

Neutrosophic Crisp Generalized sg-Closed Sets and their Continuity

Qays Hatem Imran^{1*}, Murtadha M. Abdulkadhim², Ali H. M. Al-Obaidi³, Said Broumi⁴

¹Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq
²Department of Science, College of Basic Education, Al-Muthanna University, Samawah, Iraq
³Department of Mathematics, College of Education for Pure Science, University of Babylon, Hillah, Iraq.
⁴Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, B.P 7955, Morocco Emails: qays.imran@mu.edu.iq; murtadha_moh@mu.edu.iq; aalobaidi@uobabylon.edu.iq; broumisaid78@gmail.com
*Correspondence: qays.imran@mu.edu.iq

Abstract

In this paper, we delivered pioneering notions of closed sets in the neutrosophic crisp sense. In other words, we discussed sg-closed sets, gs-closed sets, and gsg-closed sets in neutrosophic crisp topological space. Moreover, the subsequent innovative ideas are established, for instance, gsg-closure and gsg-interior in neutrosophic crisp topological space, and obtaining numerous of their highlights. Besides, we submitted different kinds of neutrosophic crisp continuous functions and their associations.

Mathematics Subject Classification (2010): 54A05, 54B05.

Keywords: Neu_{Cgsg} CS; Neu_{Cgsg} OS; Neu_{Cgsg} -closure; Neu_{Cgsg} -interior; Neu_{Cgsg} -continuous; Neu_{Cgsg}^* -continuous and Neu_{Cgsg}^* -continuous functions.

1. Introduction

The notion of neutrosophic crisp for topological space was stated by A. A. Salama et al. [1] and symbolized merely Neu_{CTS}. Next, the various types of crisp nearly open sets were submitted by A. A. Salama et al. [2]. Moreover, the extension of semi- α -closed sets in neutrosophic crisp topological space was presented by R. K. Al-Hamido et al. [3]. Furthermore, the different perceptions of weak forms of open and closed functions in the sense of neutrosophic crisp topological space were displayed by A. H. M. Al-Obaidi et al. [4,5]. Additionally, in neutrosophic topological space, the viewpoint of generalized homeomorphism was represented by Md. Hanif Page et al. [6]. Besides, the weak types of continuity in the sense of neutrosophic crisp topological space were offered by O. H. Imran et al. [7,8]. Likewise, the intellect of neutrosophic homeomorphism and neutrosophic $\alpha\psi$ -homeomorphism were raised by M. Parimala et al. [9]. Subsequent, they set up the thought of neutrosophic $\alpha\psi^*$ -homeomorphism, neutrosophic $\alpha\psi$ -open and closed mapping and neutrosophic $T\alpha\psi$ -space. Consequently, the maps with features αgs -continuity and αgs -irresolute in neutrosophic topological space were inserted by V. Banu Priya et al. [10]. Finally, in neutrosophic topological space, the senses of α -generalized semi-closed and α -generalized semi-open sets were informed by V. Banu Priya et al. [11]. This article seeks to ascertain the neutrosophic crisp topological space perception for sg-closed, gs-closed, and gsg-closed sets and analysis of their essential components. Besides, we detect neutrosophic crisp gsg-closure and neutrosophic crisp *gsg*-interior sets and accomplish certain of their attributes. Likewise, we give different classes of neutrosophic crisp continuous functions and their interactions.

2. Preliminaries

All through this work, $(\mathcal{A}, \mathcal{T})$, $(\mathcal{B}, \mathcal{L})$ and $(\mathcal{C}, \mathcal{I})$ (or simply \mathcal{A}, \mathcal{B} and \mathcal{C} , respectively) frequently imply Neu_{CTSS} . For any neutrosophic crisp set \mathcal{U} in a Neu_{CTS} (\mathcal{A}, \mathcal{T}), its closure is signified by $Neu_{C}cl(\mathcal{U})$, its interior is signified by $Neu_{C}int(\mathcal{U})$, and its complement is signified by $\underline{\mathcal{U}} = \mathcal{A}_{Neu} - \mathcal{U}$, correspondingly.

Definition 2.1: [1]

Let \mathcal{A} be a non-empty particular fixed space, and let $\mathcal{U}_1, \mathcal{U}_2, \mathcal{U}_3$ be subsets of \mathcal{A} with the mutually exclusive property. An object is a neutrosophic crisp set (or merely Neu_c -set) \mathcal{U} with type $\mathcal{U} = \langle \mathcal{U}_1, \mathcal{U}_2, \mathcal{U}_3 \rangle$.

Definition 2.2: [1]

A collection \mathcal{T} of Neu_c -sets in a non-empty particular fixed space \mathcal{A} is called a neutrosophic crisp topology (in short, Neu_{cT}) on \mathcal{A} satisfying the following conditions below:

(i)
$$\varphi_{Neu}, \mathcal{A}_{Neu} \in \mathcal{T}$$
,

(ii) $\mathcal{U}_1 \cap \mathcal{U}_2 \in \mathcal{T}$ where $\mathcal{U}_1, \mathcal{U}_2 \in \mathcal{T}$,

(iii) $\bigcup \mathcal{U}_k \in \mathcal{T}$ for all collections $\{\mathcal{U}_k | k \in \Delta\} \subseteq \mathcal{T}$.

In this circumstance, the name of the ordered pair $(\mathcal{A}, \mathcal{T})$ is Neu_{CTS} and every Neu_C -set in \mathcal{T} is titled as neutrosophic crisp open set (fleetly, Neu_COS). The complement $\underline{\mathcal{U}}$ of a Neu_COS \mathcal{U} in \mathcal{A} is established as neutrosophic crisp closed set (fleetly, Neu_CCS) in \mathcal{A} .

Definition 2.3: [2]

A Neu_C -subset \mathcal{U} of a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ is known to be a neutrosophic crisp semi-open set (shortly, $Neu_{CS}OS$) if $\mathcal{U} \subseteq Neu_Ccl(Neu_Cint(\mathcal{U}))$ and a neutrosophic crisp semi-closed set (shortly, $Neu_{CS}CS$) if $Neu_Cint(Neu_Ccl(\mathcal{U})) \subseteq \mathcal{U}$. The neutrosophic crisp semi-closure of \mathcal{U} of a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ is the intersecting of the all $Neu_{CS}CS$ that involve \mathcal{U} and it is signified by $Neu_{CS}cl(\mathcal{U})$.

Definition 2.4: [12]

Suppose Neu_C -subset \mathcal{U} and $Neu_COS \mathcal{M}$ are in a $Neu_{CTS} (\mathcal{A}, \mathcal{T})$ such that $\mathcal{U} \subseteq \mathcal{M}$ then \mathcal{U} is so-called a neutrosophic crisp generalized closed set (in brief, $Neu_{Cg}CS$) if $Neu_Ccl(\mathcal{U}) \subseteq \mathcal{M}$ and the complement of a $Neu_{Cg}CS$ is a Neu_{Cg} -open set (in brief, $Neu_{Cg}OS$) in $(\mathcal{A}, \mathcal{T})$.

Remark 2.5: [2,12]

In a $Neu_{CTS}(\mathcal{A}, \mathcal{T})$, then the succeeding declarations grip and the reverse of each declaration is not suitable: (i) To all Neu_COS (corr. Neu_CCS) are $Neu_{CS}OS$ (corr. $Neu_{CS}CS$). (ii) To all Neu_COS (corr. Neu_CCS) are $Neu_{Ca}OS$ (corr. $Neu_{Ca}CS$).

Definition 2.6: [1]

A function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ is understood to be neutrosophic crisp continuous (in short, Neu_c -continuous) if $t^{-1}(\mathcal{U})$ is a Neu_c CS (Neu_c OS) in (\mathcal{A}, \mathcal{T}) for every Neu_c CS (Neu_c OS) \mathcal{U} in (\mathcal{B}, \mathcal{L}).

Definition 2.7: [2]

A function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ is understood to be neutrosophic crisp semi-continuous (in short, Neu_{CS} -continuous) if $t^{-1}(\mathcal{U})$ is a Neu_{CS} CS (Neu_{CS} OS) in (\mathcal{A}, \mathcal{T}) for every Neu_{C} CS (Neu_{C} OS) \mathcal{U} in (\mathcal{B}, \mathcal{L}).

Remark 2.8: [2]

To all Neu_c -continuous are a Neu_{cs} -continuous; however, the reverse does not reasonable in common.

3. Neutrosophic Crisp gsg-Closed Sets

In this circumstance, we pioneer and investigate the neutrosophic crisp gsg-closed sets with several of their features.

Definition 3.1:

A Neu_C -subset \mathcal{U} of $Neu_{CTS}(\mathcal{A}, \mathcal{T})$ is told to be:

(i) a neutrosophic crisp *sg*-closed set (shortly, $Neu_{csg}CS$) if $Neu_{cs}cl(\mathcal{U}) \subseteq \mathcal{M}$ whenever $\mathcal{U} \subseteq \mathcal{M}$ and \mathcal{M} is a $Neu_{cs}OS$ in $(\mathcal{A}, \mathcal{T})$. For each $Neu_{csg}CS$, its complement is a Neu_{csg} -open set (in brief, $Neu_{csg}OS$) in $(\mathcal{A}, \mathcal{T})$. (ii) a neutrosophic crisp *gs*-closed set (shortly, $Neu_{cgs}CS$) if $Neu_{cs}cl(\mathcal{U}) \subseteq \mathcal{M}$ whenever $\mathcal{U} \subseteq \mathcal{M}$ and \mathcal{M} is a Neu_cOS in $(\mathcal{A}, \mathcal{T})$. For each $Neu_{cgs}CS$, its complement is a Neu_{cgs} -open set (in brief, $Neu_{cgs}OS$) in $(\mathcal{A}, \mathcal{T})$.

