occurring in a short period of time. 

The mathematical definition of the HF of simply: 

ℋN(𝒴) =
ℱN(𝒴)

𝒮N(𝒴)
=

(
λN

δN
⁄ )(

𝒴
δN

⁄ )
λN−1

1+(
𝒴

δN
⁄ )

λN
       (4) 

 

 

Figure 4: Hazard curve for the proposed model 

Definition 1: If 𝒴 follows the NLL  then  E(𝒴) = δN. Γ (
λN+1

λN
,
λN−1

λN
) 

Proof: By definition the mean of the NLLD is: 

E(𝒴) = ∫
(
λN

δN
⁄ )(

𝒴
δN

⁄ )
λN−1

(1+(
𝒴

δN
⁄ )

λN
)

2 

∞

−∞
d𝒴       (5) 

By substituting 𝒳 = (
𝒴

δN
⁄ )

λN

 in (5) yielded and applying gamma function: 

(
λl

δl
⁄ )∫

𝒳−1

(1 + 𝒳)2
d𝒳

∞

0

= δl. Γ (
λl + 1

λl

,
λl − 1

λl

) 

and 

(
λu

δu
⁄ )∫

𝒳−1

(1 + 𝒳)2
d𝒳

∞

0

= δu. Γ (
λu + 1

λu

,
λu − 1

λu

) 

So, 

[δl. Γ (
λl+1

λl
,
λl−1

λl
) , δu. Γ (

λu+1

λu
,
λu−1

λu
)] = δN. Γ (

λN+1

λN
,
λN−1

λN
), hence proved. 

Definition 2: If 𝒴 follow the NLL, then variance is 

V′(𝒴) = δN
2 . Γ (

λN + 2

λN

,
λN − 2

λN

) − (δN. Γ (
λN + 1

λN

,
λN − 1

λN

))

2

 

Proof: By definition the variance of the NLL is: 

V′(𝒴) = E(𝒴2) − [E(𝒴)]2        (6) 
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E(𝒴2) = ∫ 𝒴2
(
λN

δN
⁄ ) (

𝒴
δN

⁄ )
λN−1

(1 + (
𝒴

δN
⁄ )

λN

)

2 

∞

−∞

d𝒴 

[
 
 
 
 

∫ 𝒴2
(
λl

δl
⁄ ) (

𝒴
δl

⁄ )
λl−1

(1 + (
𝒴

δl
⁄ )

λl

)

2 

∞

−∞

d𝒴,∫ 𝒴2
(
λu

δu
⁄ ) (

𝒴
δu

⁄ )
λu−1

(1 + (
𝒴

δu
⁄ )

λu

)

2 

∞

−∞

d𝒴

]
 
 
 
 

 

Further simplification provides; 

(
λl

δl
⁄ )∫ 𝒳2

𝒳−1

(1 + 𝒳)2
d𝒳 =

∞

0

δl
2. Γ (

λl + 2

λl

,
λl − 2

λl

) 

And 

(
λu

δu
⁄ )∫ 𝒳2

𝒳−1

(1 + 𝒳)2
d𝒳 =

∞

0

δu
2 . Γ (

λu + 2

λu

,
λu − 2

λu

) 

So,  

[δl
2. Γ (

λl+2

λl
,
λl−2

λl
) , δu

2 . Γ (
λu+2

λu
,
λu−2

λu
)]=δN

2 . Γ (
λN+2

λN
,
λN−2

λN
) 

Equation (6) becomes: 

V′(𝒴) = δN
2 . Γ (

λN+2

λN
,
λN−2

λN
) − (δN. Γ (

λN+1

λN
,
λN−1

λN
))

2

, hence proved. 

Definition 4: Show that  jth raw moment of the NLLD isδN
j
. Γ (

λN+j

λN
,
λN−j

λN
) 

Proof: By applying gamma function: 

μjN
′ (𝒴) = ∫ ej𝒴

∞

−∞

ℱ(𝒴)d𝒴 

= ∫ ej𝒴
∞

0

(
λN

δN
⁄ ) (

𝒴
δN

⁄ )
λN−1

(1 + (
𝒴

δN
⁄ )

λN

)

2  d𝒴 

= [∫ ej𝒴∞

0

(
λl

δl
⁄ )(

𝒴
δl

⁄ )
λl−1

(1+(
𝒴

δl
⁄ )

λl
)

2  d𝒴, ∫ ej𝒴∞

0

(
λu

δu
⁄ )(

𝒴
δu

⁄ )
λu−1

(1+(
𝒴

δu
⁄ )

