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Abstract 

In this paper, we delivered pioneering notions of closed sets in the neutrosophic crisp sense. In other words, we 

discussed 𝑠𝑔-closed sets, 𝑔𝑠-closed sets, and 𝑔𝑠𝑔-closed sets in neutrosophic crisp topological space. Moreover, the 

subsequent innovative ideas are established, for instance, 𝑔𝑠𝑔-closure and 𝑔𝑠𝑔-interior in neutrosophic crisp 

topological space, and obtaining numerous of their highlights. Besides, we submitted different kinds of neutrosophic 

crisp continuous functions and their associations. 
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1. Introduction 

The notion of neutrosophic crisp for topological space was stated by A. A. Salama et al. [1] and symbolized merely 

𝑁𝑒𝑢𝐶𝑇𝑆. Next, the various types of crisp nearly open sets were submitted by A. A. Salama et al. [2]. Moreover, the 

extension of semi-𝛼-closed sets in neutrosophic crisp topological space was presented by R. K. Al-Hamido et al. [3]. 

Furthermore, the different perceptions of weak forms of open and closed functions in the sense of neutrosophic crisp 

topological space were displayed by A. H. M. Al-Obaidi et al. [4,5]. Additionally, in neutrosophic topological space, 

the viewpoint of generalized homeomorphism was represented by Md. Hanif Page et al. [6]. Besides, the weak types 

of continuity in the sense of neutrosophic crisp topological space were offered by Q. H. Imran et al. [7,8]. Likewise, 

the intellect of neutrosophic homeomorphism and neutrosophic 𝛼𝜓-homeomorphism were raised by M. Parimala et 

al. [9]. Subsequent, they set up the thought of neutrosophic 𝛼𝜓∗-homeomorphism, neutrosophic 𝛼𝜓-open and closed 

mapping and neutrosophic 𝑇𝛼𝜓-space. Consequently, the maps with features 𝛼𝑔𝑠-continuity and 𝛼𝑔𝑠-irresolute in 

neutrosophic topological space were inserted by V. Banu Priya et al. [10]. Finally, in neutrosophic topological space, 

the senses of 𝛼-generalized semi-closed and 𝛼-generalized semi-open sets were informed by V. Banu Priya et al. 

[11]. This article seeks to ascertain the neutrosophic crisp topological space perception for 𝑠𝑔-closed, 𝑔𝑠-closed, and 

𝑔𝑠𝑔-closed sets and analysis of their essential components. Besides, we detect neutrosophic crisp 𝑔𝑠𝑔-closure and 

neutrosophic crisp 𝑔𝑠𝑔-interior sets and accomplish certain of their attributes. Likewise, we give different classes of 

neutrosophic crisp continuous functions and their interactions. 
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2. Preliminaries   

All through this work, (𝒜, 𝒯), (ℬ, ℒ) and (𝒞, ℐ) (or simply 𝒜, ℬ and 𝒞, respectively) frequently imply 𝑁𝑒𝑢𝐶𝑇𝑆𝑠. For 

any neutrosophic crisp set 𝒰 in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), its closure is signified by 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰), its interior is signified by 

𝑁𝑒𝑢𝐶𝑖𝑛𝑡(𝒰), and its complement is signified by 𝒰 = 𝒜𝑁𝑒𝑢 − 𝒰, correspondingly. 

 

Definition 2.1: [1]  

Let 𝒜 be a non-empty particular fixed space, and let 𝒰1, 𝒰2, 𝒰3 be subsets of 𝒜 with the mutually exclusive 

property. An object is a neutrosophic crisp set (or merely 𝑁𝑒𝑢𝐶-set) 𝒰 with type 𝒰 = 〈𝒰1, 𝒰2, 𝒰3〉. 
 

Definition 2.2: [1]  

A collection 𝒯 of 𝑁𝑒𝑢𝐶-sets in a non-empty particular fixed space 𝒜 is called a neutrosophic crisp topology (in 

short, 𝑁𝑒𝑢𝐶𝑇) on 𝒜 satisfying the following conditions below:   

(i) 𝜑𝑁𝑒𝑢 , 𝒜𝑁𝑒𝑢 ∈ 𝒯,  

(ii) 𝒰1⋂𝒰2 ∈ 𝒯 where 𝒰1, 𝒰2 ∈ 𝒯,  

(iii) ⋃𝒰𝑘 ∈ 𝒯 for all collections {𝒰𝑘|𝑘 ∈ 𝛥} ⊆ 𝒯. 

In this circumstance, the name of the ordered pair (𝒜, 𝒯) is 𝑁𝑒𝑢𝐶𝑇𝑆 and every 𝑁𝑒𝑢𝐶-set in 𝒯 is titled as 

neutrosophic crisp open set (fleetly, 𝑁𝑒𝑢𝐶OS). The complement 𝒰 of a 𝑁𝑒𝑢𝐶OS 𝒰 in 𝒜 is established as 

neutrosophic crisp closed set (fleetly, 𝑁𝑒𝑢𝐶CS) in 𝒜. 

 

Definition 2.3: [2] 

A 𝑁𝑒𝑢𝐶-subset 𝒰 of a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) is known to be a neutrosophic crisp semi-open set (shortly, 𝑁𝑒𝑢𝐶𝑠OS) if 𝒰 ⊆
𝑁𝑒𝑢𝐶𝑐𝑙(𝑁𝑒𝑢𝐶𝑖𝑛𝑡(𝒰)) and a neutrosophic crisp semi-closed set (shortly, 𝑁𝑒𝑢𝐶𝑠CS) if 𝑁𝑒𝑢𝐶𝑖𝑛𝑡(𝑁𝑒𝑢𝐶𝑐𝑙(𝒰)) ⊆ 𝒰. 

The neutrosophic crisp semi-closure of 𝒰 of a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) is the intersecting of the all 𝑁𝑒𝑢𝐶𝑠 CSs that involve 𝒰 

and it is signified by 𝑁𝑒𝑢𝐶𝑠𝑐𝑙(𝒰). 

 

Definition 2.4: [12]  

Suppose 𝑁𝑒𝑢𝐶-subset 𝒰 and 𝑁𝑒𝑢𝐶OS ℳ are in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) such that 𝒰 ⊆ ℳ then 𝒰 is so-called a 

neutrosophic crisp generalized closed set (in brief, 𝑁𝑒𝑢𝐶𝑔CS) if 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℳ and the complement of a 

𝑁𝑒𝑢𝐶𝑔CS is a 𝑁𝑒𝑢𝐶𝑔-open set (in brief, 𝑁𝑒𝑢𝐶𝑔OS)in (𝒜, 𝒯). 

 

Remark 2.5: [2,12] 

In a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), then the succeeding declarations grip and the reverse of each declaration is not suitable: 

(i) To all 𝑁𝑒𝑢𝐶OS (corr. 𝑁𝑒𝑢𝐶CS) are 𝑁𝑒𝑢𝐶𝑠OS (corr. 𝑁𝑒𝑢𝐶𝑠CS). 

(ii) To all 𝑁𝑒𝑢𝐶OS (corr. 𝑁𝑒𝑢𝐶CS) are 𝑁𝑒𝑢𝐶𝑔OS (corr. 𝑁𝑒𝑢𝐶𝑔CS). 

 

Definition 2.6: [1] 

A function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) is understood to be neutrosophic crisp continuous (in short, 𝑁𝑒𝑢𝐶-continuous) if 

𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶CS (𝑁𝑒𝑢𝐶OS) in (𝒜, 𝒯) for every 𝑁𝑒𝑢𝐶CS (𝑁𝑒𝑢𝐶OS) 𝒰 in (ℬ, ℒ). 