Definition 3.2:

A Neu_{C} -subset \mathcal{U} of a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ is named to be a neutrosophic crisp gsg-closed set (in short, Neu_{Cgsg} CS) if $Neu_{C}cl(\mathcal{U}) \subseteq \mathcal{M}$ whenever $\mathcal{U} \subseteq \mathcal{M}$ and \mathcal{M} is a Neu_{Csg} OS in $(\mathcal{A},\mathcal{T})$. The collection of all Neu_{Cgsg} CSs of a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ is symbolized by Neu_{Cgsg} C(\mathcal{A}).

Proposition 3.3:

In a $Neu_{CTS}(\mathcal{A}, \mathcal{T})$, the following declarations are reasonable: (i) To all Neu_{Cg} CS are Neu_{Cgs} CS. (ii) To all Neu_{Cs} CS are Neu_{Csg} CS. (iii) To all Neu_{Csg} CS are Neu_{Cgs} CS.

Proof:

(i) Suppose $Neu_{cg}CS \ U$ is in a $Neu_{CTS} (\mathcal{A}, \mathcal{T})$. Then $Neu_{c}cl(\mathcal{U}) \subseteq \mathcal{M}$ whenever $\mathcal{U} \subseteq \mathcal{M}$ and \mathcal{M} is a $Neu_{c}OS$ in \mathcal{A} . But $Neu_{cs}cl(\mathcal{U}) \subseteq Neu_{c}cl(\mathcal{U})$ whenever $\mathcal{U} \subseteq \mathcal{M}$, \mathcal{M} is a $Neu_{c}OS$ in \mathcal{A} . Now we have $Neu_{cs}cl(\mathcal{U}) \subseteq \mathcal{M}$, $\mathcal{U} \subseteq \mathcal{M}, \mathcal{M}$ is a $Neu_{c}OS$ in \mathcal{A} . Therefore \mathcal{U} is a $Neu_{cgs}CS$. The proof is evident for others. The reverse of the exceeding result need not be valid, as seen in the subsequent instances.

Example 3.4:

Suppose $\mathcal{A} = \{v_1, v_2, v_3, v_4\}$. Let $\mathcal{T} = \{\varphi_{Neu}, \langle \{v_1\}, \varphi, \varphi \rangle, \langle \{v_2, v_4\}, \varphi, \varphi \rangle, \langle \{v_1, v_2, v_4\}, \varphi, \varphi \rangle, \mathcal{A}_{Neu}\}$ be a Neu_{CT} on \mathcal{A} . Then $\langle \{v_2, v_4\}, \varphi, \varphi \rangle$ is a Neu_{Cgs} CS, just not Neu_{Cg} CS.

Example 3.5:

In example (3.4), then $\langle \{v_3, v_4\}, \varphi, \varphi \rangle$ is a Neu_{csg} CS, just not Neu_{cs} CS.

Example 3.6:

Suppose $\mathcal{A} = \{v_1, v_2, v_3\}$. Let $\mathcal{T} = \{\varphi_{Neu}, \langle \{v_1\}, \varphi, \varphi \rangle, \mathcal{A}_{Neu}\}$ be a Neu_{CT} on \mathcal{A} . Then $\langle \{v_1, v_3\}, \varphi, \varphi \rangle$ is a Neu_{Cgs} CS, just not Neu_{Cgg} CS.

Proposition 3.7:

In a Neu_{CTS} (\mathcal{A}, \mathcal{T}), the following declarations are reasonable: (i) Each Neu_CCS is a $Neu_{Cgsg}CS$. (ii) Each $Neu_{Cgsg}CS$ is a $Neu_{Cg}CS$.

Proof:

(i) Suppose that \mathcal{U} is a Neu_CCS in a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ and consider \mathcal{M} is a $Neu_{CSg}OS$ in \mathcal{A} wherever $\mathcal{U} \subseteq \mathcal{M}$. Then $Neu_Ccl(\mathcal{U}) = \mathcal{U} \subseteq \mathcal{M}$. Therefore \mathcal{U} is a $Neu_{CSg}CS$.

(ii) Let \mathcal{U} be a $Neu_{cgsg}CS$ in a $Neu_{cTS}(\mathcal{A},\mathcal{T})$ and let \mathcal{M} be a $Neu_{c}OS$ in \mathcal{A} such that $\mathcal{U} \subseteq \mathcal{M}$. Since every $Neu_{c}OS$ is a $Neu_{csg}OS$, we have $Neu_{c}cl(\mathcal{U}) \subseteq \mathcal{M}$. Therefore \mathcal{U} is a $Neu_{cg}CS$.

As seen in the subsequent examples, the reverse of the above proposition need not be accurate.

Example 3.8:

Suppose $\mathcal{A} = \{s_1, s_2, s_3, s_4\}$. Let $\mathcal{T} = \{\varphi_{Neu}, \langle \{s_1\}, \varphi, \varphi \rangle, \langle \{s_2, s_3\}, \varphi, \varphi \rangle, \langle \{s_1, s_2, s_3\}, \varphi, \varphi \rangle, \mathcal{A}_{Neu} \}$ be a Neu_{CT} on \mathcal{A} . Then $\langle \{s_2, s_3\}, \varphi, \varphi \rangle$ is a Neu_{Cgsg} CS, just not Neu_C CS.

Example 3.9:

Suppose $\mathcal{A} = \{v_1, v_2, v_3, v_4, v_5\}$. Let $\mathcal{T} = \{\varphi_{Neu}, \langle \{v_4\}, \varphi, \varphi \rangle, \langle \{v_1, v_2\}, \varphi, \varphi \rangle, \langle \{v_1, v_2, v_4\}, \varphi, \varphi \rangle, \mathcal{A}_{Neu} \}$ be a Neu_{CT} on \mathcal{A} . Then $\langle \{v_1, v_3, v_4\}, \varphi, \varphi \rangle$ is a Neu_{cg} CS, just not Neu_{cgsg} CS.

Proposition 3.10:

In a $Neu_{CTS}(\mathcal{A}, \mathcal{T})$, the following declarations are reasonable: (i) Each Neu_{Cgsg} CS is a Neu_{Csg} CS. (ii) Each Neu_{cgsg} CS is a Neu_{Cgs} CS.

Proof:

(i) Consider that \mathcal{U} is a $Neu_{Cgsg}CS$ in a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ and postulate that \mathcal{M} is a $Neu_{Cs}OS$ in \mathcal{A} wherever $\mathcal{U} \subseteq \mathcal{M}$. Since every $Neu_{Cs}OS$ is a $Neu_{Csg}OS$, we have $Neu_{Cs}cl(\mathcal{U}) \subseteq Neu_{C}cl(\mathcal{U}) \subseteq \mathcal{M}$ implies $Neu_{Cs}cl(\mathcal{U}) \subseteq \mathcal{M}$. Therefore \mathcal{U} is a $Neu_{Csg}CS$.

(ii) Let \mathcal{U} be a $Neu_{Cgsg}CS$ in a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ and let \mathcal{M} be a Neu_COS in \mathcal{A} such that $\mathcal{U} \subseteq \mathcal{M}$. Since every Neu_COS is a $Neu_{Csg}OS$, we have $Neu_{Cs}cl(\mathcal{U}) \subseteq Neu_Ccl(\mathcal{U}) \subseteq \mathcal{M}$ implies $Neu_{Cs}cl(\mathcal{U}) \subseteq \mathcal{M}$. Therefore \mathcal{U} is a $Neu_{Cgs}CS$.

The reverse of the above proposition need not be accurate, as shown in the subsequent instance.

Example 3.11:

Suppose $\mathcal{A} = \{s_1, s_2, s_3, s_4\}$. Let $\mathcal{T} = \{\varphi_{Neu}, \langle \{s_1\}, \varphi, \varphi \rangle, \langle \{s_2, s_4\}, \varphi, \varphi \rangle, \langle \{s_1, s_2, s_4\}, \varphi, \varphi \rangle, \mathcal{A}_{Neu} \}$ be a Neu_{CT} on \mathcal{A} . Then $\langle \{s_1\}, \varphi, \varphi \rangle$ is a Neu_{Csg} CS and hence Neu_{Cgsg} CS, just not Neu_{Cgsg} CS.

Remark 3.12:

The Neu_{Casa} CS and Neu_{Cs} CS are independent.

Definition 3.13:

A Neu_{C} -subset \mathcal{U} of a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ is stated as a neutrosophic crisp gsg-open set (shorty $Neu_{Cgsg}OS$) iff $\mathcal{A}_{Neu} - \mathcal{U}$ is a $Neu_{Cgsg}CS$. The collection of all $Neu_{Cgsg}OS$ of a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ is symbolized by $Neu_{Cgsg}O(\mathcal{A})$.

Proposition 3.14:

Suppose that $Neu_COS U$ is in $Neu_{CTS}(A, T)$, then this set stands as a $Neu_{Cgsg}OS$ in that topological space. **Proof:**

Assume that a $Neu_COS \ \mathcal{U}$ is in a $Neu_{CTS} \ (\mathcal{A}, \mathcal{T})$, so therefore $\mathcal{A}_{Neu} - \mathcal{U}$ stands as a Neu_CCS in $(\mathcal{A}, \mathcal{T})$. By employing proposition (3.7) portion (i), $\mathcal{A}_{Neu} - \mathcal{U}$ is a $Neu_{Cgsg}CS$. Thus, \mathcal{U} is a $Neu_{Cgsg}OS$ in $(\mathcal{A}, \mathcal{T})$.

Proposition 3.15:

Suppose that Neu_{Cgsg} OS \mathcal{U} is in Neu_{CTS} (\mathcal{A}, \mathcal{T}), then this set is a Neu_{Cg} OS in that topological space. **Proof:**

Let \mathcal{U} be a $Neu_{Cgsg}OS$ in a Neu_{CTS} $(\mathcal{A}, \mathcal{T})$, then $\mathcal{A}_{Neu} - \mathcal{U}$ is a $Neu_{Cgsg}CS$ in $(\mathcal{A}, \mathcal{T})$. By employing proposition (3.7) portion (ii), $\mathcal{A}_{Neu} - \mathcal{U}$ is a $Neu_{Cg}CS$. Thus, \mathcal{U} is a $Neu_{Cg}OS$ in $(\mathcal{A}, \mathcal{T})$.

