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Abstract

In this paper, we delivered pioneering notions of closed sets in the neutrosophic crisp sense. In other words, we
discussed sg-closed sets, gs-closed sets, and gsg-closed sets in neutrosophic crisp topological space. Moreover, the
subsequent innovative ideas are established, for instance, gsg-closure and gsg-interior in neutrosophic crisp
topological space, and obtaining numerous of their highlights. Besides, we submitted different kinds of neutrosophic
crisp continuous functions and their associations.
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1. Introduction

The notion of neutrosophic crisp for topological space was stated by A. A. Salama et al. [1] and symbolized merely
Neucrs. Next, the various types of crisp nearly open sets were submitted by A. A. Salama et al. [2]. Moreover, the
extension of semi-a-closed sets in neutrosophic crisp topological space was presented by R. K. Al-Hamido et al. [3].
Furthermore, the different perceptions of weak forms of open and closed functions in the sense of neutrosophic crisp
topological space were displayed by A. H. M. Al-Obaidi et al. [4,5]. Additionally, in neutrosophic topological space,
the viewpoint of generalized homeomorphism was represented by Md. Hanif Page et al. [6]. Besides, the weak types
of continuity in the sense of neutrosophic crisp topological space were offered by Q. H. Imran et al. [7,8]. Likewise,
the intellect of neutrosophic homeomorphism and neutrosophic ay-homeomorphism were raised by M. Parimala et
al. [9]. Subsequent, they set up the thought of neutrosophic aiy*-homeomorphism, neutrosophic ai-open and closed
mapping and neutrosophic Tai-space. Consequently, the maps with features ags-continuity and ags-irresolute in
neutrosophic topological space were inserted by V. Banu Priya et al. [10]. Finally, in neutrosophic topological space,
the senses of a-generalized semi-closed and a-generalized semi-open sets were informed by V. Banu Priya et al.
[11]. This article seeks to ascertain the neutrosophic crisp topological space perception for sg-closed, gs-closed, and
gsg-closed sets and analysis of their essential components. Besides, we detect neutrosophic crisp gsg-closure and
neutrosophic crisp gsg-interior sets and accomplish certain of their attributes. Likewise, we give different classes of
neutrosophic crisp continuous functions and their interactions.
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2. Preliminaries

All through this work, (A, T), (B, £) and (C,7) (or simply A, B and C, respectively) frequently imply Neucrs. For
any neutrosophic crisp set U in a Neucrs (A, T), its closure is signified by Neu.cl(U), its interior is signified by
Neucint(U), and its complement is signified by U = Ay, — U, correspondingly.

Definition 2.1: [1]
Let A be a non-empty particular fixed space, and let U;,U,, U; be subsets of A with the mutually exclusive
property. An object is a neutrosophic crisp set (or merely Neu-set) U with type U = (U, U,, Us).

Definition 2.2: [1]

A collection T of Neu,-sets in a non-empty particular fixed space A is called a neutrosophic crisp topology (in
short, Neu.r) on A satisfying the following conditions below:

(I) (pNeu'CANeu € :T,

(i) U NU, € T where U, U, €T,

(iif) UU, € T for all collections {U, |k € A} S T.

In this circumstance, the name of the ordered pair (A,T) is Neucrs and every Neuc-set in T is titled as
neutrosophic crisp open set (fleetly, Neu-0S). The complement U of a Neu,0S U in A is established as
neutrosophic crisp closed set (fleetly, Neu-CS) in A.

Definition 2.3: [2]

A Neuc-subset U of a Neucrs (A, T) is known to be a neutrosophic crisp semi-open set (shortly, Neu;0S) if U <
Neuccl(Neucint(U)) and a neutrosophic crisp semi-closed set (shortly, Neu;CS) if Neucint(Neucl(U)) € U.
The neutrosophic crisp semi-closure of U of a Neucrs (A, T) is the intersecting of the all Neu, CSs that involve U
and it is signified by Neu ;cl(U).

Definition 2.4: [12]

Suppose Neu.-subset U and Neu,0S M are in a Neucrs (A,T) such that U € M then U is so-called a
neutrosophic crisp generalized closed set (in brief, Neu,CS) if Neuccl(U) € M and the complement of a
Neuc,CS is a Neucg-open set (in brief, Neu,0S)in (A, T).

Remark 2.5: [2,12]

Ina Neugrs (A, T), then the succeeding declarations grip and the reverse of each declaration is not suitable:
(i) To all Neu0S (corr. Neu,CS) are Neu.,0S (corr. NeuCS).

(i) To all NeuOS (corr. NeuCS) are Neuc,0S (corr. Neu,CS).

Definition 2.6: [1]
A function £: (A,T) — (B, L) is understood to be neutrosophic crisp continuous (in short, Neu,-continuous) if
£71(U) isa Neu CS (Neu-0S) in (A, T) for every NeuCS (Neu0S) U in (B, £).

Definition 2.7: [2]
A function #:(A,T) — (B, L) is understood to be neutrosophic crisp semi-continuous (in short, Neucs-
continuous) if £~1(U) is a NeucsCS (Neu 0S) in (A, T) for every Neu-CS (Neu-0S) U in (B, L).

