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Abstract 

In this paper, we will describe a natural procedure formula that will lead us to find a solution for a class of 

polynomials with degree 𝑛 associate with the equation (𝑎𝑥 + 𝑏)𝑛 = 𝑐. 
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1. Introduction 

 

Solving the polynomial equations of the third degree and above have been of interest for many mathematicians 

throughout the different eras of the development of mathematics. in this respect, Cardano formulas (1545) to factor 

cubic and quadratic to computation the roots of these polynomials   that more complicated, in particular in cubic 

more than quadratic. Moreover, Cardano formulas produced only one out of three factors, while the quadratic 

formula produces both factors of any given quadratic polynomial. For this reason, it was generating an incentive 

for mathematicians to search for more simplified and generalizable methods to solving cubic and greater than the 

third degree . Author's [8] presented the new method to compute the three factors of an arbitrary cubic polynomial 

with real number coefficients and proved those roots over any cubic polynomial over ℝ.  In an analogous manner, 

using 𝜁, and a solution (𝑎, 𝑏) of the equation 𝑋3 + 𝑌3 = 1 over ℂ. While author's [6] introduced a new approach 

to generalization Cardano formula for cubic equation. For many years, mathematicians have been working hard to 

find a method to solve a fifth-degree equation by using radicals, until P. Ruffini had presented a proof of non-

existence of such solution in 1779. Next later in 1824, N. H. Abel introduced similar statement confirmed of 

Ruffini's statement there is no formula to solve a fifth-degree equation by using radicals. After that, E. Galois 

introduced Some properties of the equation (e.g. solvability in radicals) are translated to properties of its Galois 

group. Theorem (Abel and Ruffini)." A general algebraic equation of degree ≥ 5 cannot be solved in radicals. This 

means that there does not exist any formula which would express the roots of such equation as functions of the 

coefficients by means of the algebraic operations and roots of natural degrees, see author [ 9]", that he presented a 

proof of the non-solvability in radicals of a general algebraic equation of degree greater than four. This proof relies 

on the non-solvability of the monodromy group of a general algebraic function. The aim of this article to present 

the new approach to treatment with this issue by solving n-degree polynomials associate with equation  

(𝑎𝑥 + 𝑏)𝑛 = 𝑐.  

 

2. New Approach to find The Fifth Roots for The Equation: (𝒂𝒙 +  𝒃) 𝟓 =  𝒄 (𝟏). 𝒏 ≤ 𝟓. 

 

In this section, we introduced a new approach to find fifth roots solutions for the equation (1). Let ℝ denote the 

real filed, and ℝ[𝑥] denote to the ring of polynomials over ℝ. Consider ℂ is the complex filed and ℂ[𝑥] denote to 

the ring of polynomials over ℂ. If we consider a new form: 
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(𝑎𝑥 +  𝑏) 5 =  𝑐 (1), Where 𝑥 ∈  ℂ and 𝑎 ∈  ℝ, 𝑏 and 𝑐 are constants of complex numbers. This new method 

does depend on [ 3,5,7], But depending on a new formula of radicals and not use the Euler's form in Complex 

numbers which use the arguments of number and non-standard angles. In this method, if we expand the left side 

of equation (1) by binomial theorem we get a particular polynomial (or class of polynomials) of the form: 

𝐹5 (𝑥) =  𝑎5𝑥
5  + 𝑎4𝑥

4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥
1 + 𝑎0 = 𝑐 (2). 

This equation becomes like: 

𝐹5 (𝑥) =  𝑎5𝑥
5  + 𝑎4𝑥

4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥
1 + 𝑎0 − 𝑐 = 0  (3). 

Where 𝛿 =  𝑎0 − 𝑐. The equation (3) represent the class of polynomials of complex or real values according to 

constants 𝑎, 𝑏 𝑎𝑛 𝑐. To solve the polynomial of equation (3) and finding the roots we present the following 

method which called SHAD-method, where SH and AD are the first and second letters of the name authors. 

 

Theorem 2.1. Consider the equation (𝑎𝑥 +  𝑏) 5 =  𝑐 (1).where 𝑥 ∈  ℂ and 𝑎 ∈  ℝ, 𝑏 and 𝑐 are constants of 

complex or real numbers, then the equation (1) has associate with the polynomial's equation of degree 5 with the 

form: 

                  
𝐹5 (𝑥) =  𝑎5𝑥

5  + 𝑎4𝑥
4 + 𝑎3𝑥

3 + 𝑎2𝑥
2 + 𝑎1𝑥

1 + 𝑎0 = 𝑐 (2). Equation (2) becomes, 

            𝐹5 (𝑥) =  𝑎5𝑥
5  + 𝑎4𝑥

4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥
1 + 𝛿 = 0  (3). Where, 𝛿 = 𝑎0 − 𝑐. 

Then the roots of polynomials of equation (3). Given by the following SHAD-radical formula: 

𝑥𝑗∈𝐽 = 
−𝑎4

𝑎5. 5
+

√(𝑎4)
5−(𝑎5)

5−1.55.𝛿)
5

𝑎5. 5
 . 𝑒

2𝜋𝑖(𝑗−1)
5⁄          (4). 

         Where, 𝑗 ∈ 𝐽 = {1,2,3,4,5} is index set of roots.  

          Proof. Consider the polynomials of fifth degree equation: 

𝑎5𝑥
5  + 𝑎4𝑥

4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥
1 + 𝛿 = 0  (1). Where, 𝛿 = 𝑎0 − 𝑐. 