Proposition 3.16:

In a Neu_{CTS} (\mathcal{A}, \mathcal{T}), the subsequent declarations are reasonable: (i) To all Neu_{Cgsg} OS are Neu_{Csg} OS. (ii) To all Neu_{Cgsg} OS are Neu_{Cgs} OS. **Proof:** Similar to the exceeding result. •

Theorem 3.17:

Suppose that \mathcal{U} and \mathcal{V} are Neu_{cgsg} CSs in a Neu_{CTS} (\mathcal{A}, \mathcal{T}), then $\mathcal{U}\cup\mathcal{V}$ is a Neu_{cgsg} CS.

Proof:

Assume that \mathcal{U} and \mathcal{V} be two Neu_{cgsg} CSs in a Neu_{CTS} $(\mathcal{A}, \mathcal{T})$ and assume that \mathcal{M} be any Neu_{csg} OS in \mathcal{A} where $\mathcal{U} \subseteq \mathcal{M}$ and $\mathcal{V} \subseteq \mathcal{M}$. Therefore, we get $\mathcal{U} \cup \mathcal{V} \subseteq \mathcal{M}$. Later \mathcal{U} and \mathcal{V} are Neu_{cgsg} CSs in \mathcal{A} , $Neu_{c}cl(\mathcal{U}) \subseteq \mathcal{M}$ and $Neu_{c}cl(\mathcal{V}) \subseteq \mathcal{M}$. Now, $Neu_{c}cl(\mathcal{U}\cup\mathcal{V}) = Neu_{c}cl(\mathcal{U}) \cup Neu_{c}cl(\mathcal{V}) \subseteq \mathcal{M}$ and so $Neu_{c}cl(\mathcal{U}\cup\mathcal{V}) \subseteq \mathcal{M}$. Hence $\mathcal{U}\cup\mathcal{V}$ stands in \mathcal{A} as a Neu_{cgsg} CS. •

Proposition 3.18:

Assume Neu_{cgsg} CS \mathcal{U} is in a Neu_{CTS} (\mathcal{A}, \mathcal{T}), then $Neu_{c}cl(\mathcal{U}) - \mathcal{U}$ contains no non-empty Neu_{c} CS in (\mathcal{A}, \mathcal{T}). **Proof:**

Postulate that \mathcal{U} is a $Neu_{cgsg}CS$ in a $Neu_{cTS}(\mathcal{A},\mathcal{T})$ and let \mathcal{F} be any $Neu_{c}CS$ in $(\mathcal{A},\mathcal{T})$ where $\mathcal{F} \subseteq Neu_{c}cl(\mathcal{U}) - \mathcal{U}$. Since \mathcal{U} is a $Neu_{cgsg}CS$, we have $Neu_{c}cl(\mathcal{U}) \subseteq \mathcal{A}_{Neu} - \mathcal{F}$. This implies $\mathcal{F} \subseteq \mathcal{A}_{Neu} - Neu_{c}cl(\mathcal{U})$. Then $\mathcal{F} \subseteq Neu_{c}cl(\mathcal{U}) \cap (\mathcal{A}_{Neu} - Neu_{c}cl(\mathcal{U})) = \varphi_{Neu}$. Thus, $\mathcal{F} = \varphi_{Neu}$. Hence $Neu_{c}cl(\mathcal{U}) - \mathcal{U}$ involves no non-null $Neu_{c}CS$ in $(\mathcal{A},\mathcal{T})$.

Proposition 3.19:

A Neu_{c} -set \mathcal{U} is Neu_{cgsg} CS in a $Neu_{cTS}(\mathcal{A}, \mathcal{T})$ iff $Neu_{ccl}(\mathcal{U}) - \mathcal{U}$ contains no non-empty Neu_{csg} CS in $(\mathcal{A}, \mathcal{T})$. **Proof:**

Postulate that \mathcal{U} is a $Neu_{Cgsg}CS$ in a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ and let \mathcal{K} be any $Neu_{Csg}CS$ in $(\mathcal{A},\mathcal{T})$ where $\mathcal{K} \subseteq Neu_{C}cl(\mathcal{U}) - \mathcal{U}$. Meanwhile, \mathcal{U} is a $Neu_{Cgsg}CS$, we have $Neu_{C}cl(\mathcal{U}) \subseteq \mathcal{A}_{Neu} - \mathcal{K}$. This implies $\mathcal{K} \subseteq \mathcal{A}_{Neu} - Neu_{C}cl(\mathcal{U})$. Then $\mathcal{K} \subseteq Neu_{C}cl(\mathcal{U}) \cap (\mathcal{A}_{Neu} - Neu_{C}cl(\mathcal{U})) = \varphi_{Neu}$. Thus, \mathcal{K} is null.

In contrast, suppose that $Neu_{c}cl(\mathcal{U}) - \mathcal{U}$ involves no non-null $Neu_{csg}CS$ in $(\mathcal{A},\mathcal{F})$. Let $\mathcal{U} \subseteq \mathcal{M}$ and \mathcal{M} is $Neu_{csg}OS$. If $Neu_{c}cl(\mathcal{U}) \subseteq \mathcal{M}$ then $Neu_{c}cl(\mathcal{U}) \cap (\mathcal{A}_{Neu} - \mathcal{M})$ is non-empty. Because $Neu_{c}cl(\mathcal{U})$ is $Neu_{c}CS$ and $\mathcal{A}_{Neu} - \mathcal{M}$ is $Neu_{csg}CS$, we have $Neu_{c}cl(\mathcal{U}) \cap (\mathcal{A}_{Neu} - \mathcal{M})$ is non-empty $Neu_{csg}CS$ of $Neu_{c}cl(\mathcal{U}) - \mathcal{U}$, which is a contradiction. Therefore $Neu_{c}cl(\mathcal{U}) \notin \mathcal{M}$. Hence \mathcal{U} is a $Neu_{csg}CS$.

Theorem 3.20:

If \mathcal{U} is a Neu_{Cgsg} CS in a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ where $\mathcal{U} \subseteq \mathcal{V} \subseteq Neu_{C}cl(\mathcal{U})$, then \mathcal{V} is a Neu_{Cgsg} CS in $(\mathcal{A},\mathcal{T})$. **Proof:**

Postulate that \mathcal{U} is a $Neu_{cgsg}CS$ in a $Neu_{cTS}(\mathcal{A},\mathcal{T})$. Postulate \mathcal{M} be a $Neu_{csg}OS$ in $(\mathcal{A},\mathcal{T})$ such that $\mathcal{V} \subseteq \mathcal{M}$. Then $\mathcal{U} \subseteq \mathcal{M}$ and because \mathcal{U} stands as a $Neu_{cgsg}CS$, it follows that $Neu_{c}cl(\mathcal{U}) \subseteq \mathcal{M}$. Now, $\mathcal{V} \subseteq Neu_{c}cl(\mathcal{U})$ implies $Neu_{c}cl(\mathcal{V}) \subseteq Neu_{c}cl(Neu_{c}cl(\mathcal{U})) = Neu_{c}cl(\mathcal{U})$. Thus, $Neu_{c}cl(\mathcal{V}) \subseteq \mathcal{M}$. Hence \mathcal{V} is a $Neu_{casg}CS$.

Proposition 3.21:

Let $\mathcal{U} \subseteq \mathcal{B} \subseteq \mathcal{A}$ and if \mathcal{U} is a Neu_{cgsg} CS in \mathcal{A} , then \mathcal{U} is a Neu_{cgsg} CS relative to \mathcal{B} .

Proof:

 $\mathcal{U} \subseteq \mathcal{B} \cap \mathcal{M}$ everywhere \mathcal{M} is a Neu_{csg} OS in \mathcal{A} . So therefore $\mathcal{U} \subseteq \mathcal{M}$ and consequently $Neu_c cl(\mathcal{U}) \subseteq \mathcal{M}$. It indicates that $\mathcal{B} \cap Neu_c cl(\mathcal{U}) \subseteq \mathcal{B} \cap \mathcal{M}$. Thus \mathcal{U} is a Neu_{casa} CS analogous to \mathcal{B} .

Proposition 3.22:

Assume that \mathcal{U} is a Neu_{Csg} OS and a Neu_{Cgsg} CS in Neu_{CTS} (\mathcal{A}, \mathcal{T}), then \mathcal{U} is a Neu_{C} CS in (\mathcal{A}, \mathcal{T}). **Proof:**

Consider \mathcal{U} is a $Neu_{csg}OS$ and a $Neu_{cgsg}CS$ in $Neu_{CTS}(\mathcal{A},\mathcal{T})$, so therefore $Neu_{c}cl(\mathcal{U}) \subseteq \mathcal{U}$ and since $\mathcal{U} \subseteq Neu_{c}cl(\mathcal{U})$. Thus, $Neu_{c}cl(\mathcal{U}) = \mathcal{U}$. For this reason, \mathcal{U} is a $Neu_{c}CS$.

Theorem 3.23:

If \mathcal{U} and \mathcal{V} are Neu_{cgsg} OSs in a Neu_{CTS} (\mathcal{A}, \mathcal{T}), then $\mathcal{U} \cap \mathcal{V}$ is a Neu_{cgsg} OS.

Proof:

Let \mathcal{U} and \mathcal{V} be Neu_{Cgsg} OSs in a Neu_{CTS} $(\mathcal{A}, \mathcal{T})$. Then $\mathcal{A}_{Neu} - \mathcal{U}$ and $\mathcal{A}_{Neu} - \mathcal{V}$ are Neu_{Cgsg} CSs. By theorem (3.17), $(\mathcal{A}_{Neu} - \mathcal{U}) \cup (\mathcal{A}_{Neu} - \mathcal{V})$ is a Neu_{Cgsg} CS. Since $(\mathcal{A}_{Neu} - \mathcal{U}) \cup (\mathcal{A}_{Neu} - \mathcal{V}) = \mathcal{A}_{Neu} - (\mathcal{U} \cap \mathcal{V})$. For this reason, $\mathcal{U} \cap \mathcal{V}$ is a Neu_{Cgsg} OS.

