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Abstract 

In the realm of Human-Computer Interaction (HCI), the importance of hands cannot be overstated. 

Hands serve as a fundamental means of communication, expression, and interaction in the physical 

world. In recent years, Augmented Reality (AR) has emerged as a next-generation technology that 

seamlessly merges the digital and physical worlds, providing transformative experiences across various 

domains. In this context, accurate hand pose and shape estimation plays a crucial role in enabling 

natural and intuitive interactions within AR environments. Augmented Reality, with its ability to 

overlay digital information onto the real world, has the potential to revolutionize how we interact with 

technology. From gaming and education to healthcare and industrial training, AR has opened up new 

possibilities for enhancing user experiences. This study proposes an innovative approach for hand pose 

and shape estimation in AR applications. The methodology commences with the utilization of a pre-

trained Single Shot Multi-Box (SSD) model for hand detection and cropping. The cropped hand image 

is then transformed into the HSV color model, followed by applying histogram equalization on the 

value band. To precisely isolate the hand, specific bounds are set for each band of the HSV color space, 

generating a mask. To refine the mask and diminish noise, contouring techniques are applied to the 

mask, and gap-filling methods are employed. The resultant refined mask is then combined with the 

original cropped image through logical AND operations to accurately delineate the hand boundaries. 

This meticulous approach ensures robust hand detection even in complex scenes. To extract pertinent 

features, the detected hand undergoes two concurrent processes. Firstly, the Scale-Invariant Feature 

Transform (SIFT) algorithm identifies distinctive keypoints on the hand's outer surface. Simultaneously, 

a pre-trained lightweight Convolutional Neural Network (CNN), namely MobileNet, is employed to 

extract 3D hand landmarks, the hand's center (middle finger metacarpophalangeal joint), and 

handedness information. These extracted features, encompassing hand keypoints, landmarks, center, 

and handedness, are aggregated and compiled into a CSV file for further analysis. A Gated Recurrent 

Unit (GRU) is then employed to process the features, capturing intricate dependencies between them. 

The GRU model successfully predicts the 3D hand pose, achieving high accuracy even in dynamic 

scenarios. The evaluation results for the proposed model are very promising that the Mean Per Joint 

Position Error in 3D (MPJPE) is 0.0596 between the predicted pose and the ground truth hand 

landmarks, while the Percentage of Correct Keypoints (PCK) is 95%. Upon predicting the hand pose, a 

mesh representation is employed to reconstruct the 3D shape of the hand. This mesh provides a tangible 

representation of the hand's structure and orientation, enhancing the realism and usability of the AR 

application. By integrating sophisticated detection, feature extraction, and predictive modeling 

techniques, this method contributes to creating more immersive and intuitive AR experiences, thereby 

fostering the seamless fusion of the digital and physical worlds. 
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1. Introduction 

The human hand is an intricate and versatile tool, playing a pivotal role in how we interact with the world. 

From mundane tasks to intricate gestures, the hand's dexterity and expressiveness are unparalleled [1]. This 

significance has led to an increasing emphasis on integrating hand gestures and poses into human-computer 

interaction (HCI) systems. The advent of augmented reality (AR) further amplifies the importance of 

accurate hand pose and shape estimation [1]. 

The ability to estimate accurately the 3D shape and pose of the human hand is a critical frontier. This 

estimation enables natural and intuitive interactions in AR environments. Tasks such as virtual object 

manipulation, hand gesture recognition, and immersive experiences all rely on the capability to reconstruct 

the hand's position, orientation, and articulation. Achieving this level of accuracy and realism in hand pose 

and shape estimation has become a cornerstone in creating seamless and immersive AR applications [2]. 

