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Abstract 

The proliferation of Internet of Things (IoT) devices has ushered in an era of unprecedented connectivity and 

innovation. However, this interconnected landscape also presents unique security challenges, necessitating robust 

intrusion detection mechanisms. In this research, we present a comprehensive study of anomaly detection in IoT 

networks, leveraging advanced machine learning techniques. Specifically, we employ the Gated Recurrent Unit (GRU) 

architecture as the backbone network to capture temporal dependencies within IoT traffic. Furthermore, our approach 

embraces hierarchical federated training to ensure scalability and privacy preservation across distributed IoT devices. 

Our experimental design encompasses public IoT datasets, facilitating rigorous evaluation of the model's performance 

and adaptability. Results indicate that our GRU-based model excels in identifying a spectrum of attacks, from 

Distributed Denial of Service (DDoS) incursions to SQL injection attempts. Visualizations of learning curves, 

Receiver Operating Characteristic (ROC) curves, and confusion matrices offer insights into the model's learning 

process, discriminatory power, and classification performance. Our findings contribute to the evolving landscape of 

IoT security, offering a roadmap for enhancing the resilience of interconnected systems in an era of increasing 

connectivity. 

Keywords: Internet of Things (IoT); Anomaly Detection Algorithms; Intrusion Detection Systems; Machine 

Learning; Network Anomalies; Cybersecurity in IoT 

1. Introduction 

The Internet of Things (IoT) has emerged as a transformative technological paradigm that is reshaping our world by 

connecting an ever-expanding array of physical devices and objects to the digital realm. This interconnectivity allows 

for the seamless exchange of data and information among devices, enabling them to communicate, monitor, and 

interact with their environments autonomously. IoT's significance lies not only in its ability to revolutionize industries 

such as healthcare, agriculture, transportation, and manufacturing but also in its potential to enhance our daily lives 

through smart homes, wearable devices, and connected cities [1]. As IoT continues to proliferate, its vast network of 

devices presents both unparalleled opportunities and unprecedented challenges. While IoT promises increased 

efficiency, convenience, and innovation, it also introduces complex security and privacy concerns. As such, ensuring 

the security and integrity of IoT networks has become paramount, making the study of intrusion detection through 

anomaly detection methods an essential research domain within the broader IoT landscape [2].  

In the rapidly expanding landscape of the IoT, where everyday objects are endowed with the power of connectivity 

and data exchange, the promise of innovation and efficiency is met with an equally formidable set of security 

challenges. As IoT devices find their way into our homes, cities, industries, and critical infrastructure, they become 

potential entry points for cyberattacks [3]. The sheer scale and heterogeneity of IoT networks introduce vulnerabilities 

that can be exploited by malicious actors. The diversity of devices, ranging from smart thermostats to autonomous 

vehicles, often leads to varying levels of security measures, leaving weak links that can be targeted. Moreover, many 

IoT devices operate in resource-constrained environments, limiting their ability to implement robust security protocols 
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[4]. As data flows between these interconnected nodes, it traverses a complex network, increasing the attack surface 

and the potential for unauthorized access, data breaches, and other security incidents. In this context, addressing the 

multifaceted security challenges in IoT becomes imperative to safeguard not only our personal privacy and data but 

also the critical infrastructure that underpins modern society [5].  

The importance of intrusion detection within the realm of IoT cannot be overstated. As the Internet of Things 

proliferates, it brings with it a vast array of connected devices that have the potential to revolutionize industries, 

enhance our daily lives, and streamline critical processes. However, this unprecedented connectivity also opens doors 

to potential threats and vulnerabilities. Intrusion detection plays a pivotal role in safeguarding these interconnected 

networks and the data they transmit [3-6]. It acts as an intelligent sentry, continuously monitoring IoT environments 

to detect and respond to any unauthorized or malicious activities. By identifying anomalous behavior and potential 

security breaches in real-time, intrusion detection systems provide a critical layer of defense against cyberattacks, 

ensuring the integrity, confidentiality, and availability of IoT resources and data. Whether deployed in industrial 

automation, healthcare, smart homes, or any other IoT application, effective intrusion detection not only serves as a 

guardian of the digital frontier but also contributes to the overall trustworthiness and reliability of IoT systems [4-9]. 