Theorem 3.24:

A Neu_{C} -set \mathcal{U} is Neu_{Cgsg} OS iff $\mathcal{W} \subseteq Neu_{C}int(\mathcal{U})$ where $\mathcal{W} \subseteq \mathcal{U}$ besides \mathcal{W} stands as a Neu_{Cgsg} CS. **Proof:**

Suppose that $\mathcal{W} \subseteq Neu_cint(\mathcal{U})$ where \mathcal{W} is a $Neu_{cgsg}CS$ and $\mathcal{W} \subseteq \mathcal{U}$. Then $\mathcal{A}_{Neu} - \mathcal{U} \subseteq \mathcal{A}_{Neu} - \mathcal{W}$ and $\mathcal{A}_{Neu} - \mathcal{W}$ is a $Neu_{csg}OS$ by proposition (3.16). Now, $Neu_ccl(\mathcal{A}_{Neu} - \mathcal{U}) = \mathcal{A}_{Neu} - Neu_cint(\mathcal{U}) \subseteq \mathcal{A}_{Neu} - \mathcal{W}$. Then $\mathcal{A}_{Neu} - \mathcal{U}$ is a $Neu_{cgsg}CS$. Hence \mathcal{U} is a $Neu_{cgsg}OS$.

Conversely, let \mathcal{U} be a $Neu_{cgsg}OS$ and \mathcal{W} be a $Neu_{cgsg}CS$ and $\mathcal{W} \subseteq \mathcal{U}$. Then $\mathcal{A}_{Neu} - \mathcal{U} \subseteq \mathcal{A}_{Neu} - \mathcal{W}$. Since $\mathcal{A}_{Neu} - \mathcal{U}$ is a $Neu_{cgsg}CS$ and $\mathcal{A}_{Neu} - \mathcal{W}$ is a $Neu_{csg}OS$, we have $Neu_{c}cl(\mathcal{A}_{Neu} - \mathcal{U}) \subseteq \mathcal{A}_{Neu} - \mathcal{W}$. Then $\mathcal{W} \subseteq Neu_{c}int(\mathcal{U})$.

Theorem 3.25:

If \mathcal{U} is a Neu_{Cgsg} OS in a Neu_{CTS} (\mathcal{A}, \mathcal{T}) and $Neu_{Cint}(\mathcal{U}) \subseteq \mathcal{V} \subseteq \mathcal{U}$, then \mathcal{V} is a Neu_{Cgsg} OS in (\mathcal{A}, \mathcal{T}). **Proof:**

Consider \mathcal{U} is a Neu_{Cgsg} OS in a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ and $Neu_{Cint}(\mathcal{U}) \subseteq \mathcal{V} \subseteq \mathcal{U}$. Then $\mathcal{A}_{Neu} - \mathcal{U}$ remains a Neu_{Cgsg} CS such that $\mathcal{A}_{Neu} - \mathcal{U} \subseteq \mathcal{A}_{Neu} - \mathcal{V} \subseteq Neu_{C}cl(\mathcal{A}_{Neu} - \mathcal{U})$. Then $\mathcal{A}_{Neu} - \mathcal{V}$ is a Neu_{Cgsg} CS by theorem (3.20). Hence, \mathcal{V} is a Neu_{Cgsg} OS.

Theorem 3.26:

For a Neu_C -set \mathcal{U} of a $Neu_{CTS}(\mathcal{A}, \mathcal{T})$, afterwards, the subsequent assertions are the duplicate: (i) \mathcal{U} is a Neu_{Cgsg} CS.

(ii) $Neu_{c}cl(\mathcal{U}) - \mathcal{U}$ includes no non-null Neu_{csg} OS.

(iii) $Neu_C cl(\mathcal{U}) - \mathcal{U}$ is a Neu_{Casa} OS.

Proof:

Observe by employing proposition (3.19) and proposition (3.21).

Remark 3.27:

The succeeding chart covers up the comparison involving the numerous kinds of Neu_CCSs :

Fig.3.1

4. Neutrosophic Crisp gsg-Closure and Neutrosophic Crisp gsg-Interior

We represent Neu_{cgsg} -closure and Neu_{cgsg} -interior and attain various of their advantages in the current part.

Definition 4.1:

The crossing of all Neu_{Cgsg} CSs in a $Neu_{CTS}(\mathcal{A},\mathcal{T})$ involving \mathcal{U} is titled Neu_{Cgsg} -closure of \mathcal{U} and is denoted by $Neu_{Cgsg}cl(\mathcal{U}), Neu_{Cgsg}cl(\mathcal{U}) = \bigcap \{\mathcal{V}: \mathcal{U} \subseteq \mathcal{V}, \mathcal{V} \text{ stands as a } Neu_{Cgsg}CS\}.$

Definition 4.2:

The coalition of all Neu_{cgsg} OSs in a Neu_{cTS} (\mathcal{A}, \mathcal{T}) contained in \mathcal{U} is titled Neu_{cgsg} -interior of \mathcal{U} and is denoted by Neu_{cgsg} int(\mathcal{U}), Neu_{cgsg} int(\mathcal{U}) = $\bigcup \{\mathcal{V}: \mathcal{U} \supseteq \mathcal{V}, \mathcal{V} \text{ is a } Neu_{cgsg}$ OS}.

Proposition 4.3:

Assume that \mathcal{U} is any Neu_{C} -set in a $Neu_{CTS}(\mathcal{A},\mathcal{T})$. Next, the subsequent features stand:

(i) $Neu_{Cgsg}int(\mathcal{U}) = \mathcal{U}$ iff \mathcal{U} is a Neu_{Cgsg} OS.

(ii) $Neu_{Cgsg}cl(\mathcal{U}) = \mathcal{U}$ iff \mathcal{U} is a Neu_{Cgsg} CS.

(iii) $Neu_{Cgsg}int(\mathcal{U})$ is the massive Neu_{Cgsg} OS included in \mathcal{U} .

(iv) $Neu_{Cgsg}cl(\mathcal{U})$ is the minimum Neu_{Cgsg} CS, including \mathcal{U} .

Proof:

The evidence of the points above is apparent.

Proposition 4.4:

Suppose that \mathcal{U} be any Neu_{C} -set in a $Neu_{CTS}(\mathcal{A},\mathcal{T})$. So therefore, the subsequent features determined: (i) $Neu_{Cgsg}int(\mathcal{A}_{Neu} - \mathcal{U}) = \mathcal{A}_{Neu} - (Neu_{Cgsg}cl(\mathcal{U}))$, (ii) $Neu_{Cgsg}cl(\mathcal{A}_{Neu} - \mathcal{U}) = \mathcal{A}_{Neu} - (Neu_{Cgsg}int(\mathcal{U}))$. **Proof:** (i) By definition, $Neu_{Cgsg}cl(\mathcal{U}) = \bigcap\{\mathcal{V}: \mathcal{U} \subseteq \mathcal{V}, \mathcal{V} \text{ stands as a } Neu_{Cgsg}CS\}$ $\mathcal{A}_{Neu} - (Neu_{Cgsg}cl(\mathcal{U})) = \mathcal{A}_{Neu} - \bigcap\{\mathcal{V}: \mathcal{U} \subseteq \mathcal{V}, \mathcal{V} \text{ is a } Neu_{Cgsg}CS\}$ $= \bigcup\{\mathcal{A}_{Neu} - \mathcal{V}: \mathcal{U} \subseteq \mathcal{V}, \mathcal{V} \text{ is a } Neu_{Cgsg}CS\}$ $= \bigcup\{\mathcal{M}: \mathcal{A}_{Neu} - \mathcal{U} \supseteq \mathcal{M}, \mathcal{M} \text{ is a } Neu_{Cgsg}OS\}$ $= Neu_{Cgsg}int(\mathcal{A}_{Neu} - \mathcal{U}).$

(ii) The facts is comparable to (i).

Theorem 4.5:

Assume that \mathcal{U} and \mathcal{V} are two Neu_{C} -sets in a $Neu_{CTS}(\mathcal{A},\mathcal{T})$. Next, the subsequent features stand: (i) $Neu_{Cgsg}cl(\varphi_{Neu}) = \varphi_{Neu}$, $Neu_{Cgsg}cl(\mathcal{A}_{Neu}) = \mathcal{A}_{Neu}$. (ii) $\mathcal{U} \subseteq Neu_{Cgsg}cl(\mathcal{U})$. (iii) $\mathcal{U} \subseteq \mathcal{V} \Rightarrow Neu_{Cgsg}cl(\mathcal{U}) \subseteq Neu_{Cgsg}cl(\mathcal{V})$. (iv) $Neu_{Cgsg}cl(\mathcal{U}\cap\mathcal{V}) \subseteq Neu_{Cgsg}cl(\mathcal{U}) \cap Neu_{Cgsg}cl(\mathcal{V})$. (v) $Neu_{Cgsg}cl(\mathcal{U}\cup\mathcal{V}) = Neu_{Cgsg}cl(\mathcal{U}) \cup Neu_{Cgsg}cl(\mathcal{V})$. (vi) $Neu_{Cgsg}cl(Neu_{Cgsg}cl(\mathcal{U})) = Neu_{Cgsg}cl(\mathcal{U})$.

Proof:

The first two points are recognizable.