Remark 2.8: [2]
To all Neu,-continuous are a Neu¢-continuous; however, the reverse does not reasonable in common.

3. Neutrosophic Crisp gsg-Closed Sets

In this circumstance, we pioneer and investigate the neutrosophic crisp gsg-closed sets with several of their
features.
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Definition 3.1:
A Neu-subset U of Neu g (A, T) is told to be:
(i) a neutrosophic crisp sg-closed set (shortly, Neu,,CS) if Neucscl(U) € M whenever U € M and M is a

Neuc;0S in (A, T). For each Neu,, CS, its complement is a Neu,q-open set (in brief, Neu,,0S) in (A, T).
(ii) a neutrosophic crisp gs-closed set (shortly, NeucgysCS) if Neucscl(U) € M whenever U € M and M is a
Neuc0S in (A, T). For each Neu,,CS, its complement is a Neugs-open set (in brief, Neu,,0S)in (A, T).

Definition 3.2:

A Neuc-subset U of a Neucrs (A, T) is named to be a neutrosophic crisp gsg-closed set (in short, Neucg,,CS) if
Neuccl(U) € M whenever U € M and M is a Neucs,OS in (A, 7). The collection of all Neucys,CSs of a
Neucrs (A, T) is symbolized by NeucggqC(A).

Proposition 3.3:

Ina Neucrs (A, T), the following declarations are reasonable:

(i) To all Neu,,CS are NeuyCS.

(i) To all NeucCS are Neuc,CS.

(iii) To all Neu,,CS are Newcg,CS.

Proof:

(i) Suppose Neu,CS U is in a Neucrs (A,T). Then Neuccl(U) S M whenever U € M and M is a NeuOS in
A. But Neugscl(U) € Neugcl(U) whenever U € M, M is a Neus0S in A. Now we have Neu,cl(U) €S M,
U M, M isaNeucOS in A. Therefore U is a Neucy;CS. The proof is evident for others. =

The reverse of the exceeding result need not be valid, as seen in the subsequent instances.

Example 3.4:

SUppOSE A= {Ul, VU2, V3, U4,}. LetT = {(pNeu' ({vl}: @, <P>: <{v2' 174}, @, ‘P); ({vli U2, 174}, @, ‘P)' C’quu} be a NeuCT on
A. Then ({v,, 14}, @, @) is a NeugyCS, just not Neu,CS.

Example 3.5:
In example (3.4), then ({vs, v}, @, @) is a Neucs, CS, just not Neu,CS.

Example 3.6:
Suppose A = {v1,v,,v3}. Let T = {@yew, {V1}, @, @), Aneu} be @ Neucr on A. Then ({vy,v3},0,90) is a
Neucg,CS, just not Neu, CS.

Proposition 3.7:

Ina Neucrs (A, T), the following declarations are reasonable:

(1) Each Neu CS is a Neucg,,CS.

(ii) Each Neucg, CS is a Neu,CS.

Proof:

(1) Suppose that U is a NeucCS in a Neucrs (A, 7) and consider M is a Neu,,0S in A wherever U € M. Then
Neuccl(U) = U < M. Therefore U is a Neucy,,CS.

(i) Let U be a Neugys,CS in a Neucrs (A,T) and let M be a NeucOS in A such that U © M. Since every
Neuc0S is a Neuc,,0S, we have Neuccl(U) € M. Therefore U is a Neuc,CS. =

As seen in the subsequent examples, the reverse of the above proposition need not be accurate.

Example 3.8:

Suppose A= {'51' 82,83, '54—}' LetT = {(pNeu: <{51}: @, (P): <{52' 53}’ ?, <P), ({51, 82, 53}’ ?, (p)’ cANeu} be a NeuCT on
A. Then ({8;, 83}, @, p) is a Neucg,,4CS, just not NeuCS.
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Example 3.9:

Suppose A = {v,v,, V3, Uy, Vs }

Let T = {pnew ({va}, @, @), ({v1, v2}, @, 0), {1, v2, va}, @, @), Aneu} be @ Neucr on A. Then ({vy, vs, v4}, @, @) s
a Neuc,CS, just not Neucg,,CS.

Proposition 3.10:

Ina Neucgrs (A, T), the following declarations are reasonable:

(i) Each Neucy,CS is a Neug, CS.

(ii) Each Neu s4CS is a NeucyCS.

Proof:

(i) Consider that U is a Neucgs,CS in a Neucrs (A, T) and postulate that M is a Neu0S in A wherever U € M.
Since every NeucsOS is a Neucs,0S, we have Neucscl(U) € Neuccl(U) € M implies Neugscl(U) € M.
Therefore U is a Neuc,CS.

(ii) Let U be a Neucys4CS in a Neucrs (A,T) and let M be a NeucOS in A such that U S M .Since every
NeucOS is a Neucs,0S, we have Neucscl(U) € Neuccl(U) € M implies Neucscl(U) € M. Therefore U is a
NeucysCS. ®

The reverse of the above proposition need not be accurate, as shown in the subsequent instance.

Example 3.11:

SUppOSE A= {‘31"‘52"33"‘54—}' LetT = {(pNeu: <{51}' P, <P>: <{52"54}' @, ‘P); ({'51; '52"54}; P, ‘P); C’quu} be a NeuCT on
A. Then ({81}, ¢, p) is a Neu,,,CS and hence Neu,,CS, just not Neucg,,CS.