 

Definition 2.7: [2] 

A function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) is understood to be neutrosophic crisp semi-continuous (in short, 𝑁𝑒𝑢𝐶𝑠-

continuous) if 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑠CS (𝑁𝑒𝑢𝐶𝑠OS) in (𝒜, 𝒯) for every 𝑁𝑒𝑢𝐶CS (𝑁𝑒𝑢𝐶OS) 𝒰 in (ℬ, ℒ). 

 

Remark 2.8: [2] 

To all 𝑁𝑒𝑢𝐶-continuous are a 𝑁𝑒𝑢𝐶𝑠-continuous; however, the reverse does not reasonable in common. 

 

3. Neutrosophic Crisp 𝒈𝒔𝒈-Closed Sets 

In this circumstance, we pioneer and investigate the neutrosophic crisp 𝑔𝑠𝑔-closed sets with several of their 

features.  
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Definition 3.1:  

A 𝑁𝑒𝑢𝐶-subset 𝒰 of 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) is told to be:  

(i) a neutrosophic crisp 𝑠𝑔-closed set (shortly, 𝑁𝑒𝑢𝐶𝑠𝑔CS) if 𝑁𝑒𝑢𝐶𝑠𝑐𝑙(𝒰) ⊆ ℳ whenever 𝒰 ⊆ ℳ and ℳ is a 

𝑁𝑒𝑢𝐶𝑠OS in (𝒜, 𝒯). For each 𝑁𝑒𝑢𝐶𝑠𝑔CS, its complement is a 𝑁𝑒𝑢𝐶𝑠𝑔-open set (in brief, 𝑁𝑒𝑢𝐶𝑠𝑔OS) in (𝒜, 𝒯). 

(ii) a neutrosophic crisp 𝑔𝑠-closed set (shortly, 𝑁𝑒𝑢𝐶𝑔𝑠CS) if 𝑁𝑒𝑢𝐶𝑠𝑐𝑙(𝒰) ⊆ ℳ whenever 𝒰 ⊆ ℳ and ℳ is a 

𝑁𝑒𝑢𝐶OS in (𝒜, 𝒯). For each 𝑁𝑒𝑢𝐶𝑔𝑠CS, its complement is a 𝑁𝑒𝑢𝐶𝑔𝑠-open set (in brief, 𝑁𝑒𝑢𝐶𝑔𝑠OS)in (𝒜, 𝒯). 

 

Definition 3.2:  

A 𝑁𝑒𝑢𝐶-subset 𝒰 of a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) is named to be a neutrosophic crisp 𝑔𝑠𝑔-closed set (in short, 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS) if 

𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℳ whenever 𝒰 ⊆ ℳ and ℳ is a 𝑁𝑒𝑢𝐶𝑠𝑔OS in (𝒜, 𝒯). The collection of all 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CSs of a 

𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) is symbolized by 𝑁𝑒𝑢𝐶𝑔𝑠𝑔C(𝒜). 

 

Proposition 3.3:  

In a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), the following declarations are reasonable: 

(i) To all 𝑁𝑒𝑢𝐶𝑔CS are 𝑁𝑒𝑢𝐶𝑔𝑠CS. 

(ii) To all 𝑁𝑒𝑢𝐶𝑠CS are 𝑁𝑒𝑢𝐶𝑠𝑔CS. 

(iii) To all 𝑁𝑒𝑢𝐶𝑠𝑔CS are 𝑁𝑒𝑢𝐶𝑔𝑠CS. 

Proof:  

(i) Suppose 𝑁𝑒𝑢𝐶𝑔CS 𝒰 is in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯). Then 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℳ whenever 𝒰 ⊆ ℳ and ℳ is a 𝑁𝑒𝑢𝐶OS in 

𝒜. But 𝑁𝑒𝑢𝐶𝑠𝑐𝑙(𝒰) ⊆ 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) whenever 𝒰 ⊆ ℳ, ℳ is a 𝑁𝑒𝑢𝐶OS in 𝒜. Now we have 𝑁𝑒𝑢𝐶𝑠𝑐𝑙(𝒰) ⊆ ℳ, 

𝒰 ⊆ ℳ, ℳ is a 𝑁𝑒𝑢𝐶OS in 𝒜. Therefore 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠CS. The proof is evident for others. ▪ 

The reverse of the exceeding result need not be valid, as seen in the subsequent instances. 

 

Example 3.4:  

Suppose 𝒜 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}. Let 𝒯 = {𝜑𝑁𝑒𝑢 , 〈{𝑣1}, 𝜑, 𝜑〉, 〈{𝑣2, 𝑣4}, 𝜑, 𝜑〉, 〈{𝑣1, 𝑣2, 𝑣4}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} be a 𝑁𝑒𝑢𝐶𝑇  on 

𝒜. Then 〈{𝑣2, 𝑣4}, 𝜑, 𝜑〉 is a 𝑁𝑒𝑢𝐶𝑔𝑠CS, just not 𝑁𝑒𝑢𝐶𝑔CS. 

 

Example 3.5:  

In example (3.4), then 〈{𝑣3, 𝑣4}, 𝜑, 𝜑〉 is a 𝑁𝑒𝑢𝐶𝑠𝑔CS, just not 𝑁𝑒𝑢𝐶𝑠CS. 

 

Example 3.6:  

Suppose 𝒜 = {𝑣1, 𝑣2, 𝑣3}. Let 𝒯 = {𝜑𝑁𝑒𝑢 , 〈{𝑣1}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} be a 𝑁𝑒𝑢𝐶𝑇  on 𝒜. Then 〈{𝑣1, 𝑣3}, 𝜑, 𝜑〉 is a 

𝑁𝑒𝑢𝐶𝑔𝑠CS, just not 𝑁𝑒𝑢𝐶𝑠𝑔CS. 

 

Proposition 3.7:  

In a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), the following declarations are reasonable: 

(i) Each 𝑁𝑒𝑢𝐶CS is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. 

(ii) Each 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS is a 𝑁𝑒𝑢𝐶𝑔CS. 

Proof:  

(i) Suppose that 𝒰 is a 𝑁𝑒𝑢𝐶CS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) and consider ℳ is a 𝑁𝑒𝑢𝐶𝑠𝑔OS in 𝒜 wherever 𝒰 ⊆ ℳ. Then 

𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) = 𝒰 ⊆ ℳ. Therefore 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. 

(ii) Let 𝒰 be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) and let ℳ be a 𝑁𝑒𝑢𝐶OS in 𝒜 such that 𝒰 ⊆ ℳ. Since every 

𝑁𝑒𝑢𝐶OS is a 𝑁𝑒𝑢𝐶𝑠𝑔OS, we have 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℳ. Therefore 𝒰 is a 𝑁𝑒𝑢𝐶𝑔CS. ▪ 

As seen in the subsequent examples, the reverse of the above proposition need not be accurate. 

 

Example 3.8:  

Suppose 𝒜 = {𝓈1, 𝓈2, 𝓈3, 𝓈4}. Let 𝒯 = {𝜑𝑁𝑒𝑢 , 〈{𝓈1}, 𝜑, 𝜑〉, 〈{𝓈2, 𝓈3}, 𝜑, 𝜑〉, 〈{𝓈1, 𝓈2, 𝓈3}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} be a 𝑁𝑒𝑢𝐶𝑇  on 

𝒜. Then 〈{𝓈2, 𝓈3}, 𝜑, 𝜑〉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS, just not 𝑁𝑒𝑢𝐶CS. 
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Example 3.9:  

Suppose 𝒜 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}.  

Let 𝒯 = {𝜑𝑁𝑒𝑢 , 〈{𝑣4}, 𝜑, 𝜑〉, 〈{𝑣1, 𝑣2}, 𝜑, 𝜑〉, 〈{𝑣1, 𝑣2, 𝑣4}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} be a 𝑁𝑒𝑢𝐶𝑇  on 𝒜. Then 〈{𝑣1, 𝑣3, 𝑣4}, 𝜑, 𝜑〉 is 

a 𝑁𝑒𝑢𝐶𝑔CS, just not 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. 