(iii) By applying portion (ii), $\mathcal{V} \subseteq Neu_{Cgsg}cl(\mathcal{V})$. While $\mathcal{U} \subseteq \mathcal{V}$, we get $\mathcal{U} \subseteq Neu_{Cgsg}cl(\mathcal{V})$. However, $Neu_{Cgsg}cl(\mathcal{V})$ is a $Neu_{Cgsg}CS$. In consequence, $Neu_{Cgsg}cl(\mathcal{V})$ is a $Neu_{Cgsg}CS$ including \mathcal{U} . While $Neu_{Cgsg}cl(\mathcal{U})$ is the minimum $Neu_{Cgsg}CS$ including \mathcal{U} , we have $Neu_{Cgsg}cl(\mathcal{U}) \subseteq Neu_{Cgsg}cl(\mathcal{V})$.

(iv) We know that $\mathcal{U}\cap\mathcal{V} \subseteq \mathcal{U}$ and $\mathcal{U}\cap\mathcal{V} \subseteq \mathcal{V}$. Therefore, by part (iii), $Neu_{cgsg}cl(\mathcal{U}\cap\mathcal{V}) \subseteq Neu_{cgsg}cl(\mathcal{U})$ and also we have $Neu_{cgsg}cl(\mathcal{U}\cap\mathcal{V}) \subseteq Neu_{cgsg}cl(\mathcal{U})$. Hence $Neu_{cgsg}cl(\mathcal{U}\cap\mathcal{V}) \subseteq Neu_{cgsg}cl(\mathcal{U})\cap Neu_{cgsg}cl(\mathcal{V})$. (v) Since $\mathcal{U} \subseteq \mathcal{U}\cup\mathcal{V}$ and $\mathcal{V} \subseteq \mathcal{U}\cup\mathcal{V}$, it results from part (iii) that $Neu_{cgsg}cl(\mathcal{U}) \subseteq Neu_{cgsg}cl(\mathcal{U}\cup\mathcal{V})$ and also we have $Neu_{cgsg}cl(\mathcal{V}) \subseteq Neu_{cgsg}cl(\mathcal{U}\cup\mathcal{V})$. Hence $Neu_{cgsg}cl(\mathcal{U})\cup Neu_{cgsg}cl(\mathcal{U}) \subseteq Neu_{cgsg}cl(\mathcal{U}\cup\mathcal{V})$ and also we have $Neu_{cgsg}cl(\mathcal{V}) \subseteq Neu_{cgsg}cl(\mathcal{U}\cup\mathcal{V})$. Hence $Neu_{cgsg}cl(\mathcal{U})\cup Neu_{cgsg}cl(\mathcal{V}) \subseteq Neu_{cgsg}cl(\mathcal{U}\cup\mathcal{V})$(1) Since $Neu_{cgsg}cl(\mathcal{U})$ and $Neu_{cgsg}cl(\mathcal{U})$ are $Neu_{cgsg}cl(\mathcal{U})\cup Neu_{cgsg}cl(\mathcal{V})$ is also $Neu_{cgsg}CS$ by theorem (3.17). Also $\mathcal{U} \subseteq Neu_{cgsg}cl(\mathcal{U})$ and $\mathcal{V} \subseteq Neu_{cgsg}cl(\mathcal{V})$ implies that $\mathcal{U}\cup\mathcal{V} \subseteq Neu_{cgsg}cl(\mathcal{U})\cup Neu_{cgsg}cl(\mathcal{U})$. Thus $Neu_{cgsg}cl(\mathcal{U})\cup Neu_{cgsg}cl(\mathcal{V})$ is a $Neu_{cgsg}cS$ containing $\mathcal{U}\cup\mathcal{V}$. Since $Neu_{cgsg}cl(\mathcal{U}\cup\mathcal{V})$ is the smallest $Neu_{cgsg}CS$ containing $\mathcal{U}\cup\mathcal{V}$, we get $Neu_{cgsg}cl(\mathcal{U}\cup\mathcal{V}) \subseteq Neu_{cgsg}cl(\mathcal{U}\cup\mathcal{V})$ is the smallest $Neu_{cgsg}cS$ containing $\mathcal{U}\cup\mathcal{V}$, we get $Neu_{cgsg}cl(\mathcal{U}\cup\mathcal{V}) \subseteq Neu_{cgsg}cl(\mathcal{U}\cup\mathcal{V})$(2)

From (1) and (2), we get $Neu_{Cgsg}cl(U\cup V) = Neu_{Cgsg}cl(U) \cup Neu_{Cgsg}cl(V)$.

(vi) Since $Neu_{cgsg}cl(\mathcal{U})$ is a $Neu_{cgsg}CS$, we have by proposition (4.3) part (ii), $Neu_{cgsg}cl(Neu_{cgsg}cl(\mathcal{U})) = Neu_{cgsg}cl(\mathcal{U})$.

Theorem 4.6:

Assume that \mathcal{U} and \mathcal{V} are two Neu_{C} -sets in a $Neu_{CTS}(\mathcal{A}, \mathcal{T})$. So therefore, the subsequent features stand: (i) $Neu_{Cgsg}int(\varphi_{Neu}) = \varphi_{Neu}$, $Neu_{Cgsg}int(\mathcal{A}_{Neu}) = \mathcal{A}_{Neu}$. (ii) $Neu_{Cgsg}int(\mathcal{U}) \subseteq \mathcal{U}$. (iii) $\mathcal{U} \subseteq \mathcal{V} \Longrightarrow Neu_{Cgsg}int(\mathcal{U}) \subseteq Neu_{Cgsg}int(\mathcal{V})$. (iv) $Neu_{Cgsg}int(\mathcal{U}\cap\mathcal{V}) = Neu_{Cgsg}int(\mathcal{U})\cap Neu_{Cgsg}int(\mathcal{V})$. (v) $Neu_{Cgsg}int(\mathcal{U}\cup\mathcal{V}) \supseteq Neu_{Cgsg}int(\mathcal{U}) \cup Neu_{Cgsg}int(\mathcal{V})$. (vi) $Neu_{Cgsg}int(Neu_{Cgsg}int(\mathcal{U})) = Neu_{Cgsg}int(\mathcal{U})$. **Proof:** The above points are noticeable.

Definition 4.7: [12]

A Neu_{CTS} (\mathcal{A}, \mathcal{T}) is stated to be a neutrosophic crisp $T_{\frac{1}{2}}$ -space (fleetingly, $Neu_C T_{\frac{1}{2}}$ -space) if for all Neu_{Cg} CS in it are Neu_C CS.

Definition 4.8:

A Neu_{CTS} (\mathcal{A}, \mathcal{T}) is stated to be a neutrosophic crisp T_{gsg} -space (fleetingly, $Neu_C T_{gsg}$ -space) if for all Neu_{Cgsg} CS in it are Neu_C CS.

Proposition 4.9:

Each $Neu_C T_{\underline{1}}$ -space is a $Neu_C T_{gsg}$ -space.

Proof:

Consider $(\mathcal{A}, \mathcal{T})$ is a $Neu_C T_{\frac{1}{2}}$ -space and Assume \mathcal{U} is a Neu_{Cgsg} CS in \mathcal{A} . Therefore, \mathcal{U} is a Neu_{Cg} CS, by employing proposition (3.7) part (ii) While $(\mathcal{A}, \mathcal{T})$ is a Neu \mathcal{T} , space then \mathcal{U} is a Neu \mathcal{C} S in \mathcal{A} . Thus, $(\mathcal{A}, \mathcal{T})$ is a Neu \mathcal{T} .

proposition (3.7) part (ii). While $(\mathcal{A}, \mathcal{T})$ is a $Neu_C T_{\frac{1}{2}}$ -space, then \mathcal{U} is a $Neu_C CS$ in \mathcal{A} . Thus, $(\mathcal{A}, \mathcal{T})$ is a $Neu_C T_{gsg}$ -

space.

The subsequent occurrence discloses that the beyond proposition's reverse is not valid.

Example 4.10:

Suppose $\mathcal{A} = \{v_1, v_2, v_3\}$. Let $\mathcal{T} = \{\varphi_{Neu}, \langle \{v_1\}, \varphi, \varphi \rangle, \langle \{v_2, v_3\}, \varphi, \varphi \rangle, \mathcal{A}_{Neu}\}$ be a Neu_{CT} on \mathcal{A} . Then $(\mathcal{A}, \mathcal{T})$ is a $Neu_{C}T_{gsg}$ -space but not $Neu_{C}T_{\underline{1}}$ -space.

5. Neutrosophic Crisp gsg-Continuous Functions

In this circumstance, we pioneer and investigate the neutrosophic crisp gsg-continuous functions with several of their features.

Definition 5.1:

A function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ is named neutrosophic crisp *g*-continuous and symbolized by Neu_{cg} -continuous if $t^{-1}(\mathcal{U})$ is a $Neu_{cg}CS$ ($Neu_{cg}OS$) in $(\mathcal{A}, \mathcal{T})$ for each $Neu_{c}CS$ ($Neu_{c}OS$) \mathcal{U} in $(\mathcal{B}, \mathcal{L})$.

Definition 5.2:

A function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ is named neutrosophic crisp *sg*-continuous and symbolized by Neu_{csg} -continuous if $t^{-1}(\mathcal{U})$ is a Neu_{csg} CS (Neu_{csg} OS) in (\mathcal{A}, \mathcal{T}) for each Neu_c CS (Neu_c OS) \mathcal{U} in (\mathcal{B}, \mathcal{L}).

Definition 5.3:

A function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ is named neutrosophic crisp *gs*-continuous and symbolized by Neu_{cgs} -continuous if $t^{-1}(\mathcal{U})$ is a Neu_{cgs} CS (Neu_{cgs} OS) in (\mathcal{A}, \mathcal{T}) for each Neu_c CS (Neu_c OS) \mathcal{U} in (\mathcal{B}, \mathcal{L}).

Doi : https://doi.org/10.54216/IJNS.200408 Received: December 19, 2022 Accepted: March 09, 2023

Definition 5.4:

A function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ is named neutrosophic crisp gsg-continuous and symbolized by Neu_{Cgsg} -continuous if $t^{-1}(\mathcal{U})$ is a Neu_{Cgsg} CS (Neu_{Cgsg} OS) in (\mathcal{A}, \mathcal{T}) for each Neu_{C} CS (Neu_{C} OS) \mathcal{U} in (\mathcal{B}, \mathcal{L}).