Remark 3.12:
The Neucys,CS and Neu,CS are independent.

Definition 3.13:
A Neuc-subset U of a Neucrs (A,T) is stated as a neutrosophic crisp gsg-open set (shorty Neucg,0S) iff
Aney — U is @ Neucys,CS. The collection of all Neuy,,0Ss of a Neucrs (A, T) is symbolized by Neucys50(A).

Proposition 3.14:

Suppose that Neu0S U is in Neucrs(A, T7), then this set stands as a Neug,,0S in that topological space.

Proof:

Assume that a Neu-0S U is in a Neugrs (A, T), so therefore Ay, —U stands as a Neu CS in (A,T). By
employing proposition (3.7) portion (i), Aye, — U is @ Neucys,CS. Thus, U is a Neuggs,0S in (A, T).=

Proposition 3.15:

Suppose that Neugs,0S U is in Neucrs (A, T), then this set is a Neuc,OS in that topological space.

Proof:

Let U be a Neucysq0S ina Neucrs (A, T), then Ay, — U is a NeucysqCS in (A, T7). By employing proposition
(3.7) portion (i), Aye, — U is @ Neuc,yCS. Thus, U isa Neugy0Sin (A, T). =

Proposition 3.16:

Ina Neucrs (A, T), the subsequent declarations are reasonable:
(i) Toall Neugg,,0S are Neu,, 0S.

(ii) To all Neucys,0S are NeuggOS.

Proof:

Similar to the exceeding result. =

Theorem 3.17:
Suppose that U and V are Neucg,,CSs ina Neucrs (A, T), then UUV is a Neucys,CS.

109

Doi : https://doi.org/10.54216/1]NS.200408
Received: December 19,2022 Accepted: March 09, 2023



https://doi.org/10.54216/IJNS.200408

International Journal of Neutrosophic Science (IINS) 10l 20, No. 04, PP. 106-118, 2023

Proof:

Assume that U and V be two Neuys,CSs in a Neucrs (A, T) and assume that M be any Neu,g,0S in A where
U< M and V € M. Therefore, we get UUV € M. Later U and V are Neucys,CSs in A, Neuccl(U) € M and
Neuccl(V) € M. Now, Neuccl(UUV) = Neuccl(U)UNeuscl(V) € M and so Neuqcl(UUV) € M. Hence
UUYV stands in A as a Neucys,CS.

Proposition 3.18:

Assume Neucys,CS U isina Neucrs (A, T), then Neuccl(U) — U contains no non-empty NeuCS in (A, T).
Proof:

Postulate that U is a Neucg,,CS in a Neucrs (A,T) and let F be any NeuCS in (A, T) where F € Neuccl(U) —
U. Since U is a Neucys,CS, we have Neuccl(U) € Ay, — F. This implies F € Ay, — Neuccl(U). Then F <
Neuccl(UWN(Ayey — Neuecl(U)) = @pey- Thus, F = @ye,. Hence Neuccl(U) —U involves no non-null
NeuCSin (A,T). =

Proposition 3.19:

A Neuc-set U is Neucgys4CS ina Neucrs (A, T) iff Neuccl(U) — U contains no non-empty Neucg,CS in (A, T).
Proof:

Postulate that U is a Neucgys4CS in a Neucrs (A, T) and let K be any Neucs,CS in (A,T) where K €
Neuccl(U) —U. Meanwhile, U is a Neucgs,CS, we have Neuccl(U) S Ape, — K. This implies K S Ape, —
Neuccl(U). Then K € Neucl(U)N(Apey — Neuccl(U)) = @pey. Thus, K is null.

In contrast, suppose that Neuccl(U) — U involves no non-null Neucs,CS in (A,T). Let U S M and M is
Neucg0S. If Neuccl(U) € M then Neuccl(U)N(Aye, — M) is non-empty. Because Neucl(U) is NeuCS and
Anen — M is Neugs,CS, we have Neuccl(U)N(Ayey, — M) is non-empty Neucs,CS of Neuccl(U) — U, which is
a contradiction. Therefore Neuccl(U) € M. Hence U is a Neucg,,CS. =

Theorem 3.20:

IfUisa Neucys;CSina Neucrs (A, T) where U €V € Neuccl(U), then Vis a Neucys,CS in (A, T).

Proof:

Postulate that U is a Neuggs,CS in @ Neugrs (A, T). Postulate M be a Neucs,0S in (A, T) such that V € M.
Then U < M and because U stands as a Neucy,,CS, it follows that Neuccl(U) € M. Now, V € Neuccl(U)
implies Neuccl(V) € Neuccl(Neuccl(U)) = Neuccl(U). Thus, Neuccl(V) € M. Hence Vis a Neucy,,CS. =

Proposition 3.21:

LetU € B < A and if U isa Neuggs,CS in A, then U is a Neug,, CS relative to B.

Proof:

U < BNM everywhere M is a Neucg,0S in A. So therefore U M and consequently Neuccl(U) € M. It
indicates that BNNeuccl(U) € BNM. Thus U is a Neucg,,CS analogous to B. =

Proposition 3.22:

Assume that U is a Neu,0S and a Neuc,4CS in Neucrs (A, T), then U is a NeucCS in (A, T).