2. Related Work 

 

Recent years have witnessed remarkable progress in 3D hand shape and pose estimation, largely propelled 

by the surge in deep learning techniques and the accessibility of affordable depth sensors. These 

advancements have opened avenues to capture intricate hand poses and shapes from real-world high-

definition images. Here are some leading researches in the field for the last few years:  

Liang et.al,  [1] presented a novel approach to optimize the leaf weights in a Hough forest to aid global 

hand pose estimation with a single depth camera. Unlike traditional Hough forest, they propose to learn the 

vote weights stockpiled at the leaf nodes of a forest in an upright way to minimalize average shape 

prediction error, so that hazy votes are largely inhibited during prediction fusion, according to the results 

using optimized leaf weights improved the pose estimation on both real and synthetic image datasets. Ref33 

et. al, proposed a tracking method that combines a CNN with a kinematic 3D hand model, which led to 

better generalization of unseen data, their approach is robust to varying camera viewpoints and occlusions, 

and leads to anatomically acceptable as well as temporally smooth hand motions. They proposed a novel 

approach for the generation of synthetic training data based on a geometrically coherent image-to-image 

translation network for training CNN. Ref34 et.al, introduced an approach for real-time, accurate and robust 

hand pose estimation from moving egocentric RGB-D cameras in chaotic real environments. This approach 

employees two successively applied CNNs to localize the hand and regress 3D joint locations. Hand 

localization is accomplished by using a CNN to estimate the 2D position of the hand center in the input 

image, even in the existence of occlusions and chaos. The combination of localized hand position and the 

corresponding input depth value is utilized to generate a normalized cropped image to be fed into a second 

CNN to regress relative 3D hand joint locations in real time. For added robustness, accuracy, and temporal 

stability, they refine the hand pose estimation using a kinematic shape tracking energy. This approach 

proved the ability of achieving low errors even under scene clutter and difficult occlusions. Remelli et. al, 

introduced a robust methodology for the personalization of sphere-mesh tracking model of user using a 

collection of depth measurements. Building and performance of shape-space is comparable to shape-spaces 

composed from datasets of carefully standardized models by reparametrizing the geometry of the tracking 

template as a first step, and introducing a multi-stage calibration optimization. Their parameterization 

decouples the DoF for pose and shape, consequentially improving the convergence properties. Analytically 

differentiable multi-stage standardization pipeline optimizes for the model in the natural low-dimensional 

space of local anisotropic scaling, leading to an efficient solution easily embedded in other tracking/ 

standardization algorithms [2]. Spurr et.al, proposed an approach to learn a statistical hand model 

characterized by a cross-modal trained latent space via a generative deep neural network. Using an 

objective function from the variation lower bound of the variational auto-encoder (VAE) framework and 

conjointly optimize the resulting cross-modal Kullback-Leibler (KL) the posterior reconstruction objective 

and divergence, naturally conceding a training regimen that leads to a comprehensible latent space across 

several modalities such as 2D key point detections, RGB images,  or 3D hand configurations. Furthermore, 

it concedes a straightforward manner of using semi supervision. This latent space can be used immediately 

to estimate 3D hand poses from RGB images [3]. Zimmermann et.al, propose a deep network that learns a 

network-implicit 3D articulation prior. Along with detected key points in the images, this network produces 

good estimates of the 3D shape. Introducing a large-scale 3D hand pose dataset based on synthetic hand 

models for training the implicated networks. Since the performance of their system based on image 

annotation, the system yielded unpromising results with the lack of annotated large-scale real world image 

dataset and diverse pose statistics [4]. Ge et.al, suggested 3D hand shape estimation system that takes a 

depth image of a hand as the input and outputs a set of 3D hand joint. The hand depth image is mapped to a 

set of 3D points. The 3D point set is down sampled and normalized in an oriented bounding box (OBB). A 

hierarchical PointNet appropriates N points as the input to obtain hierarchical hand features and regress the 
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3D hand shape. Moreover, for improving the estimation accuracy of the locations of the fingertip, a 

fingertip refinement network is deliberated [5]. Ge et.al, suggested a multi-view CNN-based method for 3D 

hand shape estimation. To exploit better 3D information in the depth image, projection of the point cloud 

produced from the query depth image onto multiple views of two projection settings and incorporate them 

for robust shape estimation. Training multi-view CNNs to learn the mapping from projected images to heat 

maps, which replicate probability distributions of joints on each view. Multi-view heat-maps are then 

compound to estimate optimal 3D hand shape with learned shape priors, while the erratic information in 

multi-view heat-maps is concealed using a view selection method [6]. Ge et.al, suggested a Point-to-Point 