Proposition 5.5:

(i) Each Neu_C -continuous is a Neu_{Cg} -continuous.

(ii) Each Neu_{Cg} -continuous is a Neu_{Cgs} -continuous.

(iii) Each Neu_{Cs} -continuous is a Neu_{Csg} -continuous.

(iv) Each Neu_{csg} -continuous is a Neu_{cgs} -continuous.

Proof:

(i) Let $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ be a $Neu_{\mathcal{C}}$ -continuous function and let \mathcal{U} be a $Neu_{\mathcal{C}}CS$ in $(\mathcal{B}, \mathcal{L})$, since t is a $Neu_{\mathcal{C}}$ -continuous then $t^{-1}(\mathcal{U})$ is a $Neu_{\mathcal{C}}CS$ in $(\mathcal{A}, \mathcal{T})$. Hence t is a $Neu_{\mathcal{C}}_{\mathcal{G}}$ -continuous.

(ii) Let $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ be a Neu_{Cg} -continuous function and let \mathcal{U} be a $Neu_{C}CS$ in $(\mathcal{B}, \mathcal{L})$, since t is a Neu_{Cg} -continuous then $t^{-1}(\mathcal{U})$ is a $Neu_{Cg}CS$ in $(\mathcal{A}, \mathcal{T})$, which implies $t^{-1}(\mathcal{U})$ is a $Neu_{Cgs}CS$ in $(\mathcal{A}, \mathcal{T})$. Hence t is a Neu_{Cgs} -continuous. The proof is evident to others.

The contrast of the upper proposition need not be accurate, as indicated in the subsequent instances.

Example 5.6:

 $\begin{array}{lll} \text{Suppose} & \mathcal{A} = \{s_1, s_2, s_3, s_4\} & \text{and} & \mathcal{B} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}. & \text{Then} & \mathcal{T} = \{\varphi_{Neu}, \langle \{s_1\}, \varphi, \varphi \rangle, \langle \{s_2, s_3\}, \varphi, \varphi \rangle, \langle \{s_1, s_2, s_3\}, \varphi, \varphi \rangle, \mathcal{A}_{Neu}\} & \text{and} & \mathcal{L} = \{\varphi_{Neu}, \langle \{\sigma_1\}, \varphi, \varphi \rangle, \langle \{\sigma_2, \sigma_3\}, \varphi, \varphi \rangle, \langle \{\sigma_1, \sigma_2, \sigma_3\}, \varphi, \varphi \rangle, \mathcal{B}_{Neu}\} & \text{are} & Neu_{CTSS} & \text{on} & \mathcal{A} & \text{and} & \mathcal{B}, \text{ respectively. Define the} \\ \text{function} & t: (\mathcal{A}, \mathcal{T}) \rightarrow (\mathcal{B}, \mathcal{L}) & \text{via} & t(\langle \{s_1\}, \varphi, \varphi \rangle) = \langle \{\sigma_2\}, \varphi, \varphi \rangle, t(\langle \{s_2\}, \varphi, \varphi \rangle) = \langle \{\sigma_1\}, \varphi, \varphi \rangle, t(\langle \{s_3\}, \varphi, \varphi \rangle) = \langle \{\sigma_3\}, \varphi, \varphi \rangle. & \text{Then} & t \text{ is a} & Neu_{Cg} \text{-continuous, just not} & Neu_{C}\text{-continuous.} \\ \end{array}$

Example 5.7:

 $\begin{array}{lll} \text{Suppose} & \mathcal{A} = \{s_1, s_2, s_3, s_4\} & \text{and} & \mathcal{B} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}. & \text{Then} & \mathcal{T} = \{\varphi_{Neu}, \langle \{s_1\}, \varphi, \varphi \rangle, \langle \{s_2, s_4\}, \varphi, \varphi \rangle, \langle \{s_1, s_2, s_4\}, \varphi, \varphi \rangle, \mathcal{A}_{Neu}\} & \text{and} & \mathcal{L} = \{\phi_{Neu}, \langle \{\sigma_1\}, \varphi, \varphi \rangle, \langle \{\sigma_2, \sigma_3\}, \varphi, \varphi \rangle, \langle \{\sigma_1, \sigma_2, \sigma_3\}, \varphi, \varphi \rangle, \mathcal{B}_{Neu}\} & \text{are} & Neu_{CTSS} & \text{on} & \mathcal{A} & \text{and} & \mathcal{B}, & \text{correspondingly. Define the} \\ \text{function} & t: (\mathcal{A}, \mathcal{T}) \rightarrow (\mathcal{B}, \mathcal{L}) & \text{via} & t(\langle \{s_1\}, \varphi, \varphi \rangle) = \langle \{\sigma_2\}, \varphi, \varphi \rangle, & t(\langle \{s_2\}, \varphi, \varphi \rangle) = \langle \{\sigma_1\}, \varphi, \varphi \rangle, t(\langle \{s_3\}, \varphi, \varphi \rangle) = \langle \{\sigma_3\}, \varphi, \varphi \rangle, t(\langle \{s_4\}, \varphi, \varphi \rangle) = \langle \{\sigma_4\}, \varphi, \varphi \rangle. & \text{Then} & t \text{ is a} & Neu_{cgs}\text{-continuous, just not} & Neu_{cg}\text{-continuous.} \\ \end{array}$

Example 5.8:

Suppose $\mathcal{A} = \{s_1, s_2, s_3, s_4\}$ and $\mathcal{B} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$. Then $\mathcal{T} = \{\varphi_{Neu}, \langle \{s_4\}, \varphi, \varphi\rangle, \langle \{s_1, s_3\}, \varphi, \varphi\rangle, \langle \{s_1, s_3, s_4\}, \varphi, \varphi\rangle, \mathcal{A}_{Neu}\}$ and $\mathcal{L} = \{\varphi_{Neu}, \langle \{\sigma_1\}, \varphi, \varphi\rangle, \langle \{\sigma_2, \sigma_3\}, \varphi, \varphi\rangle, \langle \{\sigma_1, \sigma_2, \sigma_3\}, \varphi, \varphi\rangle, \mathcal{B}_{Neu}\}$ are Neu_{CTSS} on \mathcal{A} and \mathcal{B} , correspondingly. Define the function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ via $t(\langle \{s_1\}, \varphi, \varphi\rangle) = \langle \{\sigma_1\}, \varphi, \varphi\rangle, t(\langle \{s_2\}, \varphi, \varphi\rangle) = \langle \{\sigma_4\}, \varphi, \varphi\rangle, t(\langle \{s_3\}, \varphi, \varphi\rangle) = \langle \{\sigma_2\}, \varphi, \varphi\rangle, t(\langle \{s_4\}, \varphi, \varphi\rangle) = \langle \{\sigma_3\}, \varphi, \varphi\rangle$. Then t is a Neu_{CSG} -continuous, just not Neu_{CS} -continuous.

Example 5.9:

Suppose $\mathcal{A} = \{s_1, s_2, s_3\}$ and $\mathcal{B} = \{\sigma_1, \sigma_2, \sigma_3\}$. Then $\mathcal{T} = \{\varphi_{Neu}, \langle \{s_1\}, \varphi, \varphi\rangle, \mathcal{A}_{Neu}\}$ and $\mathcal{L} = \{\varphi_{Neu}, \langle \{\sigma_2\}, \varphi, \varphi\rangle, \mathcal{B}_{Neu}\}$ are Neu_{CTSS} on \mathcal{A} and \mathcal{B} , correspondingly. Define the function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ via $t(\langle \{s_1\}, \varphi, \varphi\rangle) = \langle \{\sigma_1\}, \varphi, \varphi\rangle, t(\langle \{s_2\}, \varphi, \varphi\rangle) = \langle \{\sigma_3\}, \varphi, \varphi\rangle, t(\langle \{s_3\}, \varphi, \varphi\rangle) = \langle \{\sigma_2\}, \varphi, \varphi\rangle$. Then t is a Neu_{Cgs} -continuous, just not Neu_{Csa} -continuous.

Theorem 5.10:

Suppose that the following $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ is given such that $(\mathcal{A}, \mathcal{T})$ is (i) a $Neu_C T_{\frac{1}{2}}$ -space, therefore t is a Neu_{Cg} -continuous iff t is a Neu_{Cgsg} -continuous. (ii) a $Neu_C T_{asg}$ -space, therefore t is a Neu_C -continuous iff t is a Neu_{Casg} -continuous.

Proof:

(i) Assume \mathcal{U} be a Neu_CCS in $(\mathcal{B}, \mathcal{L})$. Because t is a Neu_{Cg} -continuous, then $t^{-1}(\mathcal{U})$ in $(\mathcal{A}, \mathcal{T})$ remains a $Neu_{Cg}CS$. By $(\mathcal{A}, \mathcal{T})$ is a $Neu_CT_{\frac{1}{2}}$ -space, which implies $t^{-1}(\mathcal{U})$ is a Neu_CCS . By proposition (3.7) part (i), $t^{-1}(\mathcal{U})$ is a $Neu_{Cgsg}CS$ in $(\mathcal{A}, \mathcal{T})$. Hence, t is a Neu_{Cgsg} -continuous.

Conversely, suppose that t is a Neu_{cgsg} -continuous. Let U be a Neu_c CS in $(\mathcal{B}, \mathcal{L})$. Then $t^{-1}(U)$ is a Neu_{cgsg} CS in $(\mathcal{A}, \mathcal{T})$. By proposition (3.7) part (ii), $t^{-1}(U)$ is a Neu_{cg} CS in $(\mathcal{A}, \mathcal{T})$. Hence t is a Neu_{cg} -continuous.