Proof:

Consider U is a Neugs;0S and a Neucgys,CS in Neugrs (A,T), so therefore Neuccl(U) €U and since U <
Neuccl(U). Thus, Neuccl(U) = U. For this reason, U is a NeuCS. =

Theorem 3.23:

If U and V are Neucys40Ss ina Neucrs (A, T), then UNV is a Neucys,0S.

Proof:

Let U and V be Neucgs40Ss in a Neucrs (A, T). Then Ay, — U and Ay, — V are Neuggs,CSs. By theorem
(3.17), (Anew — WU (Apney — V) is @ NeugysyCS. Since (Ayey — WU (Apey — V) = Apyey — (UNV). For this
reason, UNV is a Neucys,0S. =
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Theorem 3.24:

A Neuc-set U is Neucg,,0S iff W € Neucint(U) where W € U besides W stands as a Neu s, CS.

Proof:

Suppose that W € Neucint(U) where W is a Neucgys,CS and W € U. Then Ayey — U S Ayey, — W and
Apney — W is a Neu,0S by proposition (3.16). Now, Neuccl(Ayey — U) = Apyey — Neucint(U) € Ayey — W.
Then A e, — U is a Neuys,CS. Hence U is a Neucg,40S.

Conversely, let U be a Neucys4,0S and W be a Neucys,CS and W € U. Then Ayey — U € Apey, — W. Since
Aney — U is @ NeugsyCS and Ay, — W is a Neu;0S, we have Neuccl(Ayey — U) S Apey, — W. Then W €
Neucint(U). =

Theorem 3.25:

If U isaNeugys,0S inaNeucrs (A, T) and Neucint(U) €V S U, then V is a Neucys,0S in (A, T).

Proof:

Consider U is a Neugs40S inaNeucrs (A,T) and Neucint(U) €V S U. Then Ay, — U remains a Neucys,CS
such that Ayey — U S Ayey —V € Neuccl(Ayey —U). Then Aye, —V is a Neucys4CS by theorem (3.20).
Hence, V is a Neucg,,0S. =

Theorem 3.26:

For a Neu.-set U of a Neucrs (A, T), afterwards, the subsequent assertions are the duplicate:
(i) U isa Neucys,CS.

(i) Neuccl(U) — U includes no non-null Neu,0S.

(iii) Neuccl(U) — U is a Neucgs40S.

Proof:
Observe by employing proposition (3.19) and proposition (3.21). =

Remark 3.27:
The succeeding chart covers up the comparison involving the numerous kinds of NeuCSs:

Neu,CS « - Neug,,,CS [ Neug, CS
F 3 b -Flllreucsg GS I F 3 h
r r k
Neus,CS  je—] Neug,,CS5 (o] Neug,, CS
Fig.3.1

4. Neutrosophic Crisp gsg-Closure and Neutrosophic Crisp gsg-Interior

We represent Neu s 4-closure and Neug,,-interior and attain various of their advantages in the current part.

Definition 4.1:
The crossing of all Neucg,,CSs in a Neucrs (A, T) involving U is titled Neucg,,-closure of U and is denoted by
Neuggsqcl(U), Neucgsgcl(U) = N{V:U SV, V stands as a Neucgs,CS}
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Definition 4.2:
The coalition of all Neucg,,0Ss in a Neucrs (A, T) contained in U is titled Neuy,4-interior of U and is denoted
by Neucgysqint(U), Neucysqgint(U) = U{V:U 2V, Vis a Neucys,0S}.

Proposition 4.3:

Assume that U is any Neu.-setin a Neu.rs (A, T). Next, the subsequent features stand:
(i) Neugysgint(U) = Uiff U is a Neucys,0S.

(i) Neucgsocl(U) = U iff U is a Neuys,CS.

(i) Neucgsqint(U) is the massive Neucys,0S included in U.

(iv) Neucggqcl(U) is the minimum Neug,, CS, including U.

Proof:

The evidence of the points above is apparent. =

Proposition 4.4:
Suppose that U be any Neu-set in a Neucrs (A, T). So therefore, the subsequent features determined:
() Neu(?gsgint("quu —U) = Ayew — (NeuCgsgCl(u))v
(”) NeuCgsgCl(Uquu - U) = c/‘ZNeu - (NeuCgsgint(u))-
Proof:
(i) By definition, Neucgsqcl(U) = N{V:U € V,V stands as a Neu,CS}
Anen — (Neucgsgcl(U)) = Ayey — N{V:U SV, VisaNeucgys4CS}
= U{Apey —V:U SV, VisaNeucys,CS}
= U{M: Apey — U 2 M, M isa Neucys,0S}
= Neucgsqgint(Aye, — U).
(ii) The facts is comparable to (i). =

Theorem 4.5:

Assume that U and V are two Neu,-sets in a Neu s (A, T). Next, the subsequent features stand:

() NeuCgsgCl(QDNeu) = PnNeus NeuCgsgCl(C’quu) = Apneu-

(i) U € Neucgggel(W).

(i) U €V = Neucgsgcl(U) S Neucgsgcl(V).

