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Abstract

The objective of this paper is to give a good review about the 2-plithogenic algebraic structures. Three kinds of
algebraic structures will be revisited and discussed, symbolic 2-plithogenic rings, symbolic 2-plithogenic vector
spaces, and 2-plithogenic modules.
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1. Introduction
The concept of symbolic n-plithogenic sets was defined by Smarandache. This concept has made a good
generalization of classical algebraic structures. Also, these structures have similar structures of neutrosophic and
n-refined neutrosophic algebraic structures [10-40].
For n=2, we get symbolic 2-plithogenic algebraic structures, where we find symbolic 2-plithogenic equations,
rings, spaces, and modules [1-10].
In this paper, we give the interested reader a good review for three different types of 2-plithogenic algebraic
structures, symbolic 2-plithogenic rings, modules, and vector spaces.
2-plithogenic rings [1]
Definition.
Let R be aring, the symbolic 2-plithogenic ring is defined as follows:
2 —SPg ={ao+ a;P, + a;Py; a; ER, P> = P, Py X Py = Prgy(12) = Po}
Smarandache has defined algebraic operations on 2 — SPy as follows:
Addition:
[ag + a Py + a, P, + [by + by Py, + b, P, = (ag + by) + (a; + by)P; + (a, + by)P;,.
Multiplication:
[ap + a; P, + a,P,].[by + b1 P, + b,P,] = agby + agh, Py + agh,P, + a;byPy% + a,b, Py P, + a,byP, +
a,b,P,P, + a,b,P,% + a,b; P, P, = agby + (agh, + a,by + a;by))Py + (agh, + ab, + ayby + a,b, +
a; by)P;.
Itis clear that (2 — SPg) isaring.
Also, if R is commutative, then 2 — SP; is commutative, and if R has a unity (1), than 2 — SP; has the same
unity (1).
Example.
Consider the ring R = Z, = {0,1,2,3}, the corresponding 2 — SPy is:
2—SPy={a+bP, +cP,;a,b,c €Z,}
IfX =142P, +3P,,Y = P, + 2P,, then:
X4+Y=1+43P,+P,,X—Y=1+P, +P,,X.Y =P, + 2P, + 2P, + 4P, + 3P, + 6P, = 3P, + 3P,.
Definition.
Let Q,, Q4, Q, be ideals of the ring R, we define the symbolic 2-plithogenic AH-ideal as follows:
Q = Qo+ Q1P + QuP, = {xg + x1 P + x,Pp; x; € Qi}.
If Q, = Q; = Q,, then Q is called an AHS-ideal.
Example.
Let R = Z be the ring of integers, then Q, = 2Z,Q, = 3Z,Q, = 5Z are ideals of R.
Q = {2m + 3nP; + 5tP,; m.n.t € Z} is an AHS-ideal of 2 — SP,.
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M = {2m + 2nP, + 2tP,; m.n.t € Z} is an AHS-ideal of 2 — SP,.
Theorem.
Let Q be an AHS- ideal of 2 — SPg, then Q is an ideal by the classical meaning.
Definition.
Let R, T be two rings, 2 — SPg, 2 — SP; are the corresponding symbolic 2-plithogenic rings, let f,, fi, fo: R = T
be three homomorphisms, we define the AH-homomorphism as follows:
f:2—SPgr —» 2 — SP; such that:
fla+bPy +cPy) = fo(a) + fi(b)P; + f(c)P,
If fu = fi = fo, then f is called AHS-homomorphism.
Remark.
If fo, f1, f> is isomorphisms, then f is called AH-isomorphism.
Example.
TakeR =Z,T = Z, fo, f1: R = T such that:
fo(x) = x(mod 6), f;(2) = 3x(mod 6). It is clear that f;, f; are homomorphism.
We define f:2 — SPy —» 2 — SP;, where:
flx +yP, +2zP,) = fo(x) + L(Y)P; + f,(2)P, = x(mod 6) + y(mod 6)P, + (3z mod 6)P,
Which is an AH-homomorphism.
For example. If X = 15 4+ 3P, + 4P,, we get:
f(X) = 15(mod 6) + (3 mod 6)P, + (12 mod 6)P, = 3 + 3P;
Theorem.
Let f = fo + fiP1 + foP,: 2 — SPy —» 2 — SP; be a mapping, then:
1. If f is an AHS-homomorphism, then £ is a ring homomorphism by the classical meaning.
2. If f is an AHS-homomorphism, then it is an isomorphism by the classical meaning.
Definition.
Let f = fo + fiPy + f2P,: 2 — SPg = 2 — SP; be an AH-homomorphism, we define:
1. AH-ker(f) = ker(fy) + ker(fi)P, + ker(f3)P, = {my + my P, + myP,; m; € ker(f;)}.
2. AH-factor 2 — SP, /AH — ker(f) = R/ker(fy) + R/ker(f;) P, + R/ker(f;) P,
If fo = f1 = f5, then we get an AHS- ker(f) and AHS-factor.
Example.
Take R = Z1o, fo: R = T, fo(x) = (x mod 10), ker(f,) = 10Z.
The corresponding AHS-homomorphismis f = f, + fiP; + f,P,: 2 — SP;, = 2 — SPy, such that:
f(xo + x1 Py + x,P,) = fo(x0) + fo(x)Py + fo(x2)P, = (xo mod 10) + (x; mod 10)P; + (x;mod 10)P,
AHS-ker(f) = 10Z + 10ZP, + 10ZP, = {10x + 10yP, + 10zP,; x,y,z € Z}
AHS-factor=Z7Z/10Z + Z/10Z P, + Z/10Z P,
Remark.
AH-ker(f) is an AH-ideal of 2 — SPg, that is because ker(f;), ker(f1), ker(f,) are ideals of R.
Definition.
Let (F, +,.) be a field, then (2 — SPs, +,.) Is called a symbolic 2-plithogenic field.
(2 — SPg, +,.) Is not a field in the algebraic meaning, that is because P,, P, are not invertible, but it is a ring.
Example.
Let F = Q the field of rational numbers, then the corresponding symbolic 2-plithogenic field
2—SPy ={a+bP, +cPy;a,b,c € Q}.
Remark.
The 2 — SPg has only the following AH-ideals:
{0},2 — SP;,FP, + FP,,F + FP,,F + FP,,FP,,FP,,F.
That is because the field F has only two ideals {0} and F.
Example.
Find all AH-ideals in 2 — SP., where C is the complex field.
Solution.
L ={0},L,=C,Ls=C+CP, ={x +yP;;x,y€C}, L, =C+CP, ={x+yP,;x,y € C},Ls =2 —SP,
Lo =CP, +CP, = {xP, + yP,;x,y € C}, L, = CP, = {xP;;x € C},Lg = CP, = {yP,;y € C}.
2-plithogenic vector spaces [2]
Definition.
Let VV be a vector space over the field F, let 2 — SPr be the corresponding symbolic 2-plithogenic field.
2—SP: ={x+yP, +2P,; x,y,z € F,P> = P, PP, = P,P, = P,}.
We define the symbolic 2-plithogenic vector space as follows:
2—-SP,=V+VP,+VP,={a+ bP, +cP,; a,b,c EV}.
Operations on 2 — SP, can be defined as follows:
Addition: (+):2 — SP, - 2 — SPy, such that:
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[xo + x1Py + x5 Po] + [yo + y1 Py + ys2P2] = (xg + ¥0) + (1 + y1)Py + (xz + ¥2) P,
Multiplication: (.):2 — SPr X 2 — SP, —» 2 — SP,, such that:
[a+ bP; + cP,]. [xg + x, P, + x,P,] = axy + (ax; + bxg + bx,)P; + (ax, + bx, + cxy + cxq; + cx,)P,
where x;,y; €V,a,b,c €EF
Theorem.
Let (2 — SPy,,+,.) Isamodule over the ring 2 — SPp.
Example.
Let V = R? be the Euclidean space over the field F = R.