Regression PointNet that takes directly the 3D point cloud as an input and produces point-wise estimations, 

such as, unit vector fields on the point cloud, heat-maps, representing the imminence and direction from 

every point in the point cloud to the hand joint. The estimations of the point-wise are used to conclude 3D 

joint locations with weighted fusion. Stacked network architecture for PointNet with intermediate 

supervision is applied to improve the capturing of 3D spatial information in the point cloud [7]. Malik et.al, 

introduced a fully supervised deep neural network, which learns to estimate jointly a full 3D hand mesh 

interpretation and shape from a single depth image. Which improves the CNN architecture used to estimate 

parametric depictions such as bone scales, hand shape, and complex shape parameters. Afterwards, hand 

shape layer, included inside the deep framework, results hand mesh, and 3D joint positions [8]. Panteleris 

et.al, utilize the latest innovations of deep learning, fusing them with the power of generative hand shape 

estimation techniques to achieve real-time monocular 3D hand shape estimation in unobstructed scenarios. 

Pre-trained network of OpenPose is used for hand cropping in the image, estimating the 2D joint locations 

of hand. Afterwords, non-linear least-squares minimization fits a 3D model of the hand to the estimated 2D 

joint positions, producing the 3D hand pose [9]. Ge et.al, proposed an algorithm to extract Image-based 

features by 2D CNNs that are not directly suitable for 3D hand shape estimation due to the absence of 3D 

spatial information. The proposed 3D CNN-based method, taking a 3D volumetric depiction of the hand 

depth image as input and obtaining 3D features from the volumetric input, consequentially capturing the 3D 

spatial formation of the hand and precisely regress full 3D hand shape in a single pass. 3D data 

augmentation is performed in order to make the 3D CNN robust to variations in global orientations, and 

hand sizes on the training data. Applying the 3D deep network structure and leveraging the comprehensive 

hand surface as transitional supervision for learning 3D hand shape from depth images [10]. Taylor et.al, 

propose a method for 3D hand shape estimation from a monocular image through 2.5D shape depiction. 

The depiction estimates shape up to a scaling factor that can be estimated as well if the hand size is given in 

priory. CNN architecture is used to learn depth maps and heat map distributions. Ref53 et.al, suggest to 

leverage the depth images that can be simply attained from commodity RGB-D cameras through training, 

while during testing phase, only RGB inputs for 3D joint predictions is considered. This help lessen the 

burden of the costly 3D observations in real-world dataset. The weakly supervised method, adapting from 

fully- glossed synthetic dataset to weakly labeled real-world dataset with the regularization of depth that 

generates depth maps from projected 3D shape and works as weak supervision for 3D shape regression 

[11]. Boukhayma et.al, present an end-to-end deep learning methodology that foresees 3D hand shape from 

RGB images in real world. The network comprises of a fixed model-based decoder, and a deep 

convolutional encoder. The encoder foresees a set of view and hand parameters using an input image and 

2D hand joint locations obtained from a separate CNN. The decoder encompasses two components: A pre-

computed articulated mesh distortion hand model that produces a 3D mesh from the hand parameters, and a 

re-projection module managed by the view parameters that projects the produced hand into the image 

domain [12]. Ge et.al, proposed generating a full 3D mesh and 3D hand joint locations of the hand directly 

from a single monocular RGB image. Explicitly, the input is a single RGB image focused on a hand, which 

is passed throughout two-stacked hourglass networks to deduce 2D heat-maps. The estimated 2D heat-

maps, along with the image feature maps, are coded as a dormant feature vector using a residual network 

that encloses eight residual layers and four max pooling layers. The encoded dormant feature vector is then 

the input to the Graph CNN to deduce the 3D coordinates of hand mesh. Ref61 et.al, suggested an approach 

known as pose guided structured region ensemble network (Pose-REN) to increase the performance of hand 