 

Proposition 3.10:  

In a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), the following declarations are reasonable: 

(i) Each 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS is a 𝑁𝑒𝑢𝐶𝑠𝑔CS. 

(ii) Each 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS is a 𝑁𝑒𝑢𝐶𝑔𝑠CS. 

Proof:  

(i) Consider that 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) and postulate that ℳ is a 𝑁𝑒𝑢𝐶𝑠OS in 𝒜 wherever 𝒰 ⊆ ℳ. 

Since every 𝑁𝑒𝑢𝐶𝑠OS is a 𝑁𝑒𝑢𝐶𝑠𝑔OS, we have 𝑁𝑒𝑢𝐶𝑠𝑐𝑙(𝒰) ⊆ 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℳ implies 𝑁𝑒𝑢𝐶𝑠𝑐𝑙(𝒰) ⊆ ℳ. 

Therefore 𝒰 is a 𝑁𝑒𝑢𝐶𝑠𝑔CS. 

(ii) Let 𝒰 be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) and let ℳ be a 𝑁𝑒𝑢𝐶OS in 𝒜 such that 𝒰 ⊆ ℳ.Since every 

𝑁𝑒𝑢𝐶OS is a 𝑁𝑒𝑢𝐶𝑠𝑔OS, we have 𝑁𝑒𝑢𝐶𝑠𝑐𝑙(𝒰) ⊆ 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℳ implies 𝑁𝑒𝑢𝐶𝑠𝑐𝑙(𝒰) ⊆ ℳ. Therefore 𝒰 is a 

𝑁𝑒𝑢𝐶𝑔𝑠CS. ▪ 

The reverse of the above proposition need not be accurate, as shown in the subsequent instance. 

 

Example 3.11: 

Suppose 𝒜 = {𝓈1, 𝓈2, 𝓈3, 𝓈4}. Let 𝒯 = {𝜑𝑁𝑒𝑢 , 〈{𝓈1}, 𝜑, 𝜑〉, 〈{𝓈2, 𝓈4}, 𝜑, 𝜑〉, 〈{𝓈1, 𝓈2, 𝓈4}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} be a 𝑁𝑒𝑢𝐶𝑇  on 

𝒜. Then 〈{𝓈1}, 𝜑, 𝜑〉 is a 𝑁𝑒𝑢𝐶𝑠𝑔CS and hence 𝑁𝑒𝑢𝐶𝑔𝑠CS, just not 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. 

 

Remark 3.12:  

The 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS and 𝑁𝑒𝑢𝐶𝑠CS are independent. 

 

Definition 3.13:  

A 𝑁𝑒𝑢𝐶-subset 𝒰 of a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) is stated as a neutrosophic crisp 𝑔𝑠𝑔-open set (shorty 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS) iff 

𝒜𝑁𝑒𝑢 − 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. The collection of all 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OSs of a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) is symbolized by 𝑁𝑒𝑢𝐶𝑔𝑠𝑔O(𝒜). 

 

Proposition 3.14:  

Suppose that 𝑁𝑒𝑢𝐶OS 𝒰 is in 𝑁𝑒𝑢𝐶𝑇𝑆(𝒜, 𝒯), then this set stands as a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS in that topological space. 

Proof:  

Assume that a 𝑁𝑒𝑢𝐶OS 𝒰 is in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), so therefore 𝒜𝑁𝑒𝑢 − 𝒰 stands as a 𝑁𝑒𝑢𝐶CS in (𝒜, 𝒯). By 

employing proposition (3.7) portion (i), 𝒜𝑁𝑒𝑢 − 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. Thus, 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS in (𝒜, 𝒯).▪ 

 

Proposition 3.15:  

Suppose that 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS 𝒰 is in 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), then this set is a 𝑁𝑒𝑢𝐶𝑔OS in that topological space. 

Proof:  

Let 𝒰 be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), then 𝒜𝑁𝑒𝑢 − 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (𝒜, 𝒯). By employing proposition 

(3.7) portion (ii), 𝒜𝑁𝑒𝑢 − 𝒰 is a 𝑁𝑒𝑢𝐶𝑔CS. Thus, 𝒰 is a 𝑁𝑒𝑢𝐶𝑔OS in (𝒜, 𝒯). ▪ 

 

Proposition 3.16:  

In a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), the subsequent declarations are reasonable: 

(i) To all 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS are 𝑁𝑒𝑢𝐶𝑠𝑔OS. 

(ii) To all 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS are 𝑁𝑒𝑢𝐶𝑔𝑠OS. 

Proof:  

Similar to the exceeding result. ▪ 

 

Theorem 3.17:  

Suppose that 𝒰 and 𝒱 are 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CSs in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), then 𝒰⋃𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. 

 

https://doi.org/10.54216/IJNS.200408


International Journal of Neutrosophic Science (IJNS)                                              Vol. 20, No. 04, PP. 106-118, 2023 

 
 
Doi : https://doi.org/10.54216/IJNS.200408   
Received: December 19, 2022    Accepted: March 09, 2023 

 

 110 

Proof:  

Assume that 𝒰 and 𝒱 be two 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CSs in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) and assume that ℳ be any 𝑁𝑒𝑢𝐶𝑠𝑔OS in 𝒜 where 

𝒰 ⊆ ℳ and 𝒱 ⊆ ℳ. Therefore, we get 𝒰⋃𝒱 ⊆ ℳ. Later 𝒰 and 𝒱 are 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CSs in 𝒜, 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℳ and 

𝑁𝑒𝑢𝐶𝑐𝑙(𝒱) ⊆ ℳ. Now, 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰⋃𝒱) = 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰)⋃𝑁𝑒𝑢𝐶𝑐𝑙(𝒱) ⊆ ℳ and so 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰⋃𝒱) ⊆ ℳ. Hence 

𝒰⋃𝒱 stands in 𝒜 as a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. ▪ 

 

Proposition 3.18:  

Assume 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS 𝒰 is in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), then 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) − 𝒰 contains no non-empty 𝑁𝑒𝑢𝐶CS in (𝒜, 𝒯). 

Proof:  

Postulate that 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) and let ℱ be any 𝑁𝑒𝑢𝐶CS in (𝒜, 𝒯) where ℱ ⊆ 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) −

𝒰. Since 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS, we have 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ 𝒜𝑁𝑒𝑢 − ℱ. This implies ℱ ⊆ 𝒜𝑁𝑒𝑢 − 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰). Then ℱ ⊆

𝑁𝑒𝑢𝐶𝑐𝑙(𝒰)⋂(𝒜𝑁𝑒𝑢 − 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰)) = 𝜑𝑁𝑒𝑢. Thus, ℱ = 𝜑𝑁𝑒𝑢 . Hence 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) − 𝒰 involves no non-null 

𝑁𝑒𝑢𝐶CS in (𝒜, 𝒯). ▪ 

 

Proposition 3.19:  

A 𝑁𝑒𝑢𝐶-set 𝒰 is 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) iff 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) − 𝒰 contains no non-empty 𝑁𝑒𝑢𝐶𝑠𝑔CS in (𝒜, 𝒯). 

Proof:  

Postulate that 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) and let 𝒦 be any 𝑁𝑒𝑢𝐶𝑠𝑔CS in (𝒜, 𝒯) where 𝒦 ⊆

𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) − 𝒰. Meanwhile, 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS, we have 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ 𝒜𝑁𝑒𝑢 − 𝒦. This implies 𝒦 ⊆ 𝒜𝑁𝑒𝑢 −

𝑁𝑒𝑢𝐶𝑐𝑙(𝒰). Then 𝒦 ⊆ 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰)⋂(𝒜𝑁𝑒𝑢 − 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰)) = 𝜑𝑁𝑒𝑢. Thus, 𝒦 is null. 