The corresponding symbolic 2-plithogenic vector space over 2 — SPg is:
2 = SPgs = {(x0,¥0,20) + (x1,¥1,20)P1 + (X2,¥2,22) P25 X, i, 2; € R}
Consider X = (1,1,0) + (2,—1,1)P, + (0,1, —1)P, € 2 — SP3,A = 2 + P, + P, € 2 — SPz. We have:
AX =(2,20) + [(4,—2,2) + (1,1,0) + (2,-1,D]P, + [(0,2,2) + (0,1,1) + (1,1,0) + (2,-1,1) + (0,1,1)]P,
=(2,2,0) + (7,-2,3)P, + (3,4,5)P,
Definition.
Let 2 — SP, be a symbolic 2-plithogenic vector space over 2 — SPg, let Vy, V;, V, be the three subspaces of V, we
define the AH-subspace as follows:
W =Vy+ VP, +V,P, ={x +yP, +zP,; x €V,,y €V}, z € V,}
If V, =V, =V,, then W is called an AHS-subspace.
Example.
Consider 2 — SPzs, we have V; = {(a,0,0); a € R},V; ={(0,b,0); b € R}V, ={(0,0,c); c € R} are three
subspaces of V = R3.
W =V, +V,P, +V,P, ={(a,0,0) + (0,b,0)P; + (0,0,c)P,; a,b,c € R} is an AH-subspace of 2 — SPs.
T=V,+V,P, +V;P, ={(0,a,0) + (0,b,0)P; + (0,c,0)P,; a,b,c € R} is an AHS-subspace.
Theorem.
Let 2 — SP, be a symbolic 2-plithogenic vector space over 2 — SPg, let W be an AHS-subspace of 2 — SP,, then
W is a submodule of 2 — SP,.
Definition.
Let V,W be two vector spaces over the field F. Let 2 — SP,, 2 — SP,, be the corresponding symbolic 2-
plithogenic vector spaces over 2 — SPg.
Let Ly, Ly, L,: V — W be three linear transformations, we define the AH-linear transformation as follows:
L:2—SP, » 2 —5SPy,L =Ly+ LiP; + L,P, ; L(x + yP;, + zP,) = Lo(x) + Ly (y)P; + L,(2)P;.
If L, = L, = L,, then L is called AHS-linear transformation.
Definition.
LetL =Ly + LP, +L,P,:2—SP, - 2 — SPy, be an AH-linear transformation, we define:
1. AH — ker(L) = ker(Ly) + ker(L,)P; + ker(L,)P, = {x + yP; + zP,}; x € ker(L,),y €
ker(L,),z € ker(L,).
2. AH —Im(L) = Im(Ly) + Im(L,)P; + Im(L,)P, = {a + bP, + cP,};a € Im(Ly),b € Im(L,),c €
Im(L;)
If L is AHS-linear transformation, then we get AHS — kernel, AHS — Image.
Theorem.
LetL=Ly+ L P, +L,P,:2—SP, - 2 — SPy, be an AH-linear transformation, then:
1. AH — ker(L) is AH-subspace of 2 — SP,,.
2. AH — Im(L) is AH-subspace of 2 — SP,,.
Remark.
If Ly, Ly, L, are isomorphism, then ker(Ly) = ker(L,) = ker(L,) = {0},Im(Ly) = Im(L;) = Im(L,) = W,
thus AH — ker(L) = {0}, AH —Im(L) = 2 — SPy,.
Example.
Take V = R3, W = R3, Ly, Ly, L,: V —> W such that:
LO(x'ylZ) = (x'}’)'lq(x'yfz) = (ZXIZ)JLZ(nylZ) = (x =Y,y - Z)
The corresponding AH-linear transformation is:
L=Ly+LPy +L,Py:2—SPp3s > 2 —SPp2:
L[(x0, Y0, Z0) + (X1, Y1, 20) Py + (X2, Y2, 22) P, ] = Lo(X0, Yo, Z0) + L1 (X1, Y1, 21) Py + Ly (X2, 2, 22) P,
= (x0,¥0) + 2x1, 2Py + (X2 — y2,¥2 — 2) P,
For example, take X = (1,2,1) + (4,3, —5)P; + (1,1,1)P,, then:
LX) =(1,2)+(8,—-5)P, + (0,0)P, = (1,2) + (8,=5)P;.
ker(Ly) = {(0,0,z,); z, € R}
ker(L,) = {(0,¥1,0); ¥, € R}
ker(Ly) = {(x2,x2,x5); x, € R}
AH — ker(L) = {(0,0,2,) + (0,y1,0)Py + (x3, X3, X2)P2; 2o, y1, X2 € R}
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Also,
( Im(Ly) = R?
Im(L,) = R?
Im(L,) = R?
AH — Im(L) = R? + R?*P, + R*P, = 2 — SP,,
Example.

