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Abstract 

In the field of survival analysis, the exponentiated inverse Rayleigh distribution is used to simulate lifetime data 

practices of human. In order to describe diverse survival data with indeterminacies, this work aims to create a 

generalization of the traditional pattern exponentiated inverse Rayleigh distribution, referred to as the neutrosophic 

exponentiated inverse Rayleigh distribution (NEIRD). In particular, modeling uncertain data that is roughly 

positively skewed makes use of the established distribution. The key statistical characteristics of the developed 

NEIRD, such as the neutrosophic survival function, neutrosophic hazard rate and neutrosophic moments, are 

discussed in this study. Additionally, in a neutrosophic well-known maximum likelihood estimation approach is 

used to estimate the neutrosophic parameters. A simulation study is conducted to determine whether the estimated 

neutrosophic parameters were achieved. Last but not least, real data has been used to discuss the potential NEIRD 

applications in the real world. The effectiveness of the suggested model in comparison to the existing distributions 

was demonstrated by real data. 

Keywords: Neutrosophic statistics;   exponentiated inverse Rayleigh distribution; survival analysis; 

Indeterminacy. 

1. Introduction 

 

A subfield of statistics known as neutrosophic statistics deals with the use of neutrosophic logic to handle 

uncertainty and incompleteness in data. Fuzzy logic was expanded upon by [1] to create neutrosophy, which 

enables the depiction of uncertainty, ambiguity, and contradiction. Traditional statistics typically assumes that the 

data is clear, which means that each observation is given a specific value. However, data in real-world situations 

sometimes includes ambiguous or insufficient information. In order to overcome these drawbacks, neutrosophic 

statistics offers a paradigm for dealing with ambiguous, insufficient, and inconsistent data [2-4]. 

Three factors are taken into account by neutrosophic statistics: truth-membership, indeterminacy-membership, and 

falsity-membership. The degree of truth, ambiguity, or untruth connected with an observation or a hypothesis is 

represented by each component. Similar to fuzzy sets, membership functions are used to represent these degrees 

[2, 3]. 

Numerous industries, such as decision-making, pattern identification, data mining, and image processing, use 

neutrosophic statistics [4-7]. It offers a versatile mathematical tool for modeling and analyzing complicated 

systems with a high degree of uncertainty and imprecision. 

One of the important applications of neutrosophic data is survival analysis. The survival analysis is a statistical 

technique that examines the length of time until an event happens [8]. Survival analysis is fully depending on the 

probability distributions of the time data. The concept of neutrosophic survival probability distribution blends 
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survival analysis and neutrosophic logic. The survival probability distribution in the context of neutrosophic 

represents the possibility of an event occurring at various points in time. In order to take into consideration, the 

ambiguity and uncertainty in the survival statistics, neutrosophic logic is used. It enables the portrayal of 

incomplete or partial knowledge of events. The available survival statistics must be taken into account, and 

neutrosophic elements must be included to reflect the degrees of truth, falsity, and indeterminacy connected with 

the survival probability at various time points. Neutrosophic logic-specific mathematical models and methods can 

be used for this. Several papers are related to neutrosophic probability distribution [8-20]. 

The exponentiated inverse Rayleigh distribution has applications in various fields, such as survival analysis. In 

this paper, we expanded the uses of the exponentiated inverse Rayleigh distribution when the data is in interval 

form and has some degree of indeterminacy in the form of neutrosophy. With the aid of simulated and real data 

application, a number of properties are examined under the newly proposed distribution and their applications are 

discussed. 

 

2. Neutrosophic exponentiated inverse Rayleigh distribution 

The inverse Rayleigh distribution is extended by the exponentiated inverse Rayleigh distribution by [21]. 

According to [22], the CDF and pdf of the exponentiated inverse Rayleigh distribution (EIRD) is defined as, 

respectively: 
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where   is the scale parameter and   is the shape parameter. 

 The survival and the hazard functions of EIRD are as follows:  
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The concept of neutrosophic probability as a function  
3

:  0,  1NP → was originally presented by [2], where U is 

a neutrosophic sample space and defined the probability mapping to take the form 

( ) ( ) ( ) ( )( ) ( )  ,   ,    ,  ,   NP S ch S ch neut S ch anti S   = =

 0  ,  ,    1  0        3where and        + +  . The term   represents the set of sample space, R

represents the set of real numbers, and  denotes a sample space event, NX and 
NY  denote neutrosophic r.v. 