Amidst the burgeoning landscape of the Internet of Things (IoT), where billions of interconnected devices 

communicate seamlessly, anomaly detection emerges as a beacon of hope in the realm of security. In this intricate web 

of smart homes, industrial automation, healthcare systems, and more, the ability to distinguish the ordinary from the 

extraordinary is paramount [8]. Anomaly detection, as a solution, serves as the digital guardian, tirelessly scanning 

the continuous streams of IoT data for deviations from expected patterns. It empowers IoT ecosystems to not merely 

react but proactively respond to unforeseen events, identifying irregularities that may signify impending cyber threats, 

faults, or inefficiencies [2].  

Machine learning, with its ability to decipher complex patterns and glean insights from vast datasets, emerges as an 

indispensable ally in the quest for effective anomaly detection within the IoT. In the intricate tapestry of IoT 

environments, where diverse devices and data streams converge, traditional rule-based methods often fall short in 

capturing the subtleties of emerging anomalies [1]. Machine learning, however, excels in its capacity to adapt, evolve, 

and learn from the ever-changing dynamics of IoT networks. By leveraging algorithms capable of autonomous 

learning, machine learning brings forth a transformative power to discern not just known threats but also previously 

unseen anomalies. It equips IoT ecosystems with the ability to identify deviations, outliers, and potential security 

breaches in real-time, even in the absence of explicitly defined rules. This dynamic and data-driven approach not only 

enhances the precision of anomaly detection but also minimizes false positives, allowing for a more reliable and robust 

defense mechanism [6].  

The primary objective of this research is to delve into the realm of anomaly detection in IoT networks and harness the 

power of machine learning approaches to fortify the security and reliability of these interconnected systems. In a world 

where IoT devices continue to proliferate across industries, our focus lies in developing and evaluating novel methods 

for identifying and mitigating security threats, as well as addressing the challenges posed by diverse device types, data 

streams, and the dynamic nature of IoT environments [10-12].  

In this paper, we have structured our exploration of anomaly detection in IoT networks using machine learning 

approaches into six distinct sections. Section II delves into the foundational knowledge and review existing literature 

relevant to IoT security and anomaly detection. In Section III, we present our detailed machine learning algorithm, 

data sources, and techniques employed in our research. Moving forward to Section IV, we elaborate on the outlining 

the setup, data collection, and evaluation metrics used to assess the performance of our anomaly detection models. 

Section V is dedicated to presenting and analyzing the outcomes of our experiments. In Section VI, we draw our 

research to a close with a that synthesizes our findings, highlights their significance, and outlines potential avenues 

for future research. 

2. Background and Literature 

In this section, we embark on a journey through the relevant literature, exploring key studies, methodologies, and 

findings that have shaped the understanding of IoT security and anomaly detection. Vaiyapuri et al. [12] explored the 

application of deep learning techniques for intrusion detection in Industrial Internet of Things (IIoT) networks. Their 

study underscores the opportunities and future directions in utilizing deep learning methods to enhance security within 

IIoT ecosystems. Similarly, Roy and Cheung [13] presented a deep learning approach for intrusion detection in the 

Internet of Things (IoT) using bi-directional long short-term memory recurrent neural networks. Their work showcases 
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the potential of recurrent neural networks in effectively identifying intrusions within IoT environments. Hasan et al. 

[14] focused on attack and anomaly detection in IoT sensor networks, employing various machine learning 

approaches. Their study sheds light on the applicability of machine learning techniques in safeguarding IoT sites. 

Tyagi and Kumar [15] also delved into attack and anomaly detection in IoT networks, emphasizing the role of 

supervised machine learning methods. Their research contributes to the growing body of knowledge regarding security 

measures in IoT. 

In a hybrid approach, Sadikin and Kumar [16] designed a ZigBee IoT Intrusion Detection System that combined rule-

based and machine learning anomaly detection techniques. This hybrid approach reflects the versatility required for 

addressing diverse intrusion scenarios in IoT. Tabassum et al. [17] conducted a comprehensive survey of recent 

intrusion detection approaches in IoT, offering a panoramic view of the evolving landscape of security measures within 

the realm of IoT. Sharma et al. [18] presented a survey on anomaly detection techniques using deep learning in IoT. 

Their work provides insights into the diverse range of deep learning methods applied to anomaly detection in IoT 

environments. Bovenzi et al. [19] proposed a hierarchical hybrid intrusion detection approach tailored to IoT scenarios. 