In contrast, suppose that 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) − 𝒰 involves no non-null 𝑁𝑒𝑢𝐶𝑠𝑔CS in (𝒜, 𝒯). Let 𝒰 ⊆ ℳ and ℳ is 

𝑁𝑒𝑢𝐶𝑠𝑔OS. If 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℳ then 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰)⋂(𝒜𝑁𝑒𝑢 − ℳ) is non-empty. Because 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) is 𝑁𝑒𝑢𝐶CS and 

𝒜𝑁𝑒𝑢 − ℳ is 𝑁𝑒𝑢𝐶𝑠𝑔CS, we have 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰)⋂(𝒜𝑁𝑒𝑢 − ℳ) is non-empty 𝑁𝑒𝑢𝐶𝑠𝑔CS of 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) − 𝒰, which is 

a contradiction. Therefore 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊈ ℳ. Hence 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. ▪ 

 

Theorem 3.20:  

If 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) where 𝒰 ⊆ 𝒱 ⊆ 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰), then 𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (𝒜, 𝒯). 

Proof:  

Postulate that 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯). Postulate ℳ be a 𝑁𝑒𝑢𝐶𝑠𝑔OS in (𝒜, 𝒯) such that 𝒱 ⊆ ℳ. 

Then 𝒰 ⊆ ℳ and because 𝒰 stands as a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS, it follows that 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℳ. Now, 𝒱 ⊆ 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) 

implies 𝑁𝑒𝑢𝐶𝑐𝑙(𝒱) ⊆ 𝑁𝑒𝑢𝐶𝑐𝑙(𝑁𝑒𝑢𝐶𝑐𝑙(𝒰)) = 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰). Thus, 𝑁𝑒𝑢𝐶𝑐𝑙(𝒱) ⊆ ℳ. Hence 𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. ▪ 

 

Proposition 3.21:  

Let 𝒰 ⊆ ℬ ⊆ 𝒜 and if 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in 𝒜, then 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS relative to ℬ. 

Proof: 

𝒰 ⊆ ℬ⋂ℳ everywhere ℳ is a 𝑁𝑒𝑢𝐶𝑠𝑔OS in 𝒜. So therefore 𝒰 ⊆ ℳ and consequently 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℳ. It 

indicates that ℬ⋂𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ ℬ⋂ℳ. Thus 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS analogous to ℬ. ▪ 

 

Proposition 3.22:  

Assume that 𝒰 is a 𝑁𝑒𝑢𝐶𝑠𝑔OS and a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), then 𝒰 is a 𝑁𝑒𝑢𝐶CS in (𝒜, 𝒯). 

Proof:  

Consider 𝒰 is a 𝑁𝑒𝑢𝐶𝑠𝑔OS and a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), so therefore 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) ⊆ 𝒰 and since 𝒰 ⊆

𝑁𝑒𝑢𝐶𝑐𝑙(𝒰). Thus, 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) = 𝒰. For this reason, 𝒰 is a 𝑁𝑒𝑢𝐶CS. ▪ 

 

Theorem 3.23:  

If 𝒰 and 𝒱 are 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OSs in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), then 𝒰⋂𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS. 

Proof:  

Let 𝒰 and 𝒱 be 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OSs in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯). Then 𝒜𝑁𝑒𝑢 − 𝒰 and 𝒜𝑁𝑒𝑢 − 𝒱 are 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CSs. By theorem 

(3.17), (𝒜𝑁𝑒𝑢 − 𝒰)⋃(𝒜𝑁𝑒𝑢 − 𝒱) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. Since (𝒜𝑁𝑒𝑢 − 𝒰)⋃(𝒜𝑁𝑒𝑢 − 𝒱) = 𝒜𝑁𝑒𝑢 − (𝒰⋂𝒱). For this 

reason, 𝒰⋂𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS. ▪ 
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Theorem 3.24:  

A 𝑁𝑒𝑢𝐶-set 𝒰 is 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS iff 𝒲 ⊆ 𝑁𝑒𝑢𝐶𝑖𝑛𝑡(𝒰) where 𝒲 ⊆ 𝒰 besides 𝒲 stands as a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. 

Proof:  

Suppose that 𝒲 ⊆ 𝑁𝑒𝑢𝐶𝑖𝑛𝑡(𝒰) where 𝒲 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS and 𝒲 ⊆ 𝒰. Then 𝒜𝑁𝑒𝑢 − 𝒰 ⊆ 𝒜𝑁𝑒𝑢 − 𝒲 and 

𝒜𝑁𝑒𝑢 − 𝒲 is a 𝑁𝑒𝑢𝐶𝑠𝑔OS by proposition (3.16). Now, 𝑁𝑒𝑢𝐶𝑐𝑙(𝒜𝑁𝑒𝑢 − 𝒰) = 𝒜𝑁𝑒𝑢 − 𝑁𝑒𝑢𝐶𝑖𝑛𝑡(𝒰) ⊆ 𝒜𝑁𝑒𝑢 − 𝒲. 

Then 𝒜𝑁𝑒𝑢 − 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. Hence 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS. 

Conversely, let 𝒰 be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS and 𝒲 be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS and 𝒲 ⊆ 𝒰. Then 𝒜𝑁𝑒𝑢 − 𝒰 ⊆ 𝒜𝑁𝑒𝑢 − 𝒲. Since 

𝒜𝑁𝑒𝑢 − 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS and 𝒜𝑁𝑒𝑢 − 𝒲 is a 𝑁𝑒𝑢𝐶𝑠𝑔OS, we have 𝑁𝑒𝑢𝐶𝑐𝑙(𝒜𝑁𝑒𝑢 − 𝒰) ⊆ 𝒜𝑁𝑒𝑢 − 𝒲. Then 𝒲 ⊆

𝑁𝑒𝑢𝐶𝑖𝑛𝑡(𝒰). ▪ 

 

Theorem 3.25:  

If 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) and 𝑁𝑒𝑢𝐶𝑖𝑛𝑡(𝒰) ⊆ 𝒱 ⊆ 𝒰, then 𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS in (𝒜, 𝒯). 

Proof:  

Consider 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) and 𝑁𝑒𝑢𝐶𝑖𝑛𝑡(𝒰) ⊆ 𝒱 ⊆ 𝒰. Then 𝒜𝑁𝑒𝑢 − 𝒰 remains a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS 

such that 𝒜𝑁𝑒𝑢 − 𝒰 ⊆ 𝒜𝑁𝑒𝑢 − 𝒱 ⊆ 𝑁𝑒𝑢𝐶𝑐𝑙(𝒜𝑁𝑒𝑢 − 𝒰). Then 𝒜𝑁𝑒𝑢 − 𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS by theorem (3.20). 

Hence, 𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS. ▪ 

 

Theorem 3.26:  

For a 𝑁𝑒𝑢𝐶-set 𝒰 of a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯), afterwards, the subsequent assertions are the duplicate:  

(i) 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. 

(ii) 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) − 𝒰 includes no non-null 𝑁𝑒𝑢𝐶𝑠𝑔OS. 

(iii) 𝑁𝑒𝑢𝐶𝑐𝑙(𝒰) − 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS. 

 

Proof:  

Observe by employing proposition (3.19) and proposition (3.21). ▪ 

 

Remark 3.27:  

The succeeding chart covers up the comparison involving the numerous kinds of 𝑁𝑒𝑢𝐶CSs: 

 

 

 

 

 

 

 

 

 

4. Neutrosophic Crisp 𝒈𝒔𝒈-Closure and Neutrosophic Crisp 𝒈𝒔𝒈-Interior 

We represent 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-closure and 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-interior and attain various of their advantages in the current part. 