Furthermore, we demonstrate certain renowned definitions and characteristics of neutrosophic probability and 

logic that will be important in creating this neutrosophic probability model. 

 Definition 1:  

Consider the real-valued crisp r.v. X , which has the following definition:  :    X R→  

where   is the event space and NX  neutrosophic r.v. as follows: 

( )   :   NX R I →  

and 

     NX X I= +  

The term I  represents indeterminacy. 

 Theorem 1: 

 Let the neutrosophic r.v.     NX X I= + and the CDF of X is ( ) ( )     XF x P X x=   [13]. The following 

assertions are correct: 

( ) ( )      ,N XFX x F x I= −  

( ) ( )      ,
NX Xf x f x I= −  

where 
NXF and 

NXf are the CDF and PDF of a neutrosophic r.v. NX , respectively.  
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Theorem 2 : 

Let    NX X I= + , is the neutrosophic r.v., then the expected value and variance can be derived as follows: 

( ) ( )     NE X E X I= + and ( ) ( )   NV X V X=  [13]. 

Suppose the neutrosophic variable could be expressed as: 
N L U Nx x x I= + where  ,N L UI I I  and 

Lx  and 

U Nx I  denote the determined and indeterminate parts, respectively. Assume that the neutrosophic random variable 

 ,N L Ux x x  follows the EIRD having neutrosophic scale parameter  ,N L U    and neutrosophic shape 

parameter  ,N L U   where the letters L and U are the lower values and the upper values, respectively. Then, 

the neutrosophic probability density function (NPDF) of neutrosophic exponentiated inverse Rayleigh distribution 

(NEIRD) is given by 
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Figures 1 shows the NPDF for different values of   and  . The neutrosophic cumulative density function 

(NCDF), the neutrosophic survival, and neutrosophic hazard functions are given below, respectively: 
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Figure 1: (a) The pdf of NEIRD when  1.5,2N   and   2,4N  , (b) The pdf of NEIRD when  1,3N   

and   1.5,2.5N  . 

3. Statistical Properties of NEIRD 

In this section, statistical properties of the NEIRD are covered.   

Moments: The thr moment about origin is given by 

0
( ) ( )r r

r N N N NE x x f x dx


 = =                                                                (9) 

Then, the mean is: 
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Moment Generating Function: 
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4. Parameter Estimation of NEIRD 

Maximum likelihood estimation (MLE) method is mostly used in estimating NEIRD parameters. Let 

1 2, ,...,N N Nnx x x  be random sample of size n drawn from NEIRD distribution, then the MLE can be obtained as 

follows: 
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Equation (16) can be solved by Newton Raphson method to obtain the MLE for N . 

 

5. Simulation results 

A Monte Carlo simulation is run in R software with several sample sizes, 30,50,150,250n =  and neutrosophic 

parameters in two cases: (1)  1,3N   and   1.5,2.5N   and (2)  1.5,2N   and   2, 4N  . The simulation 

is replicated for 1000 times. Performance measures, such as the neutrosophic average of the estimators, the 

neutrosophic average bias (NAB) and neutrosophic Mean Square Error (NMSE) are attained for all values of n . 

The results are given in Tables 1 and 2.  From Tables 1 and 2, It is seen that, as expected, the NAB and NMSE fall 

for both neutrosophic parameters as sample sizes rise. Furthermore, according to the study's findings, the 

neutrosophic MLE for the NEIRD offers accurate estimation with a higher sample size. 

Table 1: Average NAB and NMSE for case 1 

n NAB  NMSE  

 
N  N  N  N  

30 [0.0173, 0.0181] [0.0204, 0.0212] [0.0383, 0.0391] [0.0414, 0.0422] 

50 [0.0123, 0.0132] [0.0154, 0.0162] [0.0331, 0.0342] [0.0364, 0.0372] 

150 [0.0111, 0.0119] [0.0149, 0.0151] [0.0321, 0.0329] [0.0359, 0.0361] 
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250 [0.0054, 0.0067] [0.0075, 0.0088] [0.0264, 0.0278] [0.0283, 0.0298] 

 