To show that the SHAD-Radical formula (4) is a solution of polynomials (1). Then the equation (4) can be written 

as: 

                      𝑥 =  
−𝑎4

𝑎5. 5
+

√(𝑎4)
5−(𝑎5)

5−1.55.𝛿)
5

𝑎5. 5
 .                                     (2). we get, 

                                                𝑥 =  (
−𝑎4

5.( √𝑎5
5 ).( √𝑎5

5 )
5−1 +

√(𝑎4)
5−(55.𝑎5

5−1.𝛿)
5

5.( √𝑎5
5 ).( √𝑎5

5 )
5−1 )                 (3). from (3), we have    

                                              𝑥 = (
1

( √𝑎5
5 )

) (
−𝑎4

5.( √𝑎5
5 )

5−1 +
√(𝑎4)

5−(55.𝑎5
5−1.𝛿)

5

5.( √𝑎5
5 )

5−1 )               (4). so, we have 

                                              𝑥 =  {
1

( √𝑎5
5 )

(
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)}                (5).  

                                               𝑥 =  
1

( √𝑎5
5 )

𝑛 (
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)                  (6). 

Where 𝑛 the different power of polynomial of degree fifth, now put the equation (6) in equation (1) to get,  
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎5

( √𝑎5
5 )

5 (
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

5

+

𝑎4

( √𝑎5
5 )

4 (
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

4

+

𝑎3

( √𝑎5
5 )

3 (
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

3

+

𝑎2

( √𝑎5
5 )

2 (
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

2

+

𝑎1

( √𝑎5
5 )

1 (
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

1

+
𝛿 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 0                 (7). 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(5
0
) (

𝑎4

5.( √𝑎5
5 )

5−1)

0

(
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

5

+

(5
1
) (

𝑎4

5.( √𝑎5
5 )

5−1)

1

(
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

4

+

(5
2
) (

𝑎4

5.( √𝑎5
5 )

5−1)

2

(
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

3

+

(5
3
) (

𝑎4

5.( √𝑎5
5 )

5−1)

3

(
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

2

+

(5
4
) (

𝑎4

5.( √𝑎5
5 )

5−1)

4

(
−𝑎4

5.( √𝑎5
5 )

5−1 + √
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

1

+
𝛿 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 0             (8). 

To expand the powers in equation (8). We deduced that 
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(
5

0
)(

𝑎4

5. (√𝑎5
5 )

5−1)

0

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (

−𝑎4

5. (√𝑎5
5 )

5−1
)

5

+

5. (
−𝑎4

5. (√𝑎5
5 )

5−1)

4

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

1

+

10. (
−𝑎4

5. (√𝑎5
5 )

5−1)

3

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

2

+

10. (
−𝑎4

5. (√𝑎5
5 )

5−1)

2

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

3

+

5. (
−𝑎4

5. (√𝑎5
5 )

5−1)

1

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

4

+

(
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

)
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 

(
5

1
)(

𝑎4

5. (√𝑎5
5 )

5−1)

1

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (

−𝑎4

5. (√𝑎5
5 )

5−1)

4

+

4. (
−𝑎4

5. (√𝑎5
5 )

5−1)

3

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

1

+

6. (
−𝑎4

5. (√𝑎5
5 )

5−1)

2

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

2

+

4. (
−𝑎4

5. (√𝑎5
5 )

5−1)

1

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

3

+

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

4

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 
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(
5

2
)(

𝑎4

5. (√𝑎5
5 )

5−1)

2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 (

−𝑎4

5. (√𝑎5
5 )

5−1
)

3

+

3. (
−𝑎4

5. (√𝑎5
5 )

5−1)

2

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

1

+

3. (
−𝑎4

5. (√𝑎5
5 )

5−1)

1

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

2

+

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

3

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 

(
5

3
)(

𝑎4

5. (√𝑎5
5 )

5−1)

3

(

 
 
 
 
 
 
 
 
 
 (

−𝑎4

5. (√𝑎5
5 )

5−1
)

2

+

2. (
−𝑎4

5. (√𝑎5
5 )

5−1)

1

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

1

+

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

2

)

 
 
 
 
 
 
 
 
 
 

+ 

                             (5
4
) (

𝑎4

5.( √𝑎5
5 )

5−1)

4

(

 
 
 

(
−𝑎4

5.( √𝑎5
5 )

5−1)

1

+

(√
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

1

)

 
 
 
+ 𝛿 = 0                                    (9). 

 

By multiplying the factors, we get the following equation:                            
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −(

𝑎4

5. (√𝑎5
5 )

5−1
)

5

+

5. (
−𝑎4

5. (√𝑎5
5 )

5−1)

4

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

1

−

10. (
𝑎4

5. (√𝑎5
5 )

5−1)

3

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

2

+

10. (
−𝑎4

5. (√𝑎5
5 )

5−1)

2

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

3

−

5. (
𝑎4

5. (√𝑎5
5 )

5−1)

1

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

4

+

(
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

)
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5. (

𝑎4

5. (√𝑎5
5 )

5−1)

5

−

20. (
 𝑎4

5. (√𝑎5
5 )

5−1)

4

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

1

+

30. (
𝑎4

5. (√𝑎5
5 )

5−1)

3

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

2

−

20. (
𝑎4

5. (√𝑎5
5 )

5−1)

2

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

3

+

5. (
𝑎4

5. (√𝑎5
5 )

5−1)

1

(√
(𝑎4)

5 − (55. 𝑎5
5−1. 𝛿)

55. (𝑎5)
5−1

5

)

4

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 
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−10. (
𝑎4

5.( √𝑎5
5 )

5−1)

5

+

30. (
𝑎4

5.( √𝑎5
5 )

5−1)

4

(√
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

1

−

30. (
𝑎4

5.( √𝑎5
5 )

5−1)

3

(√
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

2

+

10. (
𝑎4

5.( √𝑎5
5 )

5−1)

2

(√
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

3

)

 
 
 
 
 
 
 
 
 
 

+ 

                                                                  

(

 
 
 
 
 
 
 

10. (
𝑎4

5.( √𝑎5
5 )

5−1)

5

−

20. (
𝑎4

5.( √𝑎5
5 )

5−1)

4

(√
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

1

+

10. (
𝑎4

5.( √𝑎5
5 )

5−1)

3

(√
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

2

)

 
 
 
 
 
 
 

+ 

                                                       

(

 
 
 

−5. (
𝑎4

5.( √𝑎5
5 )

5−1)

5

+

5. (
𝑎4

5.( √𝑎5
5 )

5−1)

4

(√
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1

5
)

1

)

 
 
 

+ 𝛿 = 0                     (10). 