 

Definition 4.1:  

The crossing of all 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CSs in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) involving 𝒰 is titled 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-closure of 𝒰 and is denoted by 

𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰), 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) = ⋂{𝒱: 𝒰 ⊆ 𝒱, 𝒱 stands as a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS}. 
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Definition 4.2:  

The coalition of all 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OSs in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) contained in 𝒰 is titled 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-interior of 𝒰 and is denoted 

by 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡(𝒰), 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡(𝒰) = ⋃{𝒱: 𝒰 ⊇ 𝒱, 𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS}. 

 

Proposition 4.3:  

Assume that 𝒰 is any 𝑁𝑒𝑢𝐶-set in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯). Next, the subsequent features stand: 

(i) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡(𝒰) = 𝒰 iff 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS. 

(ii) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) = 𝒰 iff 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. 

(iii) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡(𝒰) is the massive 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS included in 𝒰. 

(iv) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) is the minimum 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS, including 𝒰. 

Proof:  

The evidence of the points above is apparent. ▪ 

 

Proposition 4.4:  

Suppose that 𝒰 be any 𝑁𝑒𝑢𝐶-set in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯). So therefore, the subsequent features determined:  

(i) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡(𝒜𝑁𝑒𝑢 − 𝒰) = 𝒜𝑁𝑒𝑢 − (𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)), 

(ii) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒜𝑁𝑒𝑢 − 𝒰) = 𝒜𝑁𝑒𝑢 − (𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡(𝒰)). 

Proof:  

(i) By definition, 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) = ⋂{𝒱: 𝒰 ⊆ 𝒱, 𝒱 stands as a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS} 

 𝒜𝑁𝑒𝑢 − (𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)) = 𝒜𝑁𝑒𝑢 − ⋂{𝒱: 𝒰 ⊆ 𝒱, 𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS} 

                                  = ⋃{𝒜𝑁𝑒𝑢 − 𝒱: 𝒰 ⊆ 𝒱, 𝒱 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS} 

                                  = ⋃{ℳ: 𝒜𝑁𝑒𝑢 − 𝒰 ⊇ ℳ, ℳ is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS} 

                                  = 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡(𝒜𝑁𝑒𝑢 − 𝒰). 

(ii) The facts is comparable to (i). ▪ 

 

Theorem 4.5:  

Assume that 𝒰 and 𝒱 are two 𝑁𝑒𝑢𝐶-sets in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯). Next, the subsequent features stand: 

(i) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝜑𝑁𝑒𝑢) = 𝜑𝑁𝑒𝑢, 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒜𝑁𝑒𝑢) = 𝒜𝑁𝑒𝑢. 

(ii) 𝒰 ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰). 

(iii) 𝒰 ⊆ 𝒱 ⟹ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱). 

(iv) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋂𝒱) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)⋂𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱). 

(v) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋃𝒱) = 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)⋃𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱). 

(vi) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)) = 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰). 

Proof:  

The first two points are recognizable. 

(iii) By applying portion (ii), 𝒱 ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱). While 𝒰 ⊆ 𝒱, we get 𝒰 ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱). However, 

𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. In consequence, 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS including 𝒰. While 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) 

is the minimum 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS including 𝒰, we have 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱). 

(iv) We know that 𝒰⋂𝒱 ⊆ 𝒰 and 𝒰⋂𝒱 ⊆ 𝒱. Therefore, by part (iii), 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋂𝒱) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) and also 

we have  𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋂𝒱) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱). Hence 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋂𝒱) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)⋂𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱). 

(v) Since 𝒰 ⊆ 𝒰⋃𝒱 and 𝒱 ⊆ 𝒰⋃𝒱, it results from part (iii) that 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋃𝒱) and also we 

have 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋃𝒱). Hence 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)⋃𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋃𝒱)……… (1)  

Since 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) and 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱) are 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CSs, 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)⋃𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱) is also 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS by 

theorem (3.17). Also 𝒰 ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) and 𝒱 ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱) implies that 𝒰⋃𝒱 ⊆

𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)⋃𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱). Thus 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)⋃𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS containing 𝒰⋃𝒱. Since 

𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋃𝒱) is the smallest 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS containing 𝒰⋃𝒱, we get 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋃𝒱) ⊆

𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)⋃𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱)……….. (2) 

From (1) and (2), we get 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰⋃𝒱) = 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)⋃𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱). 
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(vi) Since 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS, we have by proposition (4.3) part (ii), 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)) =

𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰). ▪ 

 

Theorem 4.6:  

Assume that 𝒰 and 𝒱 are two 𝑁𝑒𝑢𝐶-sets in a 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯). So therefore, the subsequent features stand: 

(i) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡(𝜑𝑁𝑒𝑢) = 𝜑𝑁𝑒𝑢, 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡(𝒜𝑁𝑒𝑢) = 𝒜𝑁𝑒𝑢. 

(ii) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒰) ⊆  𝒰. 

(iii) 𝒰 ⊆  𝒱 ⟹ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒰) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒱). 

(iv) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒰⋂𝒱) = 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒰)⋂𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒱). 

(v) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒰⋃𝒱) ⊇ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒰)⋃𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒱). 

(vi) 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒰)) = 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑖𝑛𝑡( 𝒰). 

Proof:  

The above points are noticeable. ▪ 

 

Definition 4.7: [12] 

A 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) is stated to be a neutrosophic crisp 𝑇1
2
-space (fleetingly, 𝑁𝑒𝑢𝐶𝑇1

2
-space) if for all 𝑁𝑒𝑢𝐶𝑔CS in it 

are 𝑁𝑒𝑢𝐶CS. 

  

Definition 4.8:  

A 𝑁𝑒𝑢𝐶𝑇𝑆 (𝒜, 𝒯) is stated to be a neutrosophic crisp 𝑇𝑔𝑠𝑔-space (fleetingly, 𝑁𝑒𝑢𝐶𝑇𝑔𝑠𝑔-space) if for all 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS 

in it are 𝑁𝑒𝑢𝐶CS. 

  

Proposition 4.9:  

Each 𝑁𝑒𝑢𝐶𝑇1
2
-space is a 𝑁𝑒𝑢𝐶𝑇𝑔𝑠𝑔-space. 

Proof:  

Consider (𝒜, 𝒯) is a 𝑁𝑒𝑢𝐶𝑇1
2
-space and Assume 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in 𝒜. Therefore, 𝒰 is a 𝑁𝑒𝑢𝐶𝑔CS, by employing 

proposition (3.7) part (ii). While (𝒜, 𝒯) is a 𝑁𝑒𝑢𝐶𝑇1
2
-space, then 𝒰 is a 𝑁𝑒𝑢𝐶CS in 𝒜. Thus, (𝒜, 𝒯) is a 𝑁𝑒𝑢𝐶𝑇𝑔𝑠𝑔-

space. ▪ 

The subsequent occurrence discloses that the beyond proposition's reverse is not valid. 

 

Example 4.10:  

Suppose 𝒜 = {𝑣1, 𝑣2, 𝑣3}. Let 𝒯 = {𝜑𝑁𝑒𝑢 , 〈{𝑣1}, 𝜑, 𝜑〉, 〈{𝑣2, 𝑣3}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} be a 𝑁𝑒𝑢𝐶𝑇  on 𝒜. Then (𝒜, 𝒯) is a 

𝑁𝑒𝑢𝐶𝑇𝑔𝑠𝑔-space but not 𝑁𝑒𝑢𝐶𝑇1
2
-space. 

 

5. Neutrosophic Crisp 𝒈𝒔𝒈-Continuous Functions  

In this circumstance, we pioneer and investigate the neutrosophic crisp 𝑔𝑠𝑔-continuous functions with several of 

their features.  

 

Definition 5.1:  

A function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) is named neutrosophic crisp 𝑔-continuous and symbolized by 𝑁𝑒𝑢𝐶𝑔-continuous if 

𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔CS (𝑁𝑒𝑢𝐶𝑔OS) in (𝒜, 𝒯) for each 𝑁𝑒𝑢𝐶CS (𝑁𝑒𝑢𝐶OS) 𝒰 in (ℬ, ℒ). 