Table 2: Average NAB and NMSE for case 2 

n NAB  NMSE  

 
N  

N  
N  

N  

30 [0.0254, 0.0267] [0.0285, 0.0293] [0.0464, 0.0473] [0.0495, 0.0503] 

50 [0.0204, 0.0213] [0.0235, 0.0243] [0.0415, 0.0423] [0.0445, 0.0453] 

150 [0.0192, 0.0201] [0.0232, 0.0235] [0.0402, 0.0415] [0.0338, 0.0312] 

250 [0.0136, 0.0148] [0.0157, 0.0169] [0.0345, 0.0359] [0.0264, 0.0271] 

 

6. Applications 

The carefully crafted data set relates to information on alloy melting points that was obtained from [23] and used 

for the first time by [24]. An alloy is a mixture of material components, containing at least one metal. These alloys 

may possess properties that let them stand out from pure metals, which helps them increase strength or hardness 

while also bringing down the price of the material. Red gold, made of a copper and gold alloy, white gold, made 

of a silver and gold alloy, etc. are a few examples of alloys. Manufacturing engineers involved in the production 

of bimetals frequently take the information on alloy melting points from a distribution with a set of aggregate 

melting values. Because it might be difficult to determine melting points in general, observations are 

indeterministic and can be reported in intervals. For quick reference, the following is a list of the 18 questionable 

data observations of alloy melting points: [563.3, 545.5], [529.4, 511.6], [523.1, 503.5], [470.1, 449.2], [506.7, 

489.0], [495.6, 479.1], [495.3, 467.9], [520.9, 495.6], [496.9, 472.8], [542.9, 519.1], [505.4, 484.0], [550.7, 525.9], 

[517.7, 500.9], [499.2, 483.0], [500.6, 480.0], [516.8, 499.6], [535.0, 515.1], [489.3, 464.4].  

The model adequacy of the proposed NEIRD is compared with the neutrosophic exponential distribution (NED) 

applications for complicated data analysis investigated by [12] and neutrosophic Log-Logistic distribution (NLLD) 

by [17]. The log-likelihood value (LogL), Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), 

and Kolmogorov-Smirnov (KS) test are the criteria selection methods used to determine which model fits the data 

the best. The criteria for the best fitting model are the highest LogL values and the lowest AIC, BIC, and KS 

statistic values. Additionally, a higher p-value suggests that the model that best fits the neutrosophic data. Table 3 

lists the neutrosophic maximum likelihood estimators and model sufficiency metrics. The findings show that the 

NEIRD is more effective than the NED and NLLD for data on alloy melting points. The table's bold values 

demonstrate the effectiveness of the suggested model. 

Table 3: The criteria selection neutrosophic distributions for alloy melting points data 

 NED NLLD NEIRD 

Parameter ]461.958 1[ ,49 .642N =  ]492.696 2[ ,51 .952N =  ]492.696 2[ ,51 .952N =  

  ]36.418 8[ ,  3 .934N =  ]36.418 8[ ,  3 .934N =  

Log [129.6745, 130.392] [82.1435, 82.581] [80.3025, 81.1497] 

AIC [261.349, 262.784] [168.287, 169.162] [156.605, 158.2994] 

BIC [262.239, 263.674] [170.067, 170.943] [154.8234, 156.5187] 

KS-value [0.6156, 0.62181] [0.101, 0.117] [0.124, 0.132] 

KS- p-

value 

[3.032×10-7, 4.289×10-7] [0.942, 0.984] [0.955, 0.987] 

 

 

7. Conclusions 

In this paper, a neutrosophic exponentiated inverse Rayleigh distribution (NEIRD) has been suggested. This 

established distribution is useful for a variety of application data for indeterminacies in survival and dependability. 

The neutrosophic survival function, neutrosophic hazard rate, and neutrosophic moments have all been explored 

as the main statistical characteristics of the evolved NEIRD. For different sample sizes, the neutrosophic MLEs 

have been developed and have shown neutrosophic average bias and MSEs. The simulation study was carried out 

to examine whether the computed neutrosophic parameters were achieved. Simulation results show that the sample 
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size and neutrosophic parametric value are important factors in accurately estimating an unknown parameter. The 

melting point of alloy materials used further supports the use of the NEIRD in neutrosophic instances. 
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