 

By adding the similarity terms in equation (10), we get the following terms only. 

 

                                −(
𝑎4

5.( √𝑎5
5 )

5−1)

5

+ (
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1 ) + 𝛿 = 0                                         (11). 

 

But  𝛿 = 𝑎0 − 𝑐 = (
𝑎4

5.( √𝑎5
5 )

5−1)

5

− (
(𝑎4)

5−(55.𝑎5
5−1.𝛿)

55.(𝑎5)
5−1 )                                                             (12). 

 

It is clear that if we put the equation (12) and (11), this proved 𝑥 =  
−𝑎4

𝑎5. 5
+

√(𝑎4)
5−(𝑎5)

5−1.55.𝛿)
5

𝑎5. 5
  is a solution of 

polynomial of fifth degree 𝑎5𝑥
5  + 𝑎4𝑥

4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥
1 + 𝛿 = 0 .  

 

Example 2.1. Let 𝑛 = 1, 𝑎 = 4, 𝑏 = 7 and 𝑐 = 10𝑖 be the values of constants in equation (1) becomes. 

(4𝑥 + 7) = 10𝑖, then the polynomial of degree 1 looks like: 𝑎1 𝑥
1 + 𝑎0 𝑥

0 = 𝑐 iff 4 𝑥1 + 7 𝑥0 = 10𝑖,  

Where 𝑎1 = (
1
0
)(4) = 4, 𝑎0 = (

1
1
)(7) = 7  and 𝛿 = 𝑎0 − 𝑐 = 7 − 10𝑖, the solution given by  

𝑥 = −
 𝑎0
𝑎1. 1 

±
√(𝑎0)

1 − (𝑎1)
1−1. 11. 𝛿1

𝑎1. 1
𝑒
2𝜋𝑖(1−1)

1⁄  

                                                   𝑥 = −
 7

4 
+

√(7)1−(7)0.11.(7−10𝑖)
1

4
𝑒0 

                                                    𝑥 = −
 7

4 
+
10𝑖

4
 

Example 2.2. Let 𝑛 = 2, 𝑎 = 4, 𝑏 = 7 and 𝑐 = 10𝑖 be the values of constants in equation (1) becomes. 

(4𝑥 + 7)2 = 10𝑖, then the polynomial of degree 2 (or quadratic equation) looks like: 
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𝑎2 𝑥
2 + 𝑎1 𝑥

1 + 𝑎0  = 𝑐 iff 16𝑥
2 + 56 𝑥1 + 49 = 10𝑖   iff 16𝑥2 + 56 𝑥1 + 49 − 10𝑖 = 0  Where 

𝑎2 = (
2
0
)(4)2 = 16, 𝑎1 = (

2
1
)(4)17 = 56, 𝑎0 = (

2
2
)(7)2 = 49  and  𝛿 = 𝑎0 − 𝑐 = 49 − 10𝑖, the solution given 

by  

𝑥𝑗 = −
 𝑎1
𝑎2. 2 

+
√(𝑎1)

2 − (𝑎2)
2−1. 22. 𝛿

2

𝑎2. 2
𝑒
2𝜋𝑖(𝐽−1)

2⁄  

                          𝑥1 = −
 56

16.2 
+

√(56)2−(16)2−1.22.(49−10𝑖)
2

16.2
𝑒
2𝜋𝑖(1−1)

2⁄  

                          𝑥1 = −
 56

32 
+

√(56)2−64.(49−10𝑖)
2

32
𝑒0 

                          𝑥1 = −1.19098300563 + 0.55901699437𝑖 

                          𝑥2 = −
 56

16.2 
+

√(56)2−(16)2−1.22.(49−10𝑖)
2

16.2
𝑒
2𝜋𝑖(2−1)

2⁄  

                          𝑥2 = −2.30901699437 − 0.55901699437𝑖 

Example 2.3. Let 𝑛 = 3, 𝑎 = 4, 𝑏 = 7 and 𝑐 = 10𝑖 be the values of constants in equation (1) becomes. 

(4𝑥 + 7)3 = 10𝑖, then the polynomial of degree 3 (or cubic equation) looks like: 

 𝑎3 𝑥
3 + 𝑎2 𝑥

2 + 𝑎1 𝑥
1 + 𝑎0  = 𝑐 iff 64𝑥

3 + 336𝑥2 + 588 𝑥1 + 343 = 10𝑖   iff  

64𝑥3 + 336𝑥2 + 588 𝑥1 + 343 − 10𝑖 = 0   Where 𝑎3 = (
3
0
)(4)3 = 64 

𝑎2 = (
2
0
)(4)2(7)1 = 336, 𝑎1 = (

3
2
)(4)1(7)2 = 588 , 𝑎0 = (

3
3
)(7)3 = 343,  and  𝛿 = 𝑎0 − 𝑐 = 343 − 10𝑖, the 

solution given by  

𝑥𝑗 = −
 𝑎2
𝑎3. 3 

+
√(𝑎2)

3 − (𝑎3)
3−1. 33. 𝛿

3

𝑎3. 3
𝑒
2𝜋𝑖(𝐽−1)

3⁄  

                          𝑥1 = −
336

64.3 
+

√(336)3−(64)3−1.33.(343−10𝑖)
3

64.3 
𝑒
2𝜋𝑖(1−1)