(iv) Neucgsqcl(UNV) S Neucgysocl(U)NNeuggsqcl(V).

(V) Neucysacl(UUV) = Neuggsgcl(U)UNeucggqcl(V).

(Vi) Neuggsgcl(Neuggsgcl(U)) = Neucgsqgcl(U).

Proof:

The first two points are recognizable.

(iif) By applying portion (ii), V S Neucgsocl(V). While U SV, we get U S Neucgs,cl(V). However,
Neucggqcl(V) is @ Neucgs,CS. In consequence, Neucgs cl(V) is @ Neuys,CS including U. While Newcygqcl(U)
is the minimum Neu 4, CS including U, we have Neucgy,cl(U) € Neucggqcl(V).

(iv) We know that UNV € U and UNV € V. Therefore, by part (iii), Neucysqcl(UNV) € Neugys,cl(U) and also
we have Neucgs,cl(UNV) € Neucggacl(V). Hence Neugysqcl(UNV) € Neuggsycl(U)NNeucgsycl(V).

(v) Since U € UUV and V € UUYV, it results from part (iii) that Neucgqcl(U) € Neugys,cl(UUV) and also we
have Neucgsqcl(V) € Neuggsocl(UUV). Hence Neucggqcl(UW)UNeuggsqcl(V) € Neuggsgcl(UUD)......... (1)
Since Neucgs,cl(U) and Neuggsocl(V) are Neucys,CSs, Neucgs cl(U)UNeuggsocl(V) is also Neucys,CS by
theorem  (3.17).  Also U S Neucgsqcl(U) and VS Neugggacl(V)  implies  that  UUV <
Neucgsgcl(U)UNeucgs cl(V). Thus Neucggacl(UWUNeucgsqcl(V) is a NeucysqCS containing UUV. Since
Neucgsocl(UUV) is  the smallest Neucy,,CS containing UUV, we get Neucgyacl(UUV) €
Neucgsgcl(UWUNeucgsocl(V)........... )

From (1) and (2), we get Neugs,cl(UUV) = Neucysocl(UW)UNeugysqcl(V).

112

Doi : https://doi.org/10.54216/1]NS.200408
Received: December 19,2022 Accepted: March 09, 2023



https://doi.org/10.54216/IJNS.200408

International Journal of Neutrosophic Science (IINS) 10l 20, No. 04, PP. 106-118, 2023

(vi) Since Neucggqcl(U) is a Neuys,CS, we have by proposition (4.3) part (i), Neucgsgcl(Neucgsqocl(U)) =
Neucggqcl(U). =

Theorem 4.6:

Assume that U and V are two Neuc-sets in a Neucrs (A, T). So therefore, the subsequent features stand:
(l) NeuCgsgint((pNeu) = Pneu: NeuCgsg int(Ayeu) = Aneu-

(i) Neucysq int(U) € U.

(i) U € V = Neucysyint(U) S Neuggsgint(V).

(iv) Neucgsgint (UNV) = Neucgggint(U)NNeuggsqint (V).

(V) Neucysqint(UUV) 2 Neucgsgint(UYUNeugysyint (V).

(Vi) Neucgsgint(Neucgsgint(U)) = Neugysgint(U).

Proof:

The above points are noticeable. =

Definition 4.7: [12]
A Neucrs (A, T) is stated to be a neutrosophic crisp T1-space (fleetingly, NeuT1-space) if for all Neuc,CS in it
2 2

are NeuCS.

Definition 4.8:
A Neucrs (A, T) is stated to be a neutrosophic crisp T,,,-space (fleetingly, Neu,T,,-space) if for all Neucg,,CS
in it are Neu,CS.

Proposition 4.9:
Each Neu,T1-space is a NeuT,,,-space.
2

Proof:
Consider (A, T) is a Neu T1-space and Assume U is a Neucy,,CS in A. Therefore, U is a Neu,CS, by employing
2
proposition (3.7) part (ii). While (A, T") is a NeucT1-space, then U is a NeucCS in A. Thus, (A, T) is a NeucTys,-
2

space. =
The subsequent occurrence discloses that the beyond proposition's reverse is not valid.

Example 4.10:
Suppose A = {vy,v,, 3} Let T = {@new ({v1}, @, @), {v2, v3}, 0, 0), Aneyn} e @ Neugr on A. Then (A, T) is a
Neu,Ty,4-space but not NeuT1-space.

2

5. Neutrosophic Crisp gsg-Continuous Functions

In this circumstance, we pioneer and investigate the neutrosophic crisp gsg-continuous functions with several of
their features.

Definition 5.1:
A function #: (A, T) — (B, £) is named neutrosophic crisp g-continuous and symbolized by Neu,-continuous if
t~1(U) isa NeugyCS (Neuc,08S) in (A, T) for each NeuCS (Neu:0S) U in (B, £).

Definition 5.2:
A function £: (A, T) — (B, £) is named neutrosophic crisp sg-continuous and symbolized by Neu,,-continuous

if £71(U) is a Neuc;,CS (Neugsg0S) in (A, T) for each NeuCS (Neuc0S) U in (B, £).