shape estimation. Underneath the supervision of an primarily estimated shape, this approach extricates 

boroughs from the feature maps of CNN and produces more ideal and delegate features for hand shape 

estimation. The feature regions are then combined hierarchically according to the topology of hand joints 

by tree-structured fully connected to revert the cultivated hand shape. The latent hand shape is attained by 

an iterative cascaded algorithm [13]. Guo et.al, proposed an end-to-end network for forecasting 3D hand 

shape from a single RGB image. By extracting, several feature maps from different resolutions and 

generate parallel feature fusion, and produce prototype for graph based convolutional neural network 

section to infer the initial 3D hand key points. Subsequently, used3D geometric knowledge and 2D spatial 

relationships to build a self-supervised module to diminish domain gaps between 2D and 3D space. Finally, 

the final 3D hand pose is computed by averaging the 3D hand shapes from the graph convolutional neural 
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network output and the self-supervised module output [14]. Cai et.al, suggested leveraging the depth 

images that are effortlessly attained from RGB-D cameras through training, while through testing RGB 

inputs are taken only for 3D joint predictions. Alleviating the encumbrance of the expensive 3D remarks in 

real-world dataset. This proposes a weakly supervised approach, adapted from fully marked synthetic 

dataset to weakly labeled real-world single RGB dataset with the support of a depth regularization that 

operates as weak supervision for 3D shape estimation. To utilize more the physical scheme of 3D hand 

shape, novel CVAE-based statistical structure is proposed to include the pose-specific subspace from RGB 

images that can then be employed to predict the 3D hand joint locations [15]. 

 

 

 

 

 

 

 

 

 

 

In light of these challenges, this work aims to contribute to the advancements in 3D hand pose and shape 

estimation for AR environments. The following is the outline of the article. Section 2 defines the 3D hand 

pose and shape estimation from single RGB image. Section 3 discusses the steps followed to extract 

features, train the model and construct the hand shap. Section 4 contains the experimental findings. The 

proposed 3D hand pose and shape estimation, which was implemented in Python, is concluded in Section 5.  

 

 

3. Methodology 

To address the challenge of 3D hand shape estimation for augmented reality applications, a comprehensive 

approach combining computer vision techniques and deep learning methodologies is proposed. The 

methodology comprises several stages, each contributing to accurate hand pose and shape estimation from 

a single RGB image Figure (1) shows the proposed system structure: 

 

Figure 1: the proposed system structure 

1. Data Preprocessing: 

Hand Detection and Cropping: A pre-trained Single Shot Multi-Box Detector (SSD) is employed to detect 

and localize the hand object within the RGB image [16]. The detected hand region is then cropped for 

further processing, as showing in figure 1. 
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Figure 1: Hand Object Cropping 

 

Color Space Transformation: The cropped hand region is converted to the HSV color space. This 

transformation facilitates better handling of lighting variations and enhances the visibility of the hand's 

features [17]. 

Histogram Equalization: Histogram equalization is applied to the value channel of the HSV image. This 

step enhances the contrast of the hand object, improving the distinctiveness of its features, as shown in 

figure (2). 

        

Figure 2: HSV and Histogram Equalization for Value channel 

Mask Generation: Based on specific bounds set on the hue, saturation, and value bands of the HSV image, 

a mask is generated to isolate the hand object from the background, as shown in Figure (3). These specific 

bounds are set after comprehensive experiments to choose the best combination [18]:  
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Figure 3: Mask Generation 

To reduce noise and highlight the hand's boundaries image Contouring and Flood Filling is used, the 

generated mask undergoes image contouring to refine the mask boundaries. Subsequently, a gap-filling 

process is employed to eliminate any remaining noise and inconsistencies in the mask [19] [20]; the result 

of the refined mask is shown in Figure (4). 

               

Figure 4: Refined Hand Mask 

Mask and Image Fusion: The refined mask is combined with the original cropped image using a bitwise 

AND operation. This step effectively extracts the hand object from the background, as shown in Figure (5). 