 

Definition 5.2:  

A function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) is named neutrosophic crisp 𝑠𝑔-continuous and symbolized by 𝑁𝑒𝑢𝐶𝑠𝑔-continuous 

if 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑠𝑔CS (𝑁𝑒𝑢𝐶𝑠𝑔OS) in (𝒜, 𝒯) for each 𝑁𝑒𝑢𝐶CS (𝑁𝑒𝑢𝐶OS) 𝒰 in (ℬ, ℒ). 

 

Definition 5.3:  

A function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) is named neutrosophic crisp 𝑔𝑠-continuous and symbolized by 𝑁𝑒𝑢𝐶𝑔𝑠-continuous 

if 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠CS (𝑁𝑒𝑢𝐶𝑔𝑠OS) in (𝒜, 𝒯) for each 𝑁𝑒𝑢𝐶CS (𝑁𝑒𝑢𝐶OS) 𝒰 in (ℬ, ℒ). 
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Definition 5.4:  

A function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) is named neutrosophic crisp 𝑔𝑠𝑔-continuous and symbolized by 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-

continuous if 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS (𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS) in (𝒜, 𝒯) for each 𝑁𝑒𝑢𝐶CS (𝑁𝑒𝑢𝐶OS) 𝒰 in (ℬ, ℒ). 

 

Proposition 5.5: 

(i) Each 𝑁𝑒𝑢𝐶-continuous is a 𝑁𝑒𝑢𝐶𝑔-continuous. 

(ii) Each 𝑁𝑒𝑢𝐶𝑔-continuous is a 𝑁𝑒𝑢𝐶𝑔𝑠-continuous. 

(iii) Each 𝑁𝑒𝑢𝐶𝑠-continuous is a 𝑁𝑒𝑢𝐶𝑠𝑔-continuous. 

(iv) Each 𝑁𝑒𝑢𝐶𝑠𝑔-continuous is a 𝑁𝑒𝑢𝐶𝑔𝑠-continuous. 

Proof:  

(i) Let 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) be a 𝑁𝑒𝑢𝐶-continuous function and let 𝒰 be a 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ), since 𝓉 is a 𝑁𝑒𝑢𝐶-

continuous then 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶CS in (𝒜, 𝒯), which implies 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔CS in (𝒜, 𝒯). Hence 𝓉 is a 

𝑁𝑒𝑢𝐶𝑔-continuous. 

(ii) Let 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) be a 𝑁𝑒𝑢𝐶𝑔-continuous function and let 𝒰 be a 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ), since 𝓉 is a 𝑁𝑒𝑢𝐶𝑔-

continuous then 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔CS in (𝒜, 𝒯), which implies 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠CS in (𝒜, 𝒯). Hence 𝓉 is a 

𝑁𝑒𝑢𝐶𝑔𝑠-continuous. The proof is evident to others. ▪ 

The contrast of the upper proposition need not be accurate, as indicated in the subsequent instances. 

 

Example 5.6: 

Suppose 𝒜 = {𝓈1, 𝓈2, 𝓈3, 𝓈4} and ℬ = {ℴ1, ℴ2, ℴ3, ℴ4}. Then 𝒯 =
{𝜑𝑁𝑒𝑢 , 〈{𝓈1}, 𝜑, 𝜑〉, 〈{𝓈2, 𝓈3}, 𝜑, 𝜑〉, 〈{𝓈1, 𝓈2, 𝓈3}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} and ℒ =
{𝜑𝑁𝑒𝑢 , 〈{ℴ1}, 𝜑, 𝜑〉, 〈{ℴ2, ℴ3}, 𝜑, 𝜑〉, 〈{ℴ1, ℴ2, ℴ3}, 𝜑, 𝜑〉, ℬ𝑁𝑒𝑢} are 𝑁𝑒𝑢𝐶𝑇𝑆𝑠 on 𝒜 and ℬ, respectively. Define the 

function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) via 𝓉(〈{𝓈1}, 𝜑, 𝜑〉) = 〈{ℴ2}, 𝜑, 𝜑〉, 𝓉(〈{𝓈2}, 𝜑, 𝜑〉) = 〈{ℴ1}, 𝜑, 𝜑〉, 𝓉(〈{𝓈3}, 𝜑, 𝜑〉) =
〈{ℴ4}, 𝜑, 𝜑〉, 𝓉(〈{𝓈4}, 𝜑, 𝜑〉) = 〈{ℴ3}, 𝜑, 𝜑〉. Then 𝓉 is a 𝑁𝑒𝑢𝐶𝑔-continuous, just not 𝑁𝑒𝑢𝐶-continuous.  

 

Example 5.7: 

Suppose 𝒜 = {𝓈1, 𝓈2, 𝓈3, 𝓈4} and ℬ = {ℴ1, ℴ2, ℴ3, ℴ4}. Then 𝒯 =
{𝜑𝑁𝑒𝑢 , 〈{𝓈1}, 𝜑, 𝜑〉, 〈{𝓈2, 𝓈4}, 𝜑, 𝜙〉, 〈{𝓈1, 𝓈2, 𝓈4}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} and ℒ =
{𝜙𝑁𝑒𝑢 , 〈{ℴ1}, 𝜑, 𝜑〉, 〈{ℴ2, ℴ3}, 𝜑, 𝜑〉, 〈{ℴ1, ℴ2, ℴ3}, 𝜑, 𝜑〉, ℬ𝑁𝑒𝑢} are 𝑁𝑒𝑢𝐶𝑇𝑆𝑠 on 𝒜 and ℬ, correspondingly. Define the 

function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) via 𝓉(〈{𝓈1}, 𝜑, 𝜑〉) = 〈{ℴ2}, 𝜑, 𝜑〉, 𝓉(〈{𝓈2}, 𝜑, 𝜑〉) = 〈{ℴ1}, 𝜑, 𝜑〉, 𝓉(〈{𝓈3}, 𝜑, 𝜑〉) =
〈{ℴ3}, 𝜑, 𝜑〉, 𝓉(〈{𝓈4}, 𝜑, 𝜑〉) = 〈{ℴ4}, 𝜑, 𝜑〉. Then 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠-continuous, just not 𝑁𝑒𝑢𝐶𝑔-continuous.  

 

Example 5.8: 

Suppose 𝒜 = {𝓈1, 𝓈2, 𝓈3, 𝓈4} and ℬ = {ℴ1, ℴ2, ℴ3, ℴ4}. Then 𝒯 =
{𝜑𝑁𝑒𝑢 , 〈{𝓈4}, 𝜑, 𝜑〉, 〈{𝓈1, 𝓈3}, 𝜑, 𝜑〉, 〈{𝓈1, 𝓈3, 𝓈4}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} and ℒ =
{𝜑𝑁𝑒𝑢 , 〈{ℴ1}, 𝜑, 𝜑〉, 〈{ℴ2, ℴ3}, 𝜑, 𝜑〉, 〈{ℴ1, ℴ2, ℴ3}, 𝜑, 𝜑〉, ℬ𝑁𝑒𝑢} are 𝑁𝑒𝑢𝐶𝑇𝑆𝑠 on 𝒜 and ℬ, correspondingly. Define the 

function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) via 𝓉(〈{𝓈1}, 𝜑, 𝜑〉) = 〈{ℴ1}, 𝜑, 𝜑〉, 𝓉(〈{𝓈2}, 𝜑, 𝜑〉) = 〈{ℴ4}, 𝜑, 𝜑〉, 𝓉(〈{𝓈3}, 𝜑, 𝜑〉) =
〈{ℴ2}, 𝜑, 𝜑〉, 𝓉(〈{𝓈4}, 𝜑, 𝜑〉) = 〈{ℴ3}, 𝜑, 𝜑〉. Then 𝓉 is a 𝑁𝑒𝑢𝐶𝑠𝑔-continuous, just not 𝑁𝑒𝑢𝐶𝑠-continuous.  