Definition 5.3:
A function £: (A,7) — (B, L) is named neutrosophic crisp gs-continuous and symbolized by Neu,,-continuous
if £71(U) isa NeucysCS (Neucys0S) in (A, T) for each NeuCS (Neu 0S) U in (B, £).
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Definition 5.4:
A function %:(A,T) — (B,£) is named neutrosophic crisp gsg-continuous and symbolized by Neucgqq-
continuous if £~ (U) is @ Neucys5CS (Neuysg0S) in (A, T) for each NeuCS (Neu 0S) U in (B, £).

Proposition 5.5:

(i) Each Neuc-continuous is a Neug4-continuous.

(ii) Each Neucg4-continuous is a Neugs-continuous.

(i) Each Neu-continuous is a Neu,4-continuous.

(iv) Each Neug4-continuous is a Neugs-continuous.

Proof:

(i) Let £: (A, T) — (B, L) be a Neu,-continuous function and let U be a Neu,CS in (B, L), since £ is a Neu,-
continuous then £71(U) is a NeucCS in (A, T), which implies £~*(U) is a Neuc,CS in (A,T). Hence ¢ is a
Neucg-continuous.

(ii) Let £: (A, T) — (B, L) be a Neuc,-continuous function and let U be a NeuCS in (B, £), since £ is a Neucy-
continuous then #~1(U) is a Neuc,CS in (A, T), which implies 71 (U) is a Neu¢ysCS in (A, T). Hence £ is a
Neuggs-continuous. The proof is evident to others. =

The contrast of the upper proposition need not be accurate, as indicated in the subsequent instances.

Example 5.6:
Suppose A = {81,85,83,84} and B = {04,0%, 03,04} Then T =
{onew ({81} 0, 0), ({82, 83}, 0, @), ({81, 82, 83}, @, 9), Aneu} and L=

{Onew {1}, 0, @), {o2, 03}, 0, 0), {{o1, 02, ¢33}, @, @), Byew} are Neucrss On A and B, respectively. Define the
function £:(A,7) — (B,£) via t({({s1}, 0, 9) = ({2}, 0, 0), ({82}, 0, 9)) = {01}, 0, @) t ({83}, 0, 0)) =
({ou}, 0, 0), ({84}, 0, 0)) = ({03}, @, @). Then £ is a Neuc4-continuous, just not Neuc-continuous.

Example 5.7:
Suppose A = {81,85,383,84} and B = {04,073, 03,04} Then T =
{Onew ({81} 0, 0), ({82, 84}, 0, D), ({81, 82, 84}, 0, ©), Aneu} and L=

{Dnew {01}, @, 0), ({05, 03}, @, @), ({01, 2, 03}, @, @), Byew ) @re Neucrss on A and B, correspondingly. Define the
function £:(A,T) — (B,L) via £({{s:1}, 9, 90)) = {02}, 9, 0), t(({8:}, 0, 9)) = ({01}, 0, 0), ({83}, 0, 0)) =
({o3}, 0, 0), ({84}, 0, 0)) = ({04}, @, @). Then £ is a Neugs-continuous, just not Neuc,-continuous.

Example 5.8:
Suppose A = {81,385, 83,84} and B = {04,0,, 03,04} Then T =
{Onew ({84}, @, 0), ({81, 83}, 0, @), ({81, 83, 84}, 0, P), Aneu} and L=

{Oonew o1}, 0, 0), {03, 03}, @, @), {01, 02, 03}, ©, @), Byew} are Neucrss 0n A and B, correspondingly. Define the
function #: (A, T) — (B,£) via t({{s1}, 9, 9)) = {{o1}, 0, 0), £(({5:}, 0. 0)) = ({0}, 0, @), t ({3}, 0, 9)) =
({o2}, 0, 0), ({84}, 0, 0)) = ({03}, @, @). Then £ is a Neu,q-continuous, just not Neucg-continuous.

Example 5.9:

Suppose A= {'51'52"53} and B= {011 02 03}' Then T = {(pNeut ({51}; ®, (p)! c/lNeu} and L=
{Onew {02}, ©, @), Byew} are Neugrss 0n A and B, correspondingly. Define the function #: (A, T) — (B, £) via
t(<{51}' @, (p)) = <{01}' @, (p): t(<{52}' @, (p)) = <{03}' @, (p): t(<{53}! @, (p>) = <{02}! @, <P) Then T iS a Neu(]gs'
continuous, just not Neu,-continuous.

Theorem 5.10:

Suppose that the following #: (A,T) — (B, £) is given such that (A, T) is

(1) a NeucT1-space, therefore ¢ is a Neucg-continuous iff £ is a Neuyq,-continuous.
2

(ii) a Neu,T,

gsg-Space, therefore £ is a Neu-continuous iff £ is a Neug,4-continuous.

114

Doi : https://doi.org/10.54216/1]NS.200408
Received: December 19,2022 Accepted: March 09, 2023


https://doi.org/10.54216/IJNS.200408

International Journal of Neutrosophic Science (IINS) 10l 20, No. 04, PP. 106-118, 2023

Proof:

(i) Assume U be a NeuCS in (B,L). Because £ is a Neuc,-continuous, then £71(W) in (A,T) remains a
Neuc,CS. By (A,T) isa NeuCT%—space, which implies £71(U) is a NeuCS. By proposition (3.7) part (i), #~1(U)
isa NeucgsgCSin (A, T). Hence, £ is a Neug,4-cONtinuous.