This hierarchical model showcases the adaptability needed to address the multifaceted security challenges in IoT 

ecosystems. Dawoud et al. [20] explored Internet of Things intrusion detection using a deep learning approach, further 

highlighting the relevance and effectiveness of deep learning techniques in safeguarding IoT networks. 

3. Methodology 

In this section, we elucidate the comprehensive methodology adopted to investigate anomaly detection in IoT networks 

through machine learning approaches. The methodology serves as the backbone of our research, providing a structured 

framework to achieve our research objectives with rigor and precision. We detail the steps, techniques, and tools 

utilized in designing, implementing, and evaluating our anomaly detection models. 

3.1. Case Study 

To conduct a comprehensive analysis of anomaly detection in IoT networks through machine learning approaches, we 

employ the Edge-IIoTset dataset as our primary case study. The Edge-IIoTset dataset serves as a valuable resource for 

our research, providing a realistic representation of IoT network traffic and security challenges in industrial settings. 

This dataset encapsulates the dynamic nature of IoT environments, making it well-suited for our study's objectives. 

The Edge-IIoTset dataset comprises a diverse range of network traffic data collected from an industrial IoT network 

over an extended period. It encompasses a variety of IoT devices commonly found in industrial settings, including 

sensors, actuators, and programmable logic controllers (PLCs). The dataset is designed to simulate a real-world IIoT 

environment, offering a glimpse into the complexities and intricacies of industrial network traffic. The Edge-IIoTset 

dataset comprises a total of 43 features, and 14 classes of attacks. Table 1 show class distribution and class weight 

within the Edge-IIoTset dataset. 

Table 1: Class Weights for Different Attack Types in the Dataset 

Attack Type 
Class ID 

Number of Instances 
Class 

Weight 

Normal Class 0 1615643 0.0407 

DDoS_UDP Class 1 121568 5.41 

DDoS_ICMP Class 2 116436 5.65 

SQL_injection Class 3 51203 12.53 

Password Class 4 50153 12.72 

Vulnerability_scanner Class 5 50110 12.73 

DDoS_TCP Class 6 50062 12.75 

DDoS_HTTP Class 7 49911 12.79 

Uploading Class 8 37634 16.84 

Backdoor Class 9 24862 25.85 

Port_Scanning Class 10 22564 28.32 

XSS Class 11 15915 40.43 

Ransomware Class 12 10925 59.61 

MITM Class 13 1214 538.39 

Fingerprinting Class 14 1001 655.99 
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The summary statistics of  is provided of Edge-IIoTset dataset is provided in Table 2. 

 

Table 2: Descriptive Statistics Summary for Edge-IIoTset dataset.  
count mean std min 25% 50% 75% max 
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3.2. Methods 

In our pursuit of robust anomaly detection in IoT network traffic, we have selected the Gated Recurrent Unit (GRU) 

as the core architecture for our neural network model. The decision to employ GRU is rooted in its effectiveness in 

capturing sequential dependencies within time-series data, making it particularly well-suited for the temporal nature 

of network traffic patterns. In this subsection, we elucidate the rationale behind this choice and provide a mathematical 
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description of GRUs, outlining how they enable effective learning and differentiation of various types of attacks within 

IoT traffic. 

GRU, a type of recurrent neural network (RNN), offers several advantages for modeling and detecting anomalies in 

sequential data. Unlike traditional RNNs, GRUs are equipped with gating mechanisms that enable them to capture 

long-range dependencies while mitigating the vanishing gradient problem. This makes GRUs especially adept at 

handling sequences of varying lengths, such as those encountered in IoT network traffic. 

GRUs can be mathematically described as follows: 

Let 𝑥𝑡 represent the input at time step 𝑡, and ℎ𝑡 represent the hidden state at the same time step. The update gate 𝑧𝑡 

and reset gate 𝑟𝑡 are computed as: 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (1) 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (2) 

Where 𝜎 is the sigmoid activation function. 𝑊𝑧 and 𝑊𝑟 denote weight matrices for the update and reset gates. 
[ℎ𝑡 − 1, 𝑥𝑡] represents the concatenation of the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡. Next, the new 

candidate state \tilde{h}_th~t is computed as: 

 ℎ̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ⋅ [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡]) (3) 

where 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation function. The symbol ⊙  denotes element-wise multiplication. The 

updated hidden state ℎ𝑡 is computed by combining the previous hidden state ℎ𝑡−1 and the candidate state ℎ̂𝑡 using the 

update gate 𝑧𝑡: 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̂𝑡 
 

(4) 

This process allows the GRU to adaptively update its hidden state based on the input and previous hidden state, 

capturing sequential information efficiently. Our GRU-based model is trained on a diverse dataset encompassing 

multiple IoT attack types, each characterized by distinct traffic patterns and behaviors.  