(ii) Let $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ be a Neu_C -continuous function and let \mathcal{U} be a Neu_CCS in $(\mathcal{B}, \mathcal{L})$, since t is a Neu_C -continuous then $t^{-1}(\mathcal{U})$ is a Neu_CCS in $(\mathcal{A}, \mathcal{T})$, which implies $t^{-1}(\mathcal{U})$ is a $Neu_{Cgsg}CS$ in $(\mathcal{A}, \mathcal{T})$. Hence t is a Neu_{Cgsg} -continuous.

Conversely, suppose that t is a Neu_{Cgsg} -continuous. Let \mathcal{U} be a $Neu_{C}CS$ in $(\mathcal{B}, \mathcal{L})$. Then $t^{-1}(\mathcal{U})$ is a $Neu_{Cgsg}CS$ in $(\mathcal{A}, \mathcal{T})$. By $(\mathcal{A}, \mathcal{T})$ is a $Neu_{C}T_{gsg}$ -space, which implies $t^{-1}(\mathcal{U})$ is a $Neu_{C}CS$ in $(\mathcal{A}, \mathcal{T})$. Hence, t is a Neu_{C} -continuous.

Proposition 5.11:

(i) Each Neu_{Cgsg} -continuous is a Neu_{Csg} -continuous.

(ii) Each Neu_{Cgsg} -continuous is a Neu_{Cgs} -continuous.

Proof:

(i) Let $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ be a Neu_{Cgsg} -continuous function and let \mathcal{U} be a $Neu_{C}CS$ in $(\mathcal{B}, \mathcal{L})$, since t is a Neu_{Cgsg} -continuous then $t^{-1}(\mathcal{U})$ is a $Neu_{Cgsg}CS$ in $(\mathcal{A}, \mathcal{T})$, which implies $t^{-1}(\mathcal{U})$ is a $Neu_{Csg}CS$ in $(\mathcal{A}, \mathcal{T})$. Hence t is a Neu_{Csg} -continuous.

(ii) Let $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ be a Neu_{cgsg} -continuous function and let \mathcal{U} be a $Neu_{c}CS$ in $(\mathcal{B}, \mathcal{L})$, since t is a Neu_{cgsg} -continuous then $t^{-1}(\mathcal{U})$ is a $Neu_{cgsg}CS$ in $(\mathcal{A}, \mathcal{T})$, which implies $t^{-1}(\mathcal{U})$ is a $Neu_{cgs}CS$ in $(\mathcal{A}, \mathcal{T})$. Hence t is a Neu_{cgs} -continuous.

As the subsequent example indicates, the beyond proposition's reverse need not be accurate.

Example 5.12:

 $\begin{array}{lll} \text{Suppose} & \mathcal{A} = \{s_1, s_2, s_3, s_4\} & \text{and} & \mathcal{B} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}. & \text{Then} & \mathcal{T} = \{\varphi_{Neu}, \{\{s_1\}, \varphi, \varphi\rangle, \{\{s_2, s_4\}, \varphi, \varphi\rangle, \langle\{s_1, s_2, s_4\}, \varphi, \varphi\rangle, \mathcal{A}_{Neu}\} & \text{and} & \mathcal{L} = \{\varphi_{Neu}, \{\{\sigma_2\}, \varphi, \varphi\rangle, \langle\{\sigma_1, \sigma_3\}, \varphi, \varphi\rangle, \{\{\sigma_1, \sigma_2, \sigma_3\}, \varphi, \varphi\rangle, \mathcal{B}_{Neu}\} & \text{are } Neu_{CTSS} & \text{on} \ \mathcal{A} & \text{and} \ \mathcal{B}, & \text{correspondingly. Define the function} \ t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L}) & \text{where} \ t(\langle\{s_1\}, \varphi, \varphi\rangle) = \langle\{\sigma_3\}, \varphi, \varphi\rangle, t(\langle\{s_2\}, \varphi, \varphi\rangle) = \langle\{\sigma_1\}, \varphi, \varphi\rangle, t(\langle\{s_3\}, \varphi, \varphi\rangle) = \langle\{\sigma_4\}, \varphi, \varphi\rangle, t(\langle\{s_4\}, \varphi, \varphi\rangle) = \langle\{\sigma_2\}, \varphi, \varphi\rangle. & \text{Then} \ t & \text{is a} \ Neu_{CSG} \text{-continuous and} & Neu_{Cgs} \text{-continuous but not} \\ Neu_{Cgsg} \text{-continuous.} & \end{array}$

Theorem 5.13:

A function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ is Neu_{cgsg} -continuous iff $t(Neu_{cgsg}cl(\mathcal{U})) \subseteq Neu_{cgsg}cl(t(\mathcal{U}))$, for every $\mathcal{U} \subseteq \mathcal{A}$.

Proof:

Let t be Neu_{cgsg} -continuous and $\mathcal{U} \subseteq \mathcal{A}$. Then $t(\mathcal{U}) \subseteq \mathcal{B}$. Since t is Neu_{cgsg} -continuous and $Neu_{cgsg}cl(t(\mathcal{U}))$ is $Neu_{c}CS$ in $(\mathcal{B},\mathcal{L})$, $t^{-1}(Neu_{cgsg}cl(t(\mathcal{U})))$ is a $Neu_{cgsg}CS$ in $(\mathcal{A},\mathcal{T})$. Since $t(\mathcal{U}) \subseteq Neu_{cgsg}cl(t(\mathcal{U}))$, $t^{-1}(t(\mathcal{U})) \subseteq t^{-1}(Neu_{cgsg}cl(t(\mathcal{U})))$, then $Neu_{cgsg}cl(\mathcal{U}) \subseteq Neu_{cgsg}cl(t^{-1}(Neu_{cgsg}cl(t(\mathcal{U})))) = t^{-1}(Neu_{cgsg}cl(t(\mathcal{U})))$. Thus $Neu_{cgsg}cl(\mathcal{U}) \subseteq t^{-1}(Neu_{cgsg}cl(t(\mathcal{U})))$. Therefore $t(Neu_{cgsg}cl(\mathcal{U})) \subseteq Neu_{cgsg}cl(t(\mathcal{U}))$, for every $\mathcal{U} \subseteq \mathcal{A}$.

Conversely, let $t(Neu_{cgsg}cl(\mathcal{U})) \subseteq Neu_{cgsg}cl(t(\mathcal{U}))$, for every $\mathcal{U} \subseteq \mathcal{A}$. If \mathcal{V} is Neu_c CS in $(\mathcal{B},\mathcal{L})$, since $t^{-1}(\mathcal{V}) \subseteq \mathcal{A}$, $t(Neu_{cgsg}cl(t^{-1}(\mathcal{V}))) \subseteq Neu_{cgsg}cl(t(t^{-1}(\mathcal{V}))) = Neu_{cgsg}cl(\mathcal{V}) = \mathcal{V}$. That is $t(Neu_{cgsg}cl(t^{-1}(\mathcal{V}))) \subseteq \mathcal{V}$, hence $Neu_{cgsg}cl(t^{-1}(\mathcal{V})) \subseteq t^{-1}(\mathcal{V})$ but $t^{-1}(\mathcal{V}) \subseteq Neu_{cgsg}cl(t^{-1}(\mathcal{V}))$. This mean $Neu_{cgsg}cl(t^{-1}(\mathcal{V})) = t^{-1}(\mathcal{V})$. Therefore $t^{-1}(\mathcal{V})$ is $Neu_{cgsg}CS$ in $(\mathcal{A},\mathcal{T})$. Hence t is Neu_{cgsg} -continuous.

Definition 5.14:

A function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ is named neutrosophic crisp gsg^* -continuous and symbolized by Neu_{Cgsg^*} continuous if $t^{-1}(\mathcal{U})$ is a $Neu_{C}CS$ ($Neu_{C}OS$) in $(\mathcal{A}, \mathcal{T})$ for each $Neu_{Cgsg}CS$ ($Neu_{Cgsg}OS$) \mathcal{U} in $(\mathcal{B}, \mathcal{L})$.

Definition 5.15:

A function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ is named neutrosophic crisp gsg^{**} -continuous and symbolized by $Neu_{Cgsg^{**}}$ -continuous if $t^{-1}(\mathcal{U})$ is a Neu_{Casa} CS (Neu_{Casa} OS) in (\mathcal{A}, \mathcal{T}) for each Neu_{Casa} CS (Neu_{Casa} OS) \mathcal{U} in (\mathcal{B}, \mathcal{L}).

Proposition 5.16:

(i) Each Neu_{Cgsg^*} -continuous is a $Neu_{Cgsg^{**}}$ -continuous.

(ii) Each Neu_{Cgsg} -continuous is a Neu_{Cgsg}^{**} -continuous.

Proof:

(i) Let $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ be a Neu_{Cgsg^*} -continuous function and suppose that \mathcal{U} is a Neu_{Cgsg} CS in $(\mathcal{B}, \mathcal{L})$. Since t is a Neu_{Cgsg^*} -continuous, then $t^{-1}(\mathcal{U})$ is a Neu_C CS in $(\mathcal{A}, \mathcal{T})$, which implies $t^{-1}(\mathcal{U})$ is a Neu_{Cgsg} CS in $(\mathcal{A}, \mathcal{T})$. Hence t is a $Neu_{Cgsg^{**}}$ -continuous.

(ii) Let $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ be a Neu_{Cgsg} -continuous function and let \mathcal{U} be a $Neu_{C}CS$ in $(\mathcal{B}, \mathcal{L})$, which implies \mathcal{U} is a $Neu_{Cgsg}CS$ in $(\mathcal{B}, \mathcal{L})$. Since t is a Neu_{Cgsg} -continuous, then $t^{-1}(\mathcal{U})$ is a $Neu_{Cgsg}CS$ in $(\mathcal{A}, \mathcal{T})$. Hence t is a Neu_{Cgsg}^{**} -continuous.

The contrast of the upper proposition need not be true, as seen in the subsequent instances.

Example 5.17:

Suppose $\mathcal{A} = \{s_1, s_2, s_3, s_4\}$ and $\mathcal{B} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$.