Conversely, suppose that ¢ is a Neu,,-continuous. Let U be a Neu CS in (B, £). Then £~ (U) is a Neuc,s,CS in
(A, T). By proposition (3.7) part (ii), #~*(U) is a Neuc,CS in (A, 7). Hence ¢ is a Neu,-continuous.

(ii) Let £: (A, T) — (B, L) be a Neu,-continuous function and let U be a Neu.CS in (B, L), since % is a Neu,-
continuous then #~1(U) is a NeucCS in (A, T), which implies (1) is @ Neu¢ys,CS in (A, T). Hence £ is a
Neuyqq-continuous.

Conversely, suppose that £ is a Neugs4-continuous. Let U be a Neu CS in (B, £). Then £~ (U) is a Neuy,CS in
(A, T). By (A,T) is a NeucTy4-space, which implies £71(U) is a NeucCS in (A,T). Hence, £ is a Neu,-
continuous. =

Proposition 5.11:

(i) Each Neugs4-continuous is a Neucgq-continuous.

(ii) Each Neucys4-continuous is a Neucgg-continuous.

Proof:

(i) Let £: (A, T) — (B, L) be a Neucys,-continuous function and let U be a NeucCS in (B, L), since £ is a

Neuysq-continuous then £~1(U) is a Neucys,CS in (A, T), which implies 71 (U) is a Neu,CS in (A, 7).
Hence £ is a Neucgq-continuous.

(i) Let £:(A,T) — (B, L) be a Neucgysq-continuous function and letU be a NeuCS in (B, L), since £ is a
Neuc,s4-continuous then £=1(U) is a Neucys,CS in (A, T), which implies 71U is a NeucgsCS in (A, T).
Hence # is a Neucgs-continuous. =

As the subsequent example indicates, the beyond proposition's reverse need not be accurate.

Example 5.12:
Suppose A = {81,385, 83,84} and B = {04,09, 03,04} Then T =
{(pNeu' ({'51}' P, (P)' ({'52' 54}' ®, (P>, <{51' 82, 54}' ®, (P>, cANeu} and L=

{onew ({02}, 0, 0), ({01, 03}, 0, ©), {{01, 02,03}, @, ©), Byeu} are Neuerss on A and B, correspondingly. Define the
function z: (A, T) — (B, £) where £({{s1}, ¢, 9)) = ({03}, 9, 9), £({{8.}, 0, 9)) = ({01}, 0, @), t ({83}, 0, 9)) =
({ou} 0, 0), t ({84}, @, 9)) = ({e2}, 0, 9). Then £ is a Neucy,-continuous and  Neucgg-continuous but not

Neuyqq-continuous.

Theorem 5.13:

A function z: (A,T) — (B, L) is Neucgsg-continuous iff £(Neucgs,cl(U)) € Neugysqcl(£(U)), for every U
A.

Proof:

Let ¢ be Neucgsq-continuous and U € A. Then £(U) < B. Since £ is Neucgy,q-continuous and Neucggqcl(£(U))
is NeucCS in (B,L), t'l(NeuCgSgcl(t(’u))) is @ NeucyssCS in (A, T). Since £(U) S Neucggqcl(£(U)),
71 (£ (W) € 7 (Neugysycl(£(U))), then Neuggsacl(U) € Neuggsgel (27 (Neuggsgcl(£(U))) =
t7 (Neuggsgcl(£(U)).  Thus  Neugys,cl(U) S 7 (Neuggsgcl(#(U)).  Therefore  #(Neucgsgcl(U)) S
Neucggqcl(£(U)), for every U € A.

Conversely, let #(Neucgsqacl(U)) € Neuggsgcl(£(U)), for every U € A. If V is NeucCS in (B, L), since
t1(V) € A, t(Neucysgcl(71(V))) € Neuggsgcl(£(£71(V))) = Neugys,cl(V) = V. That is
t(Neucysgcl(71(V))) € V, hence Neucys,cl(t71(V)) € £71(V) but £71 (V) € Neuggys cl(£71 (V). This mean
Neuggsgcl(£71(V)) = £71 (V). Therefore £~ (V) is Neugs4CS in (A, T). Hence £ is Neuysq-continuous. =

115

Doi : https://doi.org/10.54216/1]NS.200408
Received: December 19,2022 Accepted: March 09, 2023



https://doi.org/10.54216/IJNS.200408

International Journal of Neutrosophic Science (IINS) 10l 20, No. 04, PP. 106-118, 2023

Definition 5.14:
A function #:(A,T) — (B,£) is named neutrosophic crisp gsg”-continuous and symbolized by Neucyqqe-
continuous if £+~ (U) is a NeuCS (Neu0S) in (A, T) for each Neu s, CS (Neuys,0S) U in (B, £).

Definition 5.15:
A function %:(A,T) — (B,£) is named neutrosophic crisp gsg™-continuous and symbolized by Neucggq+-
continuous if £~ (U) is @ Neuys5CS (Neucys;08) in (A, T) for each Neucys, CS (Neueys,0S) U in (B, £).