                  

Figure 5: Hand object Detection 

2. Feature Extraction: 

Keypoint Detection with SIFT: Scale-Invariant Feature Transform (SIFT) is applied to the hand image to 

detect distinctive keypoints on the hand's outer surface. These keypoints capture salient regions and aid in 

subsequent analysis [21], the detected keypoints are shown in Figure (6). 
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Figure 6: SIFT Detected Keypoints 

MobileNet-based Feature Extraction: A pre-trained, lightweight convolutional neural network MobileNet, 

is employed to extract 3D hand landmarks, the hand's center (middle finger MCP), and handedness [1]. 

MobileNet's efficiency makes it suitable for real-time applications [22], as shown in figure (7) below: 

 

Figure 7: Hand landmarks and handedness information 

3. Feature Fusion and Sequence Preparation: 

CSV Feature Storage: The detected SIFT keypoints, hand center (MCP), 3D hand landmarks, and 

handedness information are all stored in a structured CSV file. This file serves as input for the subsequent 

stages. The stored features are organized into sequences, capturing dependencies that represent the 

evolution of the hand pose. 

4. Deep Learning Model: 

GRU-based Model: A Gated Recurrent Unit (GRU) is employed as the core of the deep learning model. 

GRUs are adept at capturing sequential dependencies in data. 

Feature Sequence Input: The prepared sequences from the CSV file are fed into the GRU model. The model 

learns to capture the intricate relationships between keypoints, landmarks, hand center, and handedness. To 

train the model a group of hyper parameters are chosed (epochs:50, Batch Size: 512, GRU input layer: 128, 

Dense Unit: number of joints*3), for the update gate Tanh activation is used while for forget gate sigmoid 

activation is used [23]. 

The trained GRU model outputs predicted 3D hand poses. These predictions encapsulate the hand's 

orientation, articulation, and pose, as shown in figure (8). 
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Figure 8: Estimated 3D hand Pose 

By utilizing pre-trained MANO (hand Model with Articulated and Non-rigid deformations) [24]model after 

calculating the hand shape parameters (betas) and the pose parameters calculated from predicted joints 

locations and the topology connecting them based on hand anatomy a hand mesh was created. This mesh is 

composed of vertices and triangles that collectively depict the hand's shape [1]. The generated mesh is then 

can be visualized in augmented reality environments, providing users with a representation of their hand's 

pose and shape, as shown in Figure (9). 

           

Figure 9: Estimated 3D hand Shape 
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In conclusion, the proposed methodology encompasses several key stages, from data preprocessing to deep 

learning-based feature extraction and prediction. By leveraging a combination of computer vision 

techniques and deep learning models, the approach aims to accurately estimate the 3D pose and shape of 

the human hand from a single RGB image. This estimation is vital for creating immersive and natural 

interactions in augmented reality applications. 

5. Evaluation Metrics 

The evaluation of the 3D hand pose and shape estimation model involves using appropriate metrics that 

measure the accuracy and performance of the predicted results compared to ground truth data. Several 

metrics commonly used in this context include: 

1.  Mean Per Joint Position Error(MPJPE)  

Mean Per Joint Position Error (MPJPE) is a commonly used evaluation metric in computer vision and pose 

estimation. It serves to measure the average Euclidean distance between the ground truth joint positions and 

the predicted joint positions. The metric operates on a set of N joints, where each joint is represented by a 

3D coordinate (x, y, z) in the world coordinate system [25]. 

To calculate MPJPE, we start by obtaining the predicted joint positions, denoted as P = {P1, P2, ..., PN}, 

from a pose estimation algorithm using a given input data. Similarly, we have the ground truth joint 

positions, denoted as G = {G1, G2, ..., GN}, for the same input data. Pi represents the predicted position of 

joint i, and Gi represents the ground truth position of joint i. 

The MPJPE is then computed as the average Euclidean distance between the predicted and ground truth 

joint positions across all joints. It can be expressed by the equation: 

MPJPE = (1/N) * Σ(||Pi - Gi||)                                                         (4) 

, where ||.|| denotes the Euclidean distance between two 3D points. The summation is performed over all N 

joints. The qualitative results of using this metric on single image is 0.01648 between predicted pose and 

the ground truth landmarks. 