λu
)

2  d𝒴]    (7) 

Further simplification Eq. (7) provides: 

∫ ej𝒴
∞

0

(
λl

δl
⁄ ) (

𝒴
δl

⁄ )
λl−1

(1 + (
𝒴

δl
⁄ )

λl

)

2  d𝒴 = δl
j
. Γ (

λl + j

λl

,
λl − j

λl

) 

∫ ej𝒴
∞

0

(
λu

δu
⁄ ) (

𝒴
δu

⁄ )
λu−1

(1 + (
𝒴

δu
⁄ )

λu

)

2  d𝒴 = δu
j
. Γ (

λu + j

λu

,
λl − j

λu

) 

Thus Eq. (7) 
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μjN
′ (𝒴) = [δl

j
. Γ (

λl + j

λl

,
λl − j

λl

) , δu
j
. Γ (

λu + j

λu

,
λl − j

λu

)] 

Hence 

μjN
′ (𝒴) = δN

j
. Γ (

λN+j

λN
,
λN−j

λN
) where j = 1,2, …, the jth moment about the origin of the NLLD 

distribution. 

μ1N = μ1N
′ = δN. Γ (

λN + 1

λN

,
λN − 1

λN

) 

μ2N = μ2n
′ − (μ1n

′ )2 = δN
2 . Γ (

λN + 2

λN

,
λN − 2

λN

) − (δN. Γ (
λN + 1

λN

,
λN − 1

λN

))

2

 

μ3N = μ3n
′ − 3μ2n

′ μ1n
′ + 2(μ1n

′ )3 = δN
3 . Γ (

λN+3

λN
,
λN−3

λN
) -3δN

2 . Γ (
λN+2

λN
,
λN−2

λN
) δN. Γ (

λN+1

λN
,
λN−1

λN
) 

+2(δN. Γ (
λN+1

λN
,
λN−1

λN
))

3

 

μ4N = μ4n
′ − 4μ3n

′ μ1n
′ − 3(μ2n

′ )2 + 12μ2n
′ (μ1n

′ )2 − 6(μ1n
′ )4

= δN
4 . Γ (

λN + 4

λN

,
λN − 4

λN

)

−              4δN
3 . Γ (

λN + 3

λN

,
λN − 3

λN

) δN. Γ (
λN + 1

λN

,
λN − 1

λN

)

− 3(δN
2 . Γ (

λN + 2

λN

,
λN − 2

λN

))

2

+              12δN
2 . Γ (

λN + 2

λN

,
λN − 2

λN

)(δN. Γ (
λN + 1

λN

,
λN − 1

λN

))

2

− 6(δN. Γ (
λN + 1

λN

,
λN − 1

λN

))

4

 

Definition 5: Show that the coefficient of skewness for the NLLD is 

[Γ (
λN+3

λN
,
λN−3

λN
) − 3Γ (

λN+2

λN
,
λN−2

λN
) Γ (

λN+1

λN
,
λN−1

λN
) + 2. Γ (

λN+1

λN
,
λN−1

λN
)

3

]

(Γ (
λN+2

λN
,
λN−2

λN
) . Γ (

λN+1

λN
,
λN−1

λN
)

2

)

3
2⁄

 

Proof: The coefficient of skewness for NLLD is given by: 

η1N =
μ3N

(μ2N)
3

2⁄
         (8) 

Where μ2N = δN
2 . Γ (

λN+2

λN
,
λN−2

λN
) and  

μ3N = δN
3 . Γ (

λN+3

λN
,
λN−3

λN
)-3δN

2 . Γ (
λN+2

λN
,
λN−2

λN
) δN. Γ (

λN+1

λN
,
λN−1

λN
) +2δN. Γ (

λN+1

λN
,
λN−1

λN
)

3

 

Substituting (8) provides; 

η1N =
[Γ (

λN+3

λN
,
λN−3

λN
) − 3Γ (

λN+2

λN
,
λN−2

λN
) Γ (

λN+1

λN
,
λN−1

λN
) + 2. Γ (

λN+1

λN
,
λN−1

λN
)

3

]

(Γ (
λN+2

λN
,
λN−2

λN
) . Γ (

λN+1

λN
,
λN−1

λN
)

2

)

3
2⁄

 

where η1N ∈ [η1l, η1u]. 