3⁄  

                          𝑥1 = −
336

64.3 
+

√(336)3−(64)3−1.33.(343−10𝑖)
3

64.3 
𝑒
2𝜋𝑖(1−1)

3⁄  

                          𝑥1 = −1.28355120691 + 0.26930433625𝑖 

                          𝑥2 = −
336

64.3 
+

√(336)3−(64)3−1.33.(343−10𝑖)
3

64.3 
𝑒
2𝜋𝑖(2−1)

3⁄  

                          𝑥2 = −2.21644879309 + 0.26930433625𝑖 

                          𝑥3 = −
336

64.3 
+

√(336)3−(64)3−1.33.(343−10𝑖)
3

64.3 
𝑒
2𝜋𝑖(3−1)

3⁄  

                          𝑥3 = −1.75 − 0.53860867251𝑖 

Example 2.4. Let 𝑛 = 4, 𝑎 = 2, 𝑏 = 3𝑖 and 𝑐 = −2 be the values of constants in equation (1) becomes. 

(2𝑥 + 3𝑖)4 = −2, then the polynomial of degree 4 (or quartic equation) looks like: 

 𝑎4 𝑥
4 +  𝑎3 𝑥

3 + 𝑎2 𝑥
2 + 𝑎1 𝑥

1 + 𝑎0  = 𝑐 iff 16 𝑥
4 + 96𝑖 𝑥3 − 216 𝑥2 − 216 𝑥1 + 81 = −2 iff  

16 𝑥4 + 96𝑖 𝑥3 − 216 𝑥2 − 216𝑖 𝑥1 + 83 = 0 Where 𝑎4 = (
4
0
)(2)4 = 16, 𝑎3 = (

4
1
)(2)3(3𝑖)1 = 96𝑖. 

𝑎2 = (
4
0
)(2)2(3𝑖)2 = −216 , 𝑎1 = (

4
3
)(2)1(3𝑖)3 = −216𝑖 , 𝑎0 = (

4
4
)(3𝑖)4 = 81,and 

𝛿 = 𝑎0 − 𝑐 = 83, the solution given by  

                              𝑥𝑗 = −
 𝑎3

𝑎4.4 
+

√(𝑎3)
4−(𝑎4)

4−1.44.𝛿
4

𝑎4.4
𝑒
2𝜋𝑖(𝐽−1)

4⁄  
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                             𝑥1 = −
 96𝑖

16.4 
+

√(96𝑖)4−(16)4−1.44.83
4

16.4
𝑒
2𝜋𝑖(1−1)

4⁄  

                              𝑥1 = 0.42044820763 − 1.07955179237𝑖. 

                              𝑥2 = −
 96𝑖

16.4 
+

√(96𝑖)4−(16)4−1.44.83
4

16.4
𝑒
2𝜋𝑖(2−1)

4⁄  

                              𝑥2 = −0.42044820763 − 1.07955179237𝑖. 

                             𝑥3 = −
 96𝑖

16.4 
+

√(96𝑖)4−(16)4−1.44.83
4

16.4
𝑒
2𝜋𝑖(3−1)

4⁄  

                             𝑥3 = −0.42044820763 − 1.92044820763𝑖. 

                              𝑥4 = −
 96𝑖

16.4 
+

√(96𝑖)4−(16)4−1.44.83
4

16.4
𝑒
2𝜋𝑖(4−1)

4⁄  

                              𝑥4 = 0.42044820763 − 1.92044820763𝑖. 

Example 2.5. Let 𝑛 = 5, 𝑎 = 2, 𝑏 = 3 and 𝑐 = 3 be the values of constants in equation (1) becomes. 

(2𝑥 + 3)5 = 3, then the polynomial of degree 5 (or fifth equation) looks like: 

                                        𝑎5 𝑥
5 +  𝑎4 𝑥

4 +  𝑎3 𝑥
3 + 𝑎2 𝑥

2 + 𝑎1 𝑥
1 + 𝑎0  = 𝑐 Iff 

32 𝑥5 + 240𝑥4 + 720 𝑥3 + 1080 𝑥2 + 810 𝑥1 + 243 = 3 Iff 

32 𝑥5 + 240𝑥4 + 720 𝑥3 + 1080 𝑥2 + 810 𝑥1 + 240 = 0 

Where 𝑎5 = (
5
0
)(2)5 = 32, 𝑎4 = (

5
1
)(2)4(3)1 = 240, 𝑎3 = (

5
2
)(2)3(3)2 = 720, 

𝑎2 = (
5
3
)(2)2(3)3 = 1080 , 𝑎1 = (

5
4
)(2)1(3)4 = 810 , 𝑎0 = (

5
5
)(3)5 = 243,And 

𝛿 = 𝑎0 − 𝑐 = 240, the solution given by  

𝑥𝑗 = −
 𝑎4
𝑎5. 5 

+
√(𝑎4)

5 − (𝑎5)
5−1. 55. 𝛿

5

𝑎5. 5
𝑒
2𝜋𝑖(𝐽−1)

5⁄  

                                               𝑥1 = −
 240

32.5 
+

√(240)5−(32)5−1.55.240
5

32.5
𝑒
2𝜋𝑖(1−1)

5⁄  

                                               𝑥1 = −0.87713453019 

𝑥2 = −
 240

32.5 
+
√(240)5 − (32)5−1. 55. 240
5

32.5
𝑒
2𝜋𝑖(2−1)

5⁄  

𝑥3 = −
 240

32.5 
+
√(240)5 − (32)5−1. 55. 240
5

32.5
𝑒
2𝜋𝑖(3−1)

5⁄  

                                              𝑥3 = −2.00390875028 + 0.36611113732𝑖. 