To ensure the scalability and privacy-preserving aspects of our IoT attack detection model, we employ hierarchical 

federated training, a decentralized approach that enables collaborative model training on distributed IoT devices. In 

this subsection, we describe the mathematical framework and algorithmic steps involved in our hierarchical federated 

training process. In the federated learning paradigm, we consider a set of NN IoT devices, denoted as 𝐷1, 𝐷2, … , 𝐷𝑁, 

each with local datasets. Our goal is to train a global GRU model MM that captures attack patterns across all devices 

while keeping the data decentralized on the devices themselves. 

Let 𝑤 represent the model parameters (weights and biases), and 𝑤𝑖  denote the local model parameters on device 𝐷𝑖 . 

The federated learning process aims to find a global model ww by aggregating the local model updates from each 

device while preserving data privacy. 

Algorithmic Steps 

1) Initialization: Initially, a global model ww is initialized with random parameters. 

2) Local Training: On each IoT device 𝐷𝑖 , local training occurs using its own dataset. Specifically, the 

local model 𝑤𝑖  is trained on 𝐷𝑖  to capture patterns specific to that device's network traffic. This 

involves computing the local loss function 𝐿𝑖(𝑤𝑖) and optimizing 𝑤𝑖  using local optimization 

algorithms such as stochastic gradient descent (SGD). 

3) Model Update: After local training, each device 𝐷𝑖  computes the local model update 𝛥𝑤𝑖 = 𝑤𝑖 − 𝑤. 

This represents the difference between the local model parameters and the global model. 

4) Communication and Aggregation: The local model updates 𝛥𝑤𝑖are then communicated to a central 

server. The central server aggregates these updates to obtain a global update 𝛥𝑤𝑔𝑙𝑜𝑏𝑎𝑙  by employing 

aggregation methods such as federated averaging: 
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𝛥𝑤𝑔𝑙𝑜𝑏𝑎𝑙 = ∑
𝑛𝑖

𝑁
𝛥𝑤𝑖

𝑁

𝑖=1

 

(5) 

Where 𝑛𝑖 represents the number of samples on device 𝐷𝑖 . 

5) Global Model Update: The global model 𝑤 is then updated by applying the global update: 

𝑤 = 𝑤 + 𝛥𝑤𝑔𝑙𝑜𝑏𝑎𝑙  (6) 

  

6) Iteration: Steps 2 to 5 are repeated for a predetermined number of iterations or until convergence is 

achieved. Each iteration refines the global model ww by incorporating knowledge from the distributed 

IoT devices. 

 

Hierarchical federated training preserves data privacy by keeping data decentralized on the IoT devices. Only model 

updates are communicated, not raw data. Additionally, secure communication protocols and encryption techniques 

can be employed to ensure the confidentiality of model updates during transmission. This approach allows us to train 

a global GRU model that benefits from the collective knowledge of all devices while respecting data privacy and 

decentralization. By iteratively improving the global model through federated learning, we aim to enhance the 

effectiveness of our IoT attack detection model, ultimately contributing to the security and resilience of IoT networks. 

4. Experimental Design 

In this section, we delve into the intricacies of our experimental design, which serves as the empirical foundation of 

our research on anomaly detection in IoT networks using machine learning approaches. Our experimental design 

embodies a structured and systematic approach to evaluating the performance, effectiveness, and robustness of our 

proposed GRU-based model across various scenarios and datasets. 

Our experimental implementation setup was meticulously designed to handle the computational demands of training 

and evaluating our GRU-based anomaly detection model on large-scale IoT datasets. We employed a high-

performance computing cluster equipped with multiple nodes, each featuring substantial computational power. Each 

node was equipped with dual Intel Xeon processors, providing a total of 64 CPU cores, coupled with ample RAM, 

boasting 256GB per node. Additionally, the cluster included NVIDIA GPUs, specifically RTX 3080 units, to accelerate 

deep learning computations. This GPU configuration allowed us to harness the parallel processing capabilities of 

GPUs, significantly expediting model training. Our data storage needs were addressed by high-capacity HDDs, 

ensuring seamless access to extensive IoT datasets. 