Definition 6: Show that the coefficient of kurtosis for NLLD is 
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[Γ (
λN+4

λN
,
λN−4

λN
) − 4Γ (

λN+3

λN
,
λN−3

λN
)Γ (

λN+1

λN
,
λN−1

λN
) − 3(Γ (

λN+2

λN
,
λN−2

λN
))

2

+ 12Γ (
λN+2

λN
,
λN−2

λN
)(δN. Γ (

λN+1

λN
,
λN−1

λN
))

2

− 6(Γ (
λN+1

λN
,
λN−1

λN
))

4

]

[Γ (
λN+2

λN
,
λN−2

λN
) − (δN. Γ (

λN+1

λN
,
λN−1

λN
))

2

]

2  

Proof: By definition the coefficient of kurtosis is given by: 

η2N =
μ4N

μ2N
2          (9) 

where  

μ2N = δN
2 . Γ (

λN+2

λN
,
λN−2

λN
) − (δN. Γ (

λN+1

λN
,
λN−1

λN
))

2

 and  

μ4N = δN
4 . Γ (

λN + 4

λN

,
λN − 4

λN

) − 4δN
3 . Γ (

λN + 3

λN

,
λN − 3

λN

) δN. Γ (
λN + 1

λN

,
λN − 1

λN

)

−              3 (δN
2 . Γ (

λN + 2

λN

,
λN − 2

λN

))

2

+ 12δN
2 . Γ (

λN + 2

λN

,
λN − 2

λN

) (δN. Γ (
λN + 1

λN

,
λN − 1

λN

))

2

−              6 (δN. Γ (
λN + 1

λN

,
λN − 1

λN

))

4

 

Substituting in (9) provides; 

η2N =
[
 
 
 
 Γ (

λN+4

λN
,
λN−4

λN
) − 4Γ (

λN+3

λN
,
λN−3

λN
) Γ (

λN+1

λN
,
λN−1

λN
) − 3(Γ (

λN+2

λN
,
λN−2

λN
))

2

+12Γ (
λN+2

λN
,
λN−2

λN
) (δN. Γ (

λN+1

λN
,
λN−1

λN
))

2

− 6 (Γ (
λN+1

λN
,
λN−1

λN
))

4

]
 
 
 
 

[Γ (
λN+2

λN
,
λN−2

λN
) − (δN. Γ (

λN+1

λN
,
λN−1

λN
))

2

]

2  

where η2N ∈ [η2l, η2u] 

The extension of other statistical properties to a neutrosophic framework can be achieved through a 

similar and coherent approach. 

3. Neutrosophic Estimation 

The neutrosophic maximum likelihood estimation of the two parameters NLLD, as well as their large 

sample characteristics, are explained in this section. If 𝒴j = 𝒴1, 𝒴2, …𝒴n is an observed sample size 

n from NLL model, then L(𝒴, δN, λN) is the neutrosophic log likelihood function: 

ΤN(δN, λN|𝒴) = ∏ ℱN(𝒴j)
n
j=1         (10) 

The probability function for (10) is as follow: 

ΤN(δN, λN|𝒴) = nlog(δN) − nlog(λN) + (δN − 1) ∑ log(𝒴j) − n(δN − 1)n
j=1 log(λN) −

                              2 ∑ log [1 + (
𝒴j

λN
)

δN

]n
j=1       (11) 

Maximize (11) directly with respect to δN and λN to obtain the neutrosophic maximum likelihood 

estimation: 

∂𝒴N

∂δN
=

n

δN
+ ∑ log (𝒴j)

n
j=1 − nlog(λN) − 2∑

(
𝒴j

λN
)
δN

log(
𝒴j

λN
)

1+(
𝒴j

λN
)
δN

n
j=1 = 0    (12) 
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∂𝒴N

∂λN
= −

n

λN
−

n(δN−1)

λN
+

2δN

λN
∑

(
𝒴j

λN
)
δN

1+(
𝒴j

λN
)
δN

n
j=1 = 0      (13) 

Thus Eq.(12) and Eq. (13) provide the neutrosophic parameters of the proposed model. 

4. Real Life Application 

The computational approach of the proposed NLLD is demonstrated using an actual dataset of 

remission durations (in months) from a random sample of 128 bladder cancer patients. Bladder cancer 

is a common disease characterized by unregulated and aberrant cell proliferation in urinary bladder 

tissues. Smoking increases the risk of acquiring bladder cancer substantially. The presence of blood 

in the urine and pain while urination are common symptoms and indicators of bladder cancer. Lee and 

Wang published the dataset utilized in this investigation [27].The lengths of 128  

bladder cancer patients' remissions (measured in months) were gathered from a variety of sources, 

including epidemiological studies about bladder cancer. The precise source of the data is not made 

known in a clear manner. The reported results are subject to uncertainty because the precision of 

remission period measurements is not well-defined. The dataset, as shown in Table 1 includes 

uncertainty rather than providing exact figures.  