𝑥4 = −
 240

32.5 
+
√(240)5 − (32)5−1. 55. 240
5

32.5
𝑒
2𝜋𝑖(4−1)

5⁄  

                                              𝑥4 = −2.00390875028 − 0.36611113732𝑖. 

𝑥5 = −
 240

32.5 
+
√(240)5 − (32)5−1. 55. 240
5

32.5
𝑒
2𝜋𝑖(5−1)

5⁄  

                         𝑥2 = −1.30752398462 − 0.59238026384𝑖. 
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3.  New Approach to find General Solution for Equation: (𝒂𝒙 + 𝒃)𝒏 = 𝒄  (1).  

In this section, we introduced a new approach to find the general solution of equation (1). Let ℝ denote the real 

field, and ℝ[𝑥] denote the ring of polynomials over ℝ. Consider ℂ is the complex field and ℂ[𝑥] denote the ring 

of polynomials over ℂ. If we consider a new form (𝑎𝑥 + 𝑏)𝑛 = 𝑐  (1), where  𝑥 ∈ ℂ and 𝑎 ∈ ℝ, 𝑏 and 𝑐 are 

constants of complex numbers. This new method does depend on the matrix solution algorithm. But depending on 

a new formula of algorithm depending on radicals and Euler's form without using arguments of number and non- 

standard angles. In this method, if we expand the left side of equation (1) by binomial theorem we get a particular 

polynomials (or class of polynomials) of the form: 𝐹𝑛(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎𝑜 = 𝑐  (2). This equation 

becomes like: 

 𝐹𝑛(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝛿 = 0   (3), where 𝛿 = 𝑎0 − 𝑐. Equation (3) represent the class of 

polynomials of complex or real values according to constants 𝑎, 𝑏 𝑎𝑛𝑑 𝑐. To solve the polynomial equation (3) to 

find the roots we present the following method which is called SHAD-method, where SH and AD are the first and 

second letters of the name authors. 

 

Theorem. 3.1. Consider the formula of the equation (𝑎𝑥 + 𝑏)𝑛 = 𝑐  (1), where  𝑥 ∈ ℂ , 𝑎 ∈ ℝ, 𝑏 and 𝑐 are 

constants of complex numbers. Then the equation (𝑎𝑥 + 𝑏)𝑛 = 𝑐  (1).  Can be represented by the polynomial's 

equation of the form: 

 𝐹𝑛(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝛿 = 0   (2), Where, 𝛿 = 𝑎0 − 𝑐. The equation (1) equivalent (2).  

Proof.  Let (𝑎𝑥 + 𝑏)𝑛 = 𝑐 (1), be a given equation, then by using Binomial theorem, we can expand the left side 

into:   

  (𝑎𝑥 + 𝑏)𝑛 = (𝑛
0
)(𝑎𝑥)𝑛𝑏0 + (𝑛

1
)(𝑎𝑥)𝑛−1𝑏1 + (𝑛

2
)(𝑎𝑥)𝑛−2𝑏2 +⋯+ (𝑎𝑥)𝑛−𝑛(𝑛

𝑛
)𝑏𝑛               (1). 

                = (𝑎𝑥)𝑛𝑏0 +
𝑛!

(𝑛−1)!1!
(𝑎𝑥)𝑛−1𝑏1 +

𝑛!

(𝑛−2)!2!
(𝑎𝑥)𝑛−2𝑏2 +⋯+ 𝑏𝑛                                       (2).      

                = 𝑎𝑛𝑥𝑛 + 𝑛𝑎𝑛−1𝑥𝑛−1𝑏 +
𝑛(𝑛−1)𝑎𝑛−2

2!
𝑥𝑛−2𝑏2 +⋯+ 𝑏𝑛                                                    (3). 

Consider 𝑎𝑛 = 𝑎
𝑛 , 𝑎𝑛−1 = 𝑛𝑎

𝑛−1𝑏, 𝑎𝑛−2 =
𝑛(𝑛 − 1)

2!⁄ 𝑎𝑛−2𝑏2, … , 𝛼0 = 𝑏
𝑛                               (4). 

Then we get from (4),  

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 = 𝑐                                                                                          (5). 

And consequently,  

 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝛿 = 0, 𝛿 = 𝑎0 − 𝑐                                                                            (6). 

Conversely, to show that the equation (2) implies that the equation (1).  

Consider the polynomials of degree 𝑛: 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝛿 = 0, 𝛿 = 𝑎0 − 𝑐                                                                                     (1).  

By completing the term: 𝑎0 = (
 𝑎𝑛−1

 ( √𝑎𝑛
𝑛  )

𝑛−1
.𝑛 
)

𝑛

, in the equating (1), we have, 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ (
 𝑎𝑛−1

 ( √𝑎𝑛
𝑛   )

𝑛−1
.𝑛
)

𝑛

− (
 𝑎𝑛−1

  ( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛
)

𝑛

+ 𝛿 = 0,                                                (2). 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ (
 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛  
)

𝑛

= (
 𝑎𝑛−1

 ( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛
)

𝑛

− 𝛿                                                          (3). 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 = 𝑎0 − 𝛿                                                                                                 (4). 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 = 𝑎0 − (𝑎0 − 𝑐)                                                                                      (5). 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 =  𝑐                                                                                                          (6). 

(𝑎 𝑥 + 𝑏)𝑛 = 𝑐.                                                                                                                                    (7).  
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Theorem 3.2. Consider the equation (𝑎𝑥 + 𝑏)𝑛 = 𝑐  (1), where 𝑥 ∈ ℂ and 𝑎 ∈ ℝ, 𝑏 and 𝑐 are constants of 

complex numbers, by theorem 3.1 equation (1) has associate with the polynomials equation of degree 𝑛 on the 

form: 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝛿 = 0, 𝛿 = 𝑎0 − 𝑐  (2). Then the roots of polynomials equation (2). Given by 

the following SHAD-radical formula:  

𝑥𝑗∈𝐽 = 
−𝑎𝑛−1

𝑎𝑛. 𝑛
+

√(𝑎𝑛−1)
𝑛−(.𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿)
𝑛

𝑎𝑛. 𝑛
 . 𝑒

2𝜋𝑖(𝑗−1)
𝑛⁄                       (3). 