Our software stack consisted of a suite of cutting-edge tools and frameworks tailored to machine learning and deep 

learning tasks. We leveraged Python as the primary programming language due to its extensive libraries and ecosystem 
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support. Key libraries such as TensorFlow and Keras were instrumental in building, training, and evaluating our GRU-

based anomaly detection model. For distributed computing and parallel processing, we employed Apache Spark, 

which seamlessly integrated with our cluster infrastructure. Data preprocessing, cleaning, and feature engineering 

were facilitated by Pandas and NumPy. To ensure efficient version control and collaboration, we utilized Git and 

GitHub. Furthermore, we employed Jupyter Notebooks for interactive development and experimentation. Our 

experiments were orchestrated and managed using containerization technology, specifically Docker and Kubernetes, 

which streamlined deployment across the cluster.  

5.  Results and Discussion 

In this section, we embark on a comprehensive exploration of the outcomes of our experimental endeavors in anomaly 

detection within IoT networks using our GRU-based model. This section represents the culmination of our research 

journey, where we present empirical findings, performance metrics, and in-depth analyses that shed light on the 

efficacy of our approach. 

Figure 1: Learning curves of the proposed GRU-based anomaly detection 

model 

Figure 1: ROC Curves for GRU-based anomaly 

detection model 

Figure 3: Confusion matrix of GRU-based anomaly 

detection model 
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Figure 1 presents a crucial visualization of the learning curves, providing a comprehensive view of the training process 

and its impact on our GRU-based anomaly detection model. As observed in the figure, the learning curves showcase 

the dynamic interplay between training and validation performance metrics over epochs, serving as a tangible 

representation of our model's learning journey. Figure 2 provides a critical visualization of Receiver Operating 

Characteristic (ROC) curves, offering a profound insight into the discriminative power and overall performance of 

our GRU-based anomaly detection model. These ROC curves present a clear depiction of the trade-off between true 

positive rates (sensitivity) and false positive rates (1-specificity) at various decision thresholds. As evident in the 

figure, the ROC curves gracefully curve upward and to the left, a testament to the model's ability to effectively 

distinguish between normal and anomalous IoT network traffic across diverse attack types. Furthermore, the area 

under the ROC curve (AUC) values, as indicated, quantitatively highlight the model's capacity for accurate 

classification. 

Figure 3 presents a pivotal visualization of confusion matrices, offering a granular breakdown of the model's 

performance in categorizing IoT network traffic into different classes. These matrices vividly represent the interplay 

between true positive, true negative, false positive, and false negative predictions across multiple attack types. By 

visualizing these matrices, we gain a comprehensive understanding of the model's strengths and areas for 

improvement. The diagonal elements, representing correct predictions, reflect the model's ability to accurately identify 

normal traffic and various attack types. Conversely, off-diagonal elements highlight instances where the model may 

misclassify certain attacks or normal traffic. By scrutinizing these matrices, we can pinpoint specific attack types or 

scenarios where the model excels and areas where further fine-tuning may be necessary. 

6. Conclusions 

This research represents a significant stride in the domain of anomaly detection within IoT networks, where we 

harnessed the power of machine learning, specifically the GRU architecture, and embraced the principles of 

hierarchical federated training to bolster the security and resilience of interconnected systems. Through rigorous 

experimentation and analysis, we have demonstrated the effectiveness of our GRU-based model in identifying various 

types of attacks, ranging from DDoS incursions to SQL injection attempts, across distributed IoT devices. Our findings 

underscore the adaptability of our approach across different scenarios, showcasing its potential for real-world 

deployment in a privacy-preserving manner. As we peer into the future of IoT security, our research offers several 

pivotal takeaways. Firstly, it reinforces the criticality of anomaly detection as a proactive defense mechanism in 

safeguarding the burgeoning IoT landscape. Secondly, it underscores the value of leveraging machine learning 

techniques, such as the GRU architecture, within the context of hierarchical federated training to tackle the evolving 

and multifaceted threat landscape while preserving data privacy. Lastly, our work emphasizes the need for continued 

research and development in IoT security, as the ever-expanding realm of IoT presents both opportunities and 

challenges. 
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