Then $\mathcal{T} = \{\varphi_{Neu}, \langle \{s_4\}, \varphi, \varphi \rangle, \langle \{s_1, s_3\}, \varphi, \varphi \rangle, \langle \{s_1, s_3, s_4\}, \varphi, \varphi \rangle, \mathcal{A}_{Neu} \}$ and $\mathcal{L} = \{\varphi_{Neu}, \langle \{\sigma_1\}, \varphi, \varphi \rangle, \langle \{\sigma_2, \sigma_3\}, \varphi, \varphi \rangle, \langle \{\sigma_1, \sigma_2, \sigma_3\}, \varphi, \varphi \rangle, \mathcal{B}_{Neu} \}$ are Neu_{CTSS} on \mathcal{A} and \mathcal{B} , respectively. Identify the function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ such that $t(\langle \{s_1\}, \varphi, \varphi \rangle) = \langle \{\sigma_1\}, \varphi, \varphi \rangle, t(\langle \{s_2\}, \varphi, \varphi \rangle) = \langle \{\sigma_4\}, \varphi, \varphi \rangle, t(\langle \{s_3\}, \varphi, \varphi \rangle) = \langle \{\sigma_2\}, \varphi, \varphi \rangle, t(\langle \{s_4\}, \varphi, \varphi \rangle) = \langle \{\sigma_3\}, \varphi, \varphi \rangle$. Then t is a $Neu_{Cgsg^{**}}$ -continuous, just not $Neu_{Cgsg^{*}}$ -continuous.

Example 5.18:

 $\mathcal{A} = \{s_1, s_2, s_3, s_4\}$ $\mathcal{B} = \{ \sigma_1, \sigma_2, \sigma_3, \sigma_4 \}.$ $\mathcal{T} =$ Suppose and Then $\{\varphi_{Neu}, \langle \{s_3\}, \varphi, \varphi \rangle, \langle \{s_1, s_4\}, \varphi, \varphi \rangle, \langle \{s_1, s_3, s_4\}, \varphi, \varphi \rangle, \mathcal{A}_{Neu} \}$ and $\mathcal{L} =$ $\{\varphi_{Neu}, \langle \{\sigma_4\}, \varphi, \varphi \rangle, \langle \{\sigma_1, \sigma_3\}, \varphi, \varphi \rangle, \langle \{\sigma_1, \sigma_3, \sigma_4\}, \varphi, \varphi \rangle, \mathcal{B}_{Neu} \}$ are Neu_{CTSS} on \mathcal{A} and \mathcal{B} , respectively. Identify the function $t: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ such that $t(\langle \{s_1\}, \varphi, \varphi \rangle) = \langle \{\sigma_1\}, \varphi, \varphi \rangle,$ $t(\langle \{s_2\}, \varphi, \varphi \rangle) =$ $\langle \{\sigma_2\}, \varphi, \varphi \rangle, t(\langle \{s_3\}, \varphi, \varphi \rangle) = \langle \{\sigma_3\}, \varphi, \varphi \rangle, t(\langle \{s_4\}, \varphi, \varphi \rangle) = \langle \{\sigma_4\}, \varphi, \varphi \rangle$. Then t is a $Neu_{Cgsg^{**}}$ -continuous, just not *Neu_{Cgsg}*-continuous.

Theorem 5.19:

Let $t_1: (\mathcal{A}, \mathcal{T}) \to (\mathcal{B}, \mathcal{L})$ and $t_2: (\mathcal{B}, \mathcal{L}) \to (\mathcal{C}, \mathcal{I})$ be two functions, then:

(i) If t_1 and t_2 are Neu_{cgsg^*} -continuous, then $t_2 \circ t_1: (\mathcal{A}, \mathcal{T}) \to (\mathcal{C}, \mathcal{I})$ is a Neu_{cgsg^*} -continuous function.

(ii) If t_1 and t_2 are $Neu_{Cgsg^{**}}$ -continuous, then $t_2 \circ t_1: (\mathcal{A}, \mathcal{T}) \to (\mathcal{C}, \mathcal{I})$ is a $Neu_{Cgsg^{**}}$ -continuous function.

(iii) If t_1 is a $Neu_{Cgsg^{**}}$ -continuous and t_2 is a Neu_{Cgsg^*} -continuous, then $t_2 \circ t_1: (\mathcal{A}, \mathcal{T}) \to (\mathcal{C}, \mathcal{I})$ is a $Neu_{Cgsg^{**}}$ -continuous function.

(iv) If t_1 is a Neu_C -continuous and t_2 is a Neu_{Cgsg} -continuous (Neu_{Cgsg^*} -continuous, $Neu_{Cgsg^{**}}$ -continuous), then $t_2 \circ t_1: (\mathcal{A}, \mathcal{T}) \to (\mathcal{C}, \mathcal{I})$ is a Neu_{Cgsg} -continuous (Neu_{Cgsg^*} -continuous, $Neu_{Cgsg^{**}}$ -continuous) function. **Proof:**

(i) Let $\mathcal{K} \subseteq \mathcal{C}$ be a Neu_{Cgsg} CS, since t_2 is a Neu_{Cgsg^*} -continuous then $t_2^{-1}(\mathcal{K})$ stands a Neu_C CS in \mathcal{B} . Since every Neu_C CS is a Neu_{Cgsg} CS, therefore $t_2^{-1}(\mathcal{K})$ stands a Neu_{Cgsg} CS in \mathcal{B} . Since t_1 is Neu_{Cgsg^*} -continuous, $t_1^{-1}(t_2^{-1}(\mathcal{K}))$ is a Neu_C CS in \mathcal{A} . Thus $(t_2 \circ t_1)^{-1}(\mathcal{K})$ is a Neu_C CS in \mathcal{A} . Hence $t_2 \circ t_1$ is a Neu_{Cgsg^*} -continuous.

(ii) Let $\mathcal{K} \subseteq \mathcal{C}$ be a Neu_{Cgsg} CS, given that t_2 remains a $Neu_{Cgsg^{**}}$ -continuous then $t_2^{-1}(\mathcal{K})$ stays a Neu_{Cgsg} CS in \mathcal{B} . Since t_1 is $Neu_{Cgsg^{**}}$ -continuous, $t_1^{-1}(t_2^{-1}(\mathcal{K}))$ is a Neu_{Cgsg} CS in \mathcal{A} . Thus $(t_2 \circ t_1)^{-1}(\mathcal{K})$ is a Neu_{Cgsg} CS in \mathcal{A} . Hence $t_2 \circ t_1$ is a $Neu_{Cgsg^{**}}$ -continuous. The proof is evident for others.

Remark 5.20:

The succeeding illustration reveals the relation involving the numerous types of Neu_c -continuous functions:

6. Conclusion

The concept of $Neu_{Cgsg}CS$ is described by employing $Neu_{Csg}CS$ with structures a Neu_{CT} and deceptions between the concepts of Neu_CCS and $Neu_{Cg}CS$. We are exhibited well illustration of Neu_{Cgsg} -continuous functions by applying $Neu_{Cgsg}CS$. In the future, we anticipate that many additional studies will be able to be conducted in the using these concepts from Neu_{CTS} .

Funding: This paper was not supported by external funding.

Conflicts of Interest: Authors will not declare a conflict of interest.

References

- [1] A. A. Salama, F. Smarandache and V. Kroumov, Neutrosophic crisp sets and neutrosophic crisp topological spaces. Neutrosophic Sets and Systems, 2(2014), 25-30.
- [2] A. A. Salama, I. M. Hanafy, Hewayda El Ghawalby and M. S. Dabash, Some GIS Topological Concepts via Neutrosophic Crisp Set Theory. New Trends in Neutrosophic Theories and Applications, (2016), 315-323.
- [3] R. K. Al-Hamido, Q. H. Imran, K. A. Alghurabi and T. Gharibah, On neutrosophic crisp semi-α-closed sets. Neutrosophic Sets and Systems, 21(2018), 28-35.
- [4] A. H. M. Al-Obaidi and Q. H. Imran, On new types of weakly neutrosophic crisp open mappings. Iraqi Journal of Science, 62(8) (2021), 2660-2666.
- [5] A. H. M. Al-Obaidi, Q. H. Imran and M. M. Abdulkadhim, On new types of weakly neutrosophic crisp closed functions. Neutrosophic Sets and Systems, 50(2022), 239-247.

Doi : <u>https://doi.org/10.54216/IJNS.200408</u> Received: December 19, 2022 Accepted: March 09, 2023

- [6] Md. Hanif PAGE and Q. H. Imran, Neutrosophic generalized homeomorphism. Neutrosophic Sets and Systems, 35(2020), 340-346.
- [7] Q. H. Imran, R. K. Al-Hamido and A. H. M. Al-Obaidi, On new types of weakly neutrosophic crisp continuity. Neutrosophic Sets and Systems, 38(2020), 179-187.
- [8] Q. H. Imran, K. S. Tanak and A. H. M. Al-Obaidi, On new concepts of neutrosophic crisp open sets. Journal of Interdisciplinary Mathematics, 25(2) (2022), 563-572.
- [9] M. Parimala, R. Jeevitha, F. Smarandache, S. Jafari and R. Udhayakumar, Neutrosophic αψ-homeomorphism in neutrosophic topological spaces. Information, 187(9) (2018), 1-10.
- [10] V. Banupriya and S. Chandrasekar, Neutrosophic αgs continuity and neutrosophic αgs irresolute maps. Neutrosophic Sets and Systems, 28(2019), 162-170.
- [11] V. Banupriya, S. Chandrasekar, M. Suresh, S. Anbalagan, Neutrosophic αGS closed sets in neutrosophic topological spaces. Neutrosophic Sets and Systems, 49(2022), 375-388.
- [12] M. M. Abdulkadhim, Q. H. Imran, A. H. M. Al-Obaidi and Said Broumi, On neutrosophic crisp generalized alpha generalized closed sets. International Journal of Neutrosophic Science, 19(1) (2022), 107-115.