Where, 𝑗 ∈ 𝐽 = {1,2,3, … , 𝑛} is index set of roots.  

Proof. Consider the equation: (𝑎𝑥 + 𝑏)𝑛 = 𝑐                                                                   (1).                                                      

then by theorem 3.1. The equation (1) can be written as: 

 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝛿 = 0, 𝛿 = 𝑎0 − 𝑐                                                                       (2).  

Assume that, 𝑎𝑛 = 𝑎
𝑛 and 𝑎0 = 𝑏

𝑛                                                                                     (3).    

 By completing the term: 𝑎0 = (
 𝑎𝑛−1

 ( √𝑎𝑛
𝑛  )

𝑛−1
.𝑛 
)

𝑛

, in the equating (2), we have, 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ (
 𝑎𝑛−1

 ( √𝑎𝑛
𝑛   )

𝑛−1
.𝑛
)

𝑛

− (
 𝑎𝑛−1

  ( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛
)

𝑛

+ 𝛿 = 0,                                   (4). 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ (
 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛  
)

𝑛

= (
 𝑎𝑛−1

 ( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛
)

𝑛

− 𝛿                                             (5). 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ (
 𝑎𝑛−1

 ( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛 
)

𝑛

=
(𝑎𝑛−1)

𝑛

( ( √𝑎𝑛
𝑛 )

𝑛−1
)
𝑛
.𝑛𝑛
− 𝛿                                              (6). 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ (
 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛 
)

𝑛

=
(𝑎𝑛−1)

𝑛

(𝑎𝑛)
𝑛−1.𝑛𝑛

− 𝛿                                                       (7). 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ (
 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛 
)

𝑛

=
(𝑎𝑛−1)

𝑛−(𝑎𝑛)
𝑛−1.𝑛𝑛.𝛿

(𝑎𝑛)
𝑛−1.𝑛𝑛

                                                (8). 

(√𝑎𝑛
𝑛  𝑥 +

 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛 
)

𝑛

=
(𝑎𝑛−1)

𝑛−(𝑎𝑛)
𝑛−1.𝑛𝑛.𝛿

(𝑎𝑛)
𝑛−1.𝑛𝑛

                                                                          (9).  

By taking the n-root for both side we get, when we consider n is even, then we have,   

√𝑎𝑛
𝑛  𝑥 +

 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛 
= ±√(

(𝑎𝑛−1)
𝑛−(𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿

(𝑎𝑛)
𝑛−1.𝑛𝑛

)
𝑛

                                                                      (10).  

√𝑎𝑛
𝑛  𝑥 +

 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛 
= ±

√(𝑎𝑛−1)
𝑛−(𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿
𝑛

√(𝑎𝑛)
𝑛−1.𝑛𝑛

𝑛                                                                          (11). 

√𝑎𝑛
𝑛  𝑥 +

 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛 
= ±

√(𝑎𝑛−1)
𝑛−(𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿
𝑛

( √𝑎𝑛
𝑛  )

𝑛−1
  .𝑛

                                                                         (12). 

𝑥 = −
 𝑎𝑛−1

√𝑎𝑛
𝑛  .( √𝑎𝑛

𝑛 )
𝑛−1

.𝑛 
±

√(𝑎𝑛−1)
𝑛−(𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿
𝑛

√𝑎𝑛
𝑛  .( √𝑎𝑛

𝑛  )
𝑛−1

  .𝑛
                                                                          (13). 

𝑥 = −
 𝑎𝑛−1

𝑎𝑛.𝑛 
±

√(𝑎𝑛−1)
𝑛−(𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿
𝑛

𝑎𝑛  .𝑛
                                                                                             (14). 

From equation (14), we get the two roots when 𝑗 = 1  and  𝑗 =
𝑛

2
+ 1                                                                                       

From other hand, when we consider n is odd, we have, 

√𝑎𝑛
𝑛  𝑥 +

 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛 
= +√(

(𝑎𝑛−1)
𝑛−(𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿

(𝑎𝑛)
𝑛−1.𝑛𝑛

)
𝑛

                                                                      (15).  
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√𝑎𝑛
𝑛  𝑥 +

 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛 
= +

√(𝑎𝑛−1)
𝑛−(𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿
𝑛

√(𝑎𝑛)
𝑛−1.𝑛𝑛

𝑛                                                                           (16). 

√𝑎𝑛
𝑛  𝑥 +

 𝑎𝑛−1

( √𝑎𝑛
𝑛 )

𝑛−1
.𝑛 
= +

√(𝑎𝑛−1)
𝑛−(𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿
𝑛

( √𝑎𝑛
𝑛  )

𝑛−1
  .𝑛

                                                                          (17). 

𝑥 = −
 𝑎𝑛−1

√𝑎𝑛
𝑛  .( √𝑎𝑛

𝑛 )
𝑛−1

.𝑛 
+

√(𝑎𝑛−1)
𝑛−(𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿
𝑛

√𝑎𝑛
𝑛  .( √𝑎𝑛

𝑛  )
𝑛−1

  .𝑛
                                                                           (18). 

𝑥 = −
 𝑎𝑛−1

𝑎𝑛.𝑛 
+

√(𝑎𝑛−1)
𝑛−(𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿
𝑛

𝑎𝑛  .𝑛
, when 𝑗 = 1, we have only one root.                              (19).                                                                                         

From the equations (14) and (19), we deduced that the radicals:   

 𝑥𝑗∈𝐽 = 
−𝑎𝑛−1

𝑎𝑛. 𝑛
+

√(𝑎𝑛−1)
𝑛−(.𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿)
𝑛

𝑎𝑛. 𝑛
 . 𝑒

2𝜋𝑖(𝑗−1)
𝑛⁄                                                                       (20). 