  Table 1: Real dataset on bladder cancer patients with uncertain observations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A method described in [28] was used to introduce these uncertainties. A graphical technique was used to 

investigate the best model for describing the data from the remission period. The log-logistic distribution's visual 

fit to the actual dataset of remission periods is shown in Figure 5. 

Remission times  

 
[0.088,0.618], [1.686,3.004], [3.008,3.665], [4.002,5.152], [6.014,7.035], [7.778,8.87] 

[12.436,14.087], [22.68,23.926], [0.316,0.926], [1.653,3.016], [3.184,3.625], [4.633,5.22] 

[6.95,7.241], [8.517,9.121], [12.419,13.408], [0.394,1.391], [2.188,3.246], [3.406,3.707] 

[4.29,5.965], [6.355,7.666], [8.248,9.615],[13.334,14.25], [25.666,26.447], [0.149,0.583] 

[1.701,2.799], [3.503,4.321], [4.693,5.407], [7.035,8.092], [9.412,9.685], [13.844,14.738] 

[25.755,26.096], [0.284,0.702], [2.485,3.491], [3.03,4.022], [4.872,5.648], [7.179,7.308] 

[9.668,10.287], [13.88,15.404], [25.556,26.906], [0.007,1.132], [1.638,3.511], [3.716,4.446] 

[5.221,5.623], [6.521,7.708], [9.275,10.22], [14.761,15.633], [31.371,33.103], [1.911,3.204] 

[15.124,16.826], [36.422,37.369], [0.696,1.81], [1.833,2.837], [3.376,4.588], [5.114,6.083] 

[7.473,8.144], [10.046,11.1], [16.516,16.861], [42.976,43.068], [0.191,1.427], [2.715,3.64] 

[3.25,4.21], [4.839,6.317], [7.233,7.625], [10.332,10.953], [14.378,14.938], [33.768,34.747] 

[0.51,0.999], [2.225,2.851], [3.467,4.463], [5.285,5.924], [7.235,8.322], [0.143,0.826] 
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Figure 5:  Basic plots of the LLD for the real dataset 

The LLD provides a good fit for the remission period data, according to a visual analysis of popular 

plots like the frequency distribution, probability plot, quantile plot, and cumulative distribution 

function (CDF). This conclusion is made based on Figure 3, where it can be seen that the majority of 

genuine data points closely resemble the theoretical red lines, demonstrating a good match of the LLD 

to the remission times data. The remission data, which incorporates uncertainty and is shown in Table 

2, should be noted that it cannot be properly examined using the standard LLD.  

 

Table 2: Descriptive statistics of the proposed neutrosophic model 

Neutrosophic Parameters Estimated Values 

Scale parameter [5.35, 6.55] 

Shape parameter [1.45, 1.92] 

Mean [7.53, 11.13] 

Variance [46.67,168.24] 

 

In Table 2, the fitted measures of mean remission period data are presented in the form of intervals 

for both the mean and variance, considering the estimated uncertainty in estimated parameters. It is 

worth noting that mean and variance are neutrosophic values because they are determined analytically 

and depend on uncertain estimated parameter values. As a result, the neutrosophic proposed model 

offers more valuable information and enables efficient analysis of data involving uncertainties, 

providing a comprehensive understanding of the dataset's statistical properties. 

 

5. Conclusions 

This paper offers a novel extended design of the log-logistic distribution inside a neutrosophic 

framework, with the goal of more successfully handling fuzzy data with imprecise observations. The 

statistical features, moments, form coefficients, and survival characteristics of the suggested NLLD 

have been carefully examined. An estimation process is used to evaluate the performance of the 

anticipated neutrosophic parameters, assuring the accuracy and reliability of the model. The potential 

utility of NLLD in domains such as economics, engineering, survival analysis, and lifetime modeling 

is demonstrated by its practical implementation on a sample dataset of 128 bladder cancer patients. 
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Overall, the NLLD is a promising strategy for dealing with uncertain and imprecise data that might 

be useful for academics and practitioners working with such data in a variety of disciplines. 
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