 

Example 5.9: 

Suppose 𝒜 = {𝓈1, 𝓈2, 𝓈3} and ℬ = {ℴ1, ℴ2, ℴ3}. Then 𝒯 = {𝜑𝑁𝑒𝑢 , 〈{𝓈1}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} and ℒ =
{𝜑𝑁𝑒𝑢 , 〈{ℴ2}, 𝜑, 𝜑〉, ℬ𝑁𝑒𝑢} are 𝑁𝑒𝑢𝐶𝑇𝑆𝑠 on 𝒜 and ℬ, correspondingly. Define the function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) via 

𝓉(〈{𝓈1}, 𝜑, 𝜑〉) = 〈{ℴ1}, 𝜑, 𝜑〉, 𝓉(〈{𝓈2}, 𝜑, 𝜑〉) = 〈{ℴ3}, 𝜑, 𝜑〉, 𝓉(〈{𝓈3}, 𝜑, 𝜑〉) = 〈{ℴ2}, 𝜑, 𝜑〉. Then 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠-

continuous, just not 𝑁𝑒𝑢𝐶𝑠𝑔-continuous.  

 

Theorem 5.10:  

Suppose that the following 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) is given such that (𝒜, 𝒯) is 

(i) a 𝑁𝑒𝑢𝐶𝑇1
2
-space, therefore 𝓉 is a 𝑁𝑒𝑢𝐶𝑔-continuous iff 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous. 

(ii) a 𝑁𝑒𝑢𝐶𝑇𝑔𝑠𝑔-space, therefore 𝓉 is a 𝑁𝑒𝑢𝐶-continuous iff 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous. 
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Proof: 

(i) Assume 𝒰 be a 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ). Because 𝓉 is a 𝑁𝑒𝑢𝐶𝑔-continuous, then 𝓉−1(𝒰) in (𝒜, 𝒯) remains a 

𝑁𝑒𝑢𝐶𝑔CS. By (𝒜, 𝒯) is a 𝑁𝑒𝑢𝐶𝑇1
2
-space, which implies 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶CS. By proposition (3.7) part (i), 𝓉−1(𝒰) 

is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (𝒜, 𝒯). Hence, 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous. 

Conversely, suppose that 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous. Let 𝒰 be a 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ). Then 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in 

(𝒜, 𝒯). By proposition (3.7) part (ii), 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔CS in (𝒜, 𝒯). Hence 𝓉 is a 𝑁𝑒𝑢𝐶𝑔-continuous. 

(ii) Let 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) be a 𝑁𝑒𝑢𝐶-continuous function and let 𝒰 be a 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ), since 𝓉 is a 𝑁𝑒𝑢𝐶-

continuous then 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶CS in (𝒜, 𝒯), which implies 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (𝒜, 𝒯). Hence 𝓉 is a 

𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous. 

Conversely, suppose that 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous. Let 𝒰 be a 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ). Then 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in 

(𝒜, 𝒯). By (𝒜, 𝒯) is a 𝑁𝑒𝑢𝐶𝑇𝑔𝑠𝑔-space, which implies 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶CS in (𝒜, 𝒯). Hence, 𝓉 is a 𝑁𝑒𝑢𝐶-

continuous. ▪ 

 

Proposition 5.11: 

(i) Each 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous is a 𝑁𝑒𝑢𝐶𝑠𝑔-continuous.  

(ii) Each 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous is a 𝑁𝑒𝑢𝐶𝑔𝑠-continuous. 

Proof:  

(i) Let 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous function and let 𝒰 be a 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ), since 𝓉 is a 

𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous then 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (𝒜, 𝒯), which implies 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑠𝑔CS in (𝒜, 𝒯). 

Hence 𝓉 is a 𝑁𝑒𝑢𝐶𝑠𝑔-continuous. 

(ii) Let 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous function and let 𝒰 be a 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ), since 𝓉 is a 

𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous then 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (𝒜, 𝒯), which implies 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠CS in (𝒜, 𝒯). 

Hence 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠-continuous. ▪ 

As the subsequent example indicates, the beyond proposition's reverse need not be accurate. 

 

Example 5.12: 

Suppose 𝒜 = {𝓈1, 𝓈2, 𝓈3, 𝓈4} and ℬ = {ℴ1, ℴ2, ℴ3, ℴ4}. Then 𝒯 =
{𝜑𝑁𝑒𝑢 , 〈{𝓈1}, 𝜑, 𝜑〉, 〈{𝓈2, 𝓈4}, 𝜑, 𝜑〉, 〈{𝓈1, 𝓈2, 𝓈4}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} and ℒ =
{𝜑𝑁𝑒𝑢 , 〈{ℴ2}, 𝜑, 𝜑〉, 〈{ℴ1, ℴ3}, 𝜑, 𝜑〉, 〈{ℴ1, ℴ2, ℴ3}, 𝜑, 𝜑〉, ℬ𝑁𝑒𝑢} are 𝑁𝑒𝑢𝐶𝑇𝑆𝑠 on 𝒜 and ℬ, correspondingly. Define the 

function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) where 𝓉(〈{𝓈1}, 𝜑, 𝜑〉) = 〈{ℴ3}, 𝜑, 𝜑〉, 𝓉(〈{𝓈2}, 𝜑, 𝜑〉) = 〈{ℴ1}, 𝜑, 𝜑〉, 𝓉(〈{𝓈3}, 𝜑, 𝜑〉) =
〈{ℴ4}, 𝜑, 𝜑〉, 𝓉(〈{𝓈4}, 𝜑, 𝜑〉) = 〈{ℴ2}, 𝜑, 𝜑〉. Then 𝓉 is a 𝑁𝑒𝑢𝐶𝑠𝑔-continuous and  𝑁𝑒𝑢𝐶𝑔𝑠-continuous but not 

𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous.  

 

Theorem 5.13: 

A function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) is 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous iff 𝓉(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝒰)), for every 𝒰 ⊆

𝒜. 

Proof:  

Let 𝓉 be 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous and 𝒰 ⊆ 𝒜. Then 𝓉(𝒰) ⊆ ℬ. Since 𝓉 is 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous and 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝒰)) 

is 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ), 𝓉−1(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝒰))) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (𝒜, 𝒯). Since 𝓉(𝒰) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝒰)), 

𝓉−1(𝓉(𝒰)) ⊆ 𝓉−1(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝒰))), then 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉−1(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝒰))) =

𝓉−1(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝒰)). Thus 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰) ⊆ 𝓉−1(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝒰)). Therefore 𝓉(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)) ⊆

𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝒰)), for every 𝒰 ⊆ 𝒜. 

Conversely, let 𝓉(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒰)) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝒰)), for every 𝒰 ⊆ 𝒜. If 𝒱 is 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ), since 

𝓉−1(𝒱) ⊆ 𝒜, 𝓉(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉−1(𝒱))) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉(𝓉−1(𝒱))) = 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝒱) = 𝒱. That is 

𝓉(𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉−1(𝒱))) ⊆ 𝒱, hence 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉−1(𝒱)) ⊆ 𝓉−1(𝒱) but 𝓉−1(𝒱) ⊆ 𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉−1(𝒱)). This mean 

𝑁𝑒𝑢𝐶𝑔𝑠𝑔𝑐𝑙(𝓉−1(𝒱)) = 𝓉−1(𝒱). Therefore 𝓉−1(𝒱) is 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (𝒜, 𝒯). Hence 𝓉 is 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous. ▪ 
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Definition 5.14:  

A function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) is named neutrosophic crisp 𝑔𝑠𝑔∗-continuous and symbolized by 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-

continuous if 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶CS (𝑁𝑒𝑢𝐶OS) in (𝒜, 𝒯) for each 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS (𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS) 𝒰 in (ℬ, ℒ). 