Where, 𝑗 ∈ 𝐽 = {1,2,3, … , 𝑛} is index set of roots . 

Corollary 3.3. The formula 𝑥𝑗∈𝐽 = 
−𝑎𝑛−1

𝑎𝑛. 𝑛
+

√(𝑎𝑛−1)
𝑛−(.𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿)
𝑛

𝑎𝑛. 𝑛
 . 𝑒

2𝜋𝑖(𝑗−1)
𝑛⁄  ,Where 

𝑗 ∈ 𝐽 = {1,2,3, … , 𝑛} is index set of roots, it is represented the solution of polynomials: 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝛿 = 0, 𝛿 = 𝑎0 − 𝑐 . 

Proof. Consider the equation: (𝑎𝑥 + 𝑏)𝑛 = 𝑐                                                                              (1).                                                      

then by theorem 3.1. The equation (1) can be written as: 

 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝛿 = 0, 𝛿 = 𝑎0 − 𝑐                                                                                 (2).  

Assume that,𝑎𝑛 = 𝑎
𝑛 and 𝑎0 = 𝑏

𝑛                                                                                                (3). 

By taking the 𝑛 − 𝑟𝑜𝑜𝑡, we get, √𝑎𝑛
𝑛 = 𝑎 and √𝑎0

𝑛 = 𝑏                                                             (4).  

We put 𝐽 = 1 in formula of solution 

𝑥 =  (
−𝑎𝑛−1

𝑛.𝑎𝑛
+

√(𝑎𝑛−1)
𝑛−(𝑛𝑛.𝑎𝑛

𝑛−1.𝛿)
𝑛

𝑛..𝑎𝑛
)                                                                             (5). 

 Put 𝑎𝑛 = (√𝑎𝑛
𝑛 ). (√𝑎𝑛

𝑛 )
𝑛−1

 in equation                                                                                       (6).  

We get, 

    𝑥 =  (
−𝑎𝑛−1

𝑛.( √𝑎𝑛
𝑛 ).( √𝑎𝑛

𝑛 )
𝑛−1 +

√(𝑎𝑛−1)
𝑛−(𝑛𝑛.𝑎𝑛

𝑛−1.𝛿)
𝑛

𝑛..( √𝑎𝑛
𝑛 ).( √𝑎𝑛

𝑛 )
𝑛−1 )                                                                           (7).  

    𝑥 =  {
1

( √𝑎𝑛
𝑛 )

(
−𝑎𝑛−1

𝑛.( √𝑎𝑛
𝑛 )

𝑛−1 +
√(𝑎𝑛−1)

𝑛−(𝑛𝑛.𝑎𝑛
𝑛−1.𝛿)

𝑛

𝑛.( √𝑎𝑛
𝑛 )

𝑛−1 )}                                                                       (8).  

    𝑥 =  {
1

( √𝑎𝑛
𝑛 )

(
−𝑎𝑛−1

𝑛.( √𝑎𝑛
𝑛 )

𝑛−1 + √
(𝑎𝑛−1)

𝑛−(𝑛𝑛.𝑎𝑛
𝑛−1.𝛿)

𝑛𝑛.(𝑎𝑛)
𝑛−1

𝑛
)}                                                                      (9).  

𝑥 =  {
1

( √𝑎𝑛
𝑛 )

(
−𝑎𝑛−1

𝑛.( √𝑎𝑛
𝑛 )

𝑛−1 + √
(𝑎𝑛−1)

𝑛

𝑛𝑛.(𝑎𝑛)
𝑛−1 −

𝑛𝑛.𝑎𝑛
𝑛−1.𝛿

𝑛𝑛.(𝑎𝑛)
𝑛−1

𝑛
)}                                                                   (10).  

Since, 𝑎0 = (
 𝑎𝑛−1

𝑛.( √𝑎𝑛
𝑛 )

𝑛−1)

𝑛

                                                                                                       (11). 

Then √𝑎0
𝑛 =

𝑎𝑛−1

𝑛.( √𝑎𝑛
𝑛 )

𝑛−1                                                                                                                 (12). 

Substitute Equations (11) and (12) in equation (10), we get, 

 𝑥 =  {
1

( √𝑎𝑛
𝑛 )

(−√𝑎0
𝑛 + √𝑎0 − 𝛿

𝑛  )}                                                                                               (13).  
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But, 𝛿 = 𝑎0 − 𝑐 , therefore, 𝑐 = 𝑎0 − 𝛿. So that (13) becomes, 

𝑥 =  {
1

( √𝑎𝑛
𝑛 )

(−√𝑎0
𝑛 + √𝑐

𝑛
 )}                                                                                                          (14). 

Now, the equation (14) is a solution of equation (1) . 

Corollary 3.4. The root 𝑥 =  {
1

( √𝑎𝑛
𝑛 )

(−√𝑎0
𝑛 + √𝑐

𝑛
 )} is the solution of the equation (𝑎𝑥 + 𝑏)𝑛 − 𝑐 = 0 (1).     

 Proof. To verify that 𝑥 =  {
1

( √𝑎𝑛
𝑛 )

(−√𝑎0
𝑛 + √𝑐

𝑛
 )} is the solution of the equation (1), we have, 

The left side: (𝑎𝑥 + 𝑏)𝑛 − 𝑐 =  (𝑎 {
1

( √𝑎𝑛
𝑛 )

(−√𝑎0
𝑛 + √𝑐

𝑛
 )} + 𝑏)

𝑛

− 𝑐   

                                                = (√𝑎𝑛
𝑛 {

1

( √𝑎𝑛
𝑛 )

(−√𝑎0
𝑛 + √𝑐

𝑛
 )} + √𝑎0

𝑛 )
𝑛

− 𝑐   

                                                = (√𝑎𝑛
𝑛 {

1

( √𝑎𝑛
𝑛 )

(−√𝑎0
𝑛 + √𝑐

𝑛
 )} + √𝑎0

𝑛 )
𝑛

− 𝑐 = 0 .   