Take W =V = R?, Ly, Ly, L,: V = W such that:
Lo(x,y) = Bx,—2x), L1 (x,y) = (x —¥,2x), Ly (x,y,2) = (x + 2y,y)
The corresponding AH-linear transformationis L = Ly + L,P; + L,P,:2 — SP, - 2 — SPy;
L[(xo,¥0) + (x1, ¥1)Py + (x2,¥2) P,] = Lo(x0, ¥o) + L1 (x1, y1) Py + Ly (x2,¥2) P,
= (Bxg, —2%¢) + (X1 — ¥1,2x1) Py + (3 + 2¥5,¥,)P,
For example X = (1,4) + (2,8)P, + (3,-1)P,
LX) = (1,4) + (2,8)P, + (3,—-1)P,.
ker(Lo) = {(0,¥); ¥o € R}
ker(L,) = {0}
ker(L;) = {0}
AH — ker(L) = {(0,y,) + 0P, + 0P,; y, € R}

Also,
( Im(Ly) = {(a,0); a € R}
{ Im(L,) = R?
Im(L,) = R?
kAH —Im(L) = {(a,0) + (ay, by)P; + (ay, by)P,; a,a,,a,, by, by € R}
Theorem.

Let L=f+fP, +fP,:2—5SP, - 2—5SPy, be an AHS-linear transformation, then L is a module
homomorphism.

2-plithogenic modules [3]

Definition.

Let M be a module over the ring R, let 2 — SP; be the corresponding symbolic 2-plithogenic ring.

2—SPy ={x+yP +2P,; x,y,2 € R,P,*> = P,,P,P, = P,P, = P,}.

We define the symbolic 2-plithogenic module as follows:

2—SPy =M+ MP, + MP, = {a + bP, + cP,; a,b,c € M}.

Operations on 2 — SP,, can be defined as follows:

Addition: (+):2 — SPy; — 2 — SPy, such that:

[xo + %1 Py + x2P] + [yo + y1P1 + ¥s2P2] = (xo + yo) + (X1 + y1) Py + (x2 + y2) P

Multiplication: (.):2 — SPg X 2 — SPy, — 2 — SP,,, such that:

[a+ bP; + cP,].[xg + %, Py + x,P;] = axg + (ax; + bxg + bxy)P; + (ax, + bx, + cxg + cx; + cx,)P,.
where x;,y; € M,a,b,c €ER

Theorem.

Let (2 — SPy, +,.) Isamodule over the ring 2 — SPg.

Example.

Let M = Z3 be the module over the ring R =.

The corresponding symbolic 2-plithogenic vector space over 2 — SP is:

2 =8Pz = {(x0, Y0, 20) + (X1, ¥1,21) Py + (X2, Y2, 22) Po; X, Y1, 2 € Z}

Consider X = (1,1,0) + (2,-1,1)P, + (0,1,-1)P, € 2 —=SP,3,A=2+ P, + P, € 2 — SP,. We have:

A.X =(2,2,0)+ [(4,-2,2) + (1,1,0) + (2,—-1,1)]P, + [(0,2,2) + (0,1,1) + (1,1,0) + (2,-1,1) +
(0,1,1)]P, = (2,2,0) + (7,-2,3)P;, + (3,4,5)P,.

Definition.