 

Definition 5.15:  

A function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) is named neutrosophic crisp 𝑔𝑠𝑔∗∗-continuous and symbolized by 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-

continuous if 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS (𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS) in (𝒜, 𝒯) for each 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS (𝑁𝑒𝑢𝐶𝑔𝑠𝑔OS) 𝒰 in (ℬ, ℒ). 

 

Proposition 5.16: 

(i) Each 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous.  

(ii) Each 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous. 

Proof: 

(i) Let 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous function and suppose that 𝒰 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (ℬ, ℒ). Since 

𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous, then 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶CS in (𝒜, 𝒯), which implies 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (𝒜, 𝒯). 

Hence 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous. 

(ii) Let 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous function and let 𝒰 be a 𝑁𝑒𝑢𝐶CS in (ℬ, ℒ), which implies 𝒰 is 

a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (ℬ, ℒ). Since 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous, then 𝓉−1(𝒰) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in (𝒜, 𝒯). Hence 𝓉 is a 

𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous. ▪ 

The contrast of the upper proposition need not be true, as seen in the subsequent instances. 

 

Example 5.17:  

Suppose 𝒜 = {𝓈1, 𝓈2, 𝓈3, 𝓈4} and ℬ = {ℴ1, ℴ2, ℴ3, ℴ4}.  

Then 𝒯 = {𝜑𝑁𝑒𝑢 , 〈{𝓈4}, 𝜑, 𝜑〉, 〈{𝓈1, 𝓈3}, 𝜑, 𝜑〉, 〈{𝓈1, 𝓈3, 𝓈4}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} and ℒ =
{𝜑𝑁𝑒𝑢 , 〈{ℴ1}, 𝜑, 𝜑〉, 〈{ℴ2, ℴ3}, 𝜑, 𝜑〉, 〈{ℴ1, ℴ2, ℴ3}, 𝜑, 𝜑〉, ℬ𝑁𝑒𝑢} are 𝑁𝑒𝑢𝐶𝑇𝑆𝑠 on 𝒜 and ℬ, respectively. Identify the 

function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) such that 𝓉(〈{𝓈1}, 𝜑, 𝜑〉) = 〈{ℴ1}, 𝜑, 𝜑〉, 𝓉(〈{𝓈2}, 𝜑, 𝜑〉) =
〈{ℴ4}, 𝜑, 𝜑〉, 𝓉(〈{𝓈3}, 𝜑, 𝜑〉) = 〈{ℴ2}, 𝜑, 𝜑〉, 𝓉(〈{𝓈4}, 𝜑, 𝜑〉) = 〈{ℴ3}, 𝜑, 𝜑〉. Then 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous, just 

not 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous.  

 

Example 5.18: 

Suppose 𝒜 = {𝓈1, 𝓈2, 𝓈3, 𝓈4} and ℬ = {ℴ1, ℴ2, ℴ3, ℴ4}. Then 𝒯 =
{𝜑𝑁𝑒𝑢 , 〈{𝓈3}, 𝜑, 𝜑〉, 〈{𝓈1, 𝓈4}, 𝜑, 𝜑〉, 〈{𝓈1, 𝓈3, 𝓈4}, 𝜑, 𝜑〉, 𝒜𝑁𝑒𝑢} and ℒ =
{𝜑𝑁𝑒𝑢 , 〈{ℴ4}, 𝜑, 𝜑〉, 〈{ℴ1, ℴ3}, 𝜑, 𝜑〉, 〈{ℴ1, ℴ3, ℴ4}, 𝜑, 𝜑〉, ℬ𝑁𝑒𝑢} are 𝑁𝑒𝑢𝐶𝑇𝑆𝑠 on 𝒜 and ℬ, respectively. Identify the 

function 𝓉: (𝒜, 𝒯) ⟶ (ℬ, ℒ) such that 𝓉(〈{𝓈1}, 𝜑, 𝜑〉) = 〈{ℴ1}, 𝜑, 𝜑〉, 𝓉(〈{𝓈2}, 𝜑, 𝜑〉) =
〈{ℴ2}, 𝜑, 𝜑〉, 𝓉(〈{𝓈3}, 𝜑, 𝜑〉) = 〈{ℴ3}, 𝜑, 𝜑〉, 𝓉(〈{𝓈4}, 𝜑, 𝜑〉) = 〈{ℴ4}, 𝜑, 𝜑〉. Then 𝓉 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous, just 

not 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous.  

 

Theorem 5.19: 

Let 𝓉1: (𝒜, 𝒯) ⟶ (ℬ, ℒ) and 𝓉2: (ℬ, ℒ) ⟶ (𝒞, ℐ) be two functions, then: 

(i) If 𝓉1 and 𝓉2 are 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous, then 𝓉2 ∘ 𝓉1: (𝒜, 𝒯) ⟶ (𝒞, ℐ) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous function. 

(ii) If 𝓉1 and 𝓉2 are 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous, then 𝓉2 ∘ 𝓉1: (𝒜, 𝒯) ⟶ (𝒞, ℐ) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous function. 

(iii) If 𝓉1 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous and 𝓉2 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous, then 𝓉2 ∘ 𝓉1: (𝒜, 𝒯) ⟶ (𝒞, ℐ) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-

continuous function. 

(iv) If 𝓉1 is a 𝑁𝑒𝑢𝐶-continuous and 𝓉2 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous (𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous, 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous), then 

𝓉2 ∘ 𝓉1: (𝒜, 𝒯) ⟶ (𝒞, ℐ) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous (𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous, 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous) function. 

Proof: 

(i) Let 𝒦 ⊆ 𝒞 be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS, since 𝓉2 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous then 𝓉2
−1(𝒦) stands a 𝑁𝑒𝑢𝐶CS in ℬ. Since every 

𝑁𝑒𝑢𝐶CS is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS, therefore 𝓉2
−1(𝒦) stands a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in ℬ. Since 𝓉1 is 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-continuous, 

𝓉1
−1(𝓉2

−1(𝒦)) is a 𝑁𝑒𝑢𝐶CS in 𝒜. Thus (𝓉2 ∘ 𝓉1)−1(𝒦) is a 𝑁𝑒𝑢𝐶CS in 𝒜. Hence 𝓉2 ∘ 𝓉1 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗-

continuous. 
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(ii) Let 𝒦 ⊆ 𝒞 be a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS, given that 𝓉2 remains a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous then 𝓉2
−1(𝒦) stays a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in 

ℬ. Since 𝓉1 is 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous, 𝓉1
−1(𝓉2

−1(𝒦)) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in 𝒜. Thus (𝓉2 ∘ 𝓉1)−1(𝒦) is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS in 

𝒜. Hence 𝓉2 ∘ 𝓉1 is a 𝑁𝑒𝑢𝐶𝑔𝑠𝑔∗∗-continuous. The proof is evident for others. ▪ 

 

Remark 5.20:  

The succeeding illustration reveals the relation involving the numerous types of 𝑁𝑒𝑢𝐶-continuous functions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion  

The concept of 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS is described by employing 𝑁𝑒𝑢𝐶𝑠𝑔CS with structures a 𝑁𝑒𝑢𝐶𝑇  and deceptions between 

the concepts of 𝑁𝑒𝑢𝐶CS and 𝑁𝑒𝑢𝐶𝑔CS. We are exhibited well illustration of 𝑁𝑒𝑢𝐶𝑔𝑠𝑔-continuous functions by 

applying 𝑁𝑒𝑢𝐶𝑔𝑠𝑔CS. In the future, we anticipate that many additional studies will be able to be conducted in the 

using these concepts from 𝑁𝑒𝑢𝐶𝑇𝑆.  
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