2.  Percentage of Correct Keypoints (PCK)  

Percentage of Correct Keypoints (PCK) is a broadly used evaluation metric in computer vision, specifically 

designed to assess the accuracy of pose estimation. It measures the percentage of keypoints that are 

correctly localized based on a predefined threshold distance. PCK provides a quantitative measure of an 

algorithm's ability to accurately estimate the positions of keypoints within an image. 

PCK is typically calculated by counting the number of predicted keypoints that fall within a certain distance 

threshold from their corresponding ground truth keypoints. The threshold is usually defined relative to a 

reference length, such as the torso length or the diagonal of the bounding box. The percentage is then 

computed by dividing the count of correctly localized keypoints by the total number of keypoints and 

multiplying by 100%.  

PCK = (Number of correctly localized keypoints) / (Total number of keypoints) * 100%.   (5) 

The resulting value represents the percentage of keypoints correctly localized by the algorithm within the 

specified threshold. After setting the number of points in training phase for 21, this makes the PCK metric 

value is 100% that the detected joints locations are perfectly detected [26]. 

The evaluation metrics used on selected images of both datasets RHD_published_v2 and the self-collected 

Two hand dataset are shown in table (1) below: 

Table 1: MPJPE and PCK on sample tested images 

Image ID Type Dataset PCK MPJPE 

DSC_6067 Right Ours 95% 0.0596 

DSC_6067 Left Ours 66% 0.0922 

DSC_6423 Right Ours 90% 0.0682 
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DSC_6423 Left Ours 85% 0.0667 

DSC_6646 Right Ours 76% 0.0712 

DSC_6646 Left Ours 95% 0.0608 

DSC_6772 Right Ours 71% 0.0792 

DSC_6772 Left Ours --- --- 

03728 Right RHD_published_v2 80% 0.0711 

03728 Left RHD_published_v2 61% 0.0889 

01749 Right RHD_published_v2 85% 0.0637 

01749 Left RHD_published_v2 76% 0.0798 

 

 

6. Comparison to Previous Results 

 

The efficacy of any novel approach in this field is often evaluated through rigorous comparisons with 

existing methods and benchmarks. Such comparisons not only establish the state-of-the-art but also 

shed light on the advancements achieved, limitations encountered, and the potential avenues for further 

refinement. 

In this study, we delve into the realm of hand pose estimation, building upon the foundations laid by 

previous works in the domain. We present an in-depth analysis of our methodology and results, 

juxtaposed against the backdrop of pioneering studies that have paved the way for advancements in 

hand pose estimation. Our aim is to provide a comprehensive assessment of the current state of the art 

by considering the strengths and weaknesses of both our approach and those that precede it, Table (2) 

show the results conducted compared to previous studies. 

 

Table 2: MPJPE and PCK of our method compared to previous results  

Method Dataset MPJPE PCK 

Ours Two-Hands Dataset 0.646 95.238 

Ours RHD-published-v2 0.1344 28.571 

[12] MPII+NZSL ---  51.87 

[29] Stereo --- 55 

[4] S-val --- 30 

 

 

7. Conclusion  

 

In conclusion, this study focused on the critical task of 3D hand pose and shape estimation for augmented 

reality applications. The importance of accurate hand shape estimation in human-computer interaction, 

augmented reality, and various other domains was highlighted. The rapid advancements in deep learning 

and the availability of depth sensors have propelled the development of accurate hand shape estimation 

models. However, challenges persist due to variations in hand shapes, occlusions, viewpoint changes, and 

limited labeled data. The proposed approach, which combines pretrained models for hand detection, color 

space transformation, and neural networks for 3D landmark extraction, demonstrated promising results. 

The use of machine learning techniques, such as CNNs and GRUs, allowed us to predict 3D hand poses 

with reasonable accuracy. The integration of these predictions with 3D mesh generation techniques 

produced visually plausible hand shapes. Although this approach is well defining an accurate hand pose but 

still give less accurate results when it come to the shape of hand with difficult hand pose. 
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