Let 2 — SP,, be a symbolic 2-plithogenic module over 2 — SPg, let M, M;, M, be the three sub-modules of V,
we define the AH-submodule as follows:

W =My + M,P, + M,P, = {x + yP, + zP,; x € My,y € My,z € M,}.

If My = M; = M,, then W is called an AHS-sub-module.

Example.

Consider 2 — SP,3, we have M, = {(a,0,0); a € R},M; ={(0,b,0); b € R}, M, ={(0,0,c); c € Z} are three
sub-modules of M = Z3.

W =M+ MP, + M,P, ={(a,0,0)+ (0,b,0)P, + (0,0,c)P,; a,b,c € Z} is an AH-submodule of 2 — SPs.
T=M,+MP, +MP,={(0,a0)+ (0,b,0)P; + (0,c,0)P,; a,b,c € Z} is an AHS-submodule.
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Theorem.
Let 2 — SP,, be a symbolic 2-plithogenic module over 2 — SPg, let W be an AHS-submodule of 2 — SP,,, then
W is a submodule of 2 — SPy,.
Definition.
Let V, W be two modules over the ring R. Let 2 — SP,, 2 — SPy, be the corresponding symbolic 2-plithogenic
modules over 2 — SPg.
Let Ly, Ly, L,:V — W be three homomorphisms, we define the AH-homomorphism as follows:
L:2—SP, » 2 —SPy,L = Lo+ LP, + L,P, ; L(x + yP, + zP,) = Loy(x) + L,(y)P; + L,(2)P,.
If L, = L; = L,, then L is called AHS-homomorphism.
Definition.
LetL =Ly + L P, +L,P,:2—SP, = 2 — SPy, be an AH-homomorphism, we define:
3. AH —ker(L) = ker(Ly) + ker(L,)P; + ker(L,)P, = {x + yP; + zP,}; x € ker(L,),y €
ker(Ly),z € ker(L,).
4. AH —Im(L) = Im(Ly) + Im(L,)P, + Im(L,)P, = {a + bP, + cP,};a € Im(Ly),b € Im(L,),c €
Im(Ly)
If L is AHS-linear homomorphism, then we get AHS — kernel, AHS — Image.
Theorem.
LetL =Ly + L P, +L,P,:2—SP, = 2 — SPy, be an AH-homomorphism, then:
3. AH — ker(L) is AH-submodule of 2 — SP,.
4. AH — Im(L) is AH-submodule of 2 — SPy,.
Remark.
If Ly, Ly, L, are isomorphisms, then ker(Ly) = ker(L,) = ker(L,) = {0},Im(Ly) = Im(Ly) = Im(L,) = W,
thus AH — ker(L) = {0}, AH — Im(L) = 2 — SP,,.
Example.
Take V = Z3, W = Z, Ly, L, L,:V — W such that:
Lo(x,y,2) = (x),L1(x,y,2) = (¥), La(x, y,2) = (2)
The corresponding AH-homomorphism is:
L=1Lo+LP,+L,Py:2—SP,s - 2 —SPy:
L[(x0, Y0, Z0) + (%1, ¥1,21)Py + (X2, ¥2,22)P2] = Lo(x0, Y0, 20) + L1 (%1, 1, 21) Py + Lo (x5, 2, 2) P, = (x0) +
(y1) Py + (22)P;.
For example, take X = (1,9,8) + (9,10, —-9)P; + (3,2,1)P,, then:
L(X) =1+ (10)P, + P,.
ker(Lo) = {(0,¥0,20); Yo, 20 € Z}
ker(L;) = {(x1,0,2,); x1,2, € Z}
ker(Ly) = {(x2,y2,0); x3, ¥, € Z}
A‘|4H - ker(L) = {(0' J’o,Zo) + (xll 0: Zl)Pl + (.X'z, Y2, O)PZ; Yo, Zo, X1,21, X2, Y2 € Z}
S0,

Im(Ly) =2
m(Ly) =Z
m(L,) =Z

AH —Im(L)=Z + ZP, + ZP, = 2 — SP,,

Theorem.
LetL=f+fP, + fP,:2—SP, - 2 — SPy, be an AHS-homomorphism, then L is a module homomorphism.
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