Proposition 5.16:

(i) Each Neug4+-continuous is a Neu g 4++-CONtinuous.

(ii) Each Neucgsq-continuous is a Neucgsq++-CoONtinuous.

Proof:

(i) Let £: (A, T) — (B, L) be a Neug,4+-continuous function and suppose that U is a Neucys,CS in (B, £). Since
t is a Neucgs g+-continuous, then =1 (U) is a NeuCS in (A, T), which implies £~ *(U) is a Neucgs,CS in (A, T).
Hence £ is a Neug,4+-continuous.

(ii) Let £: (A, T) — (B, L) be a Neuys,-continuous function and let U be a NeuCS in (B, £), which implies U is
a Neucys,CS in (B,L). Since £ is a Neucyg,-continuous, then #71(U) is a Neucys,CS in (A, T). Hence £ is a
Neuggs4+-continuous.

The contrast of the upper proposition need not be true, as seen in the subsequent instances.

Example 5.17:

Suppose A = {81, 8,, 83,84} and B = {04, 0, 03, 04 }-

Then T = {Pnew ({84}, @, 0), ({81, 83}, 0, ), ({81, 83, 84}, 0, @), Apen} and L=
{Onew o1}, @, 0), {03, 03}, @, @), {01, 02,03}, ©, @), Byew} are Neucrss On A and B, respectively. Identify the
function t:(A,T) — (B, L) such that t({{81}, 0, 0)) = {o1} 0, 0), ({82}, ¢, 0)) =

({oa), 0, 0), t ({83}, 0, 0) = ({02}, 0, @), t ({84}, 0, ©)) = {{e3}, @, ). Then £ is a Neucgysq+-continuous, just
not Neu gy, 4+-coONtinuous.

Example 5.18:

Suppose A = {81,385, 83,84} and B = {04,0,, 03,04} Then T =
{(pNeu' ({"33}' (p' (P>' ({"31' '54}' (P, (P>: <{'511 "33! '54—}1 (pl (P>: queu} and L=
{(pNeu' ({04}' (p' (P>' <{01' 03}' <P, (P>: <{011 031 04}! <P, (P>: BNeu} are NeuCTSS on A and B, respeCtiver' Identlfy the
function t:(A,T) — (B, L) such that t(({s1} 0, 9)) = {1} 0, 9), t(({s2}, 9, 0)) =

({02}, 0, 9), £ ({83}, 0, @) = ({03}, 9, 9), £ ({84}, 0, @) = ({04}, 9, @). Then £ is a Neugysq+-continuous, just
not Neugys4-continuous.

Theorem 5.19:

Let #,: (A, T) — (B, L) and £,: (B, L) — (C,J) be two functions, then:

(i) If £; and £, are Neucgy,4--continuous, then £, o £;: (A, T) — (C,7) is a Neucyqq+-continuous function.

(ii) If £1 and £, are Neucg,q++-coOntinuous, then £, o £;: (A, T) — (C,7) is @ Neucyq++-continuous function.

(i) If £; is @ Neucgs g+--cONtinuous and %, is a Neucgsq+-continuous, then £, o £1: (A, T) — (C,7) is a Neuggs g+~
continuous function.

(iv) If £, is a Neuc-continuous and %, is a Neucgsg-continuous (Neucysq+-continuous, Neu s ,++-continuous), then
1y 0t1: (A, T) — (C,7) is a Neucgysy-continuous (Newcysq+-continuous, Neue g q++-continuous) function.

Proof:

(i) Let K < C be a Neucy,4CS, since £; is a Neucg,4+-continuous then t, 1 (%K) stands a NeuCS in B. Since every
NeucCS is a Neucgys,CS, therefore t,”1(K) stands a Neucgs,CS in B. Since £; is Neucgsy+-coOntinuous,
£, (£, H(K)) is a NeucCS in A. Thus (£, 04,) 1 (K) is @ NeucCS in A. Hence £, o#; is a Neucgs, -
continuous.
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(ii) Let X < C be a Neucy,,CS, given that £, remains a Neu s q++-continuous then £, 1(K) stays a NeucgsqCS in
B. Since £, is Neug,s,~+-continuous, £, (£, (X)) is a Neuys,CS in A. Thus (£, o £,) () is a Neugy,CS in
A. Hence £, o £ is a Neucg,q++-coOntinuous. The proof is evident for others. =

Remark 5.20:
The succeeding illustration reveals the relation involving the numerous types of Neu-continuous functions:

F 3
F Y

Neu,.-continuous Neug,, -continuous Newugg . -continuous

Y

F 3 F F Y

L J Y Y

F 3
F 3

Neuw-continuous Neug g, -continuous Neu,, -continuous

[
i

A is New T, -space A is:".l’euﬁ.i";;-space
L

()

Newg, o++-continuous

i

Neug g o+-continuous

Fig. 5.1
6. Conclusion

The concept of Neucs,CS is described by employing Neu,,CS with structures a Neucr and deceptions between
the concepts of Neu,CS and Neuc,CS. We are exhibited well illustration of Neuwc,,,-continuous functions by
applying Neucg4CS. In the future, we anticipate that many additional studies will be able to be conducted in the
using these concepts from Neu rs.
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