 

Example 3.1. Let 𝑛 = 6, 𝑎 = 3, 𝑏 = −2 and 𝑐 = 7 be the values of constants in equation (1) becomes. 

(3𝑥 + (−2))6 = 7, then the polynomial of degree 6 (or sixth equation) looks like: 

                                𝑎6 𝑥
6 + 𝑎5 𝑥

5 +  𝑎4 𝑥
4 +  𝑎3 𝑥

3 + 𝑎2 𝑥
2 + 𝑎1 𝑥

1 + 𝑎0  = 𝑐 Iff 

                 729 𝑥6  − 2916𝑥5 + 4860  𝑥4 −4320 𝑥3 + 2160  𝑥2 + −576 𝑥1 + 64 = 7 Iff 

                               729 𝑥6  − 2916𝑥5 + 4860  𝑥4 −4320 𝑥3 + 2160  𝑥2 + −576 𝑥1 + 57 = 0 

Where 𝑎6 = (
6
0
)(3)6 = 729, 𝑎5 = (

6
1
)(3)5(−2)1 = −2916, 𝑎4 = (

6
2
)(3)4(−2)2 = 4860,   

𝑎3 = (
6
3
)(3)3(−2)3 = −4320, 𝑎2 = (

6
4
)(3)2(−2)4 = 2160, 𝑎1 = (

6
5
)(3)1(−2)5 = −576,   

𝑎0 = (
6
6
)(−2)6 = 64, and 𝛿 = 𝑎0 − 𝑐 = 57, the solution given by  

𝑥𝑗 = −
 𝑎5
𝑎6. 6 

+
√(𝑎5)

6 − (𝑎6)
6−1. 66. 𝛿

6

𝑎6. 6
𝑒
2𝜋𝑖(𝐽−1)

6⁄  

                                                 𝑥1 = −
 (−2916)

729.6 
+

√(−2916)6−(729)6−1.66.57
6

729.6
𝑒
2𝜋𝑖(𝐽−1)

6⁄  

                                                   𝑥1 = 1.12769585142 

                                                   𝑥2 = −
 (−2916)

729.6 
+

√(−2916)6−(729)6−1.66.57
6

729.6
𝑒
2𝜋𝑖(2−1)

6⁄  

                                                   𝑥2 = 0.89718125904 + 0.39926298588𝑖. 

                         𝑥3 = −
 (−2916)

729.6 
+

√(−2916)6−(729)6−1.66.57
6

729.6
𝑒
2𝜋𝑖(3−1)

6⁄  

                         𝑥3 = 0.43615207429 + 0.39926298588𝑖. 

                         𝑥4 = −
 (−2916)

729.6 
+

√(−2916)6−(729)6−1.66.57
6

729.6
𝑒
2𝜋𝑖(4−1)

6⁄  

                         𝑥4 = 0.20563748191. 

                         𝑥4 = −
 (−2916)

729.6 
+

√(−2916)6−(729)6−1.66.57
6

729.6
𝑒
2𝜋𝑖(5−1)

6⁄  

                         𝑥5 = 0.43615207429 − 0.39926298588𝑖. 
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                         𝑥6 = −
 (−2916)

729.6 
+

√(−2916)6−(729)6−1.66.57
6

729.6
𝑒
2𝜋𝑖(6−1)

6⁄  

                         𝑥6 = 0.89718125904 − 0.39926298588𝑖. 

 

4. Conclusion  

 

To solve the equation (𝑎𝑥 + 𝑏)𝑛 = 𝑐, after expanding the left side of equation by the Binomial theorem, the SHAS- 

formula is depending on the terms : 𝑎𝑛𝑥
𝑛 , 𝑎𝑛−1𝑥

𝑛−1, 𝑎0 and 

𝛿 = 𝑎0 − 𝑐, respectively for computing all roots. In fact, if we have: (𝑎𝑥 + 𝑏)𝑛. 1 = 𝑐. 1 

We no longer need the argument of the complex number in Euler's and Demoiver's ' formulas, thus: 

(𝑎𝑥 + 𝑏)𝑛. 1𝑛 = 𝑐. 1 , where 1 = 𝑒2𝜋𝑖(𝐽−1), therefore, 

(𝑎𝑥 + 𝑏)𝑛. (𝑒2𝜋𝑖(𝐽−1))
𝑛
= 𝑐. 𝑒2𝜋𝑖(𝐽−1), by taking the nth-root for both sides, we get 

(𝑎𝑥 + 𝑏) = √𝑐. 𝑒2𝜋𝑖(𝐽−1)
𝑛

= √𝑐
𝑛
. 𝑒
2𝜋𝑖(𝑗−1)

𝑛⁄  , which is an equivalent to: 

𝑥𝑗∈𝐽 = 
−𝑎𝑛−1

𝑎𝑛. 𝑛
+

√(𝑎𝑛−1)
𝑛−(.𝑎𝑛)

𝑛−1.𝑛𝑛.𝛿)
𝑛

𝑎𝑛. 𝑛
 . 𝑒

2𝜋𝑖(𝑗−1)
𝑛⁄ Or we use the following theorem. 

𝑥𝑗∈𝐽 = 
− √𝑎0
𝑛

√𝑎𝑛
𝑛  

+
√𝑐
𝑛

√𝑎𝑛
𝑛 . 𝑒

2𝜋𝑖(𝑗−1)
𝑛